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Abstract 

Background: Delineation of organs at risk (OAR) for anal cancer radiation therapy treatment planning is a manual 
and time-consuming process. Deep learning-based methods can accelerate and partially automate this task. The aim 
of this study was to develop and evaluate a deep learning model for automated and improved segmentations of OAR 
in the pelvic region.

Methods: A 3D, deeply supervised U-Net architecture with shuffle attention, referred to as Pelvic U-Net, was trained 
on 143 computed tomography (CT) volumes, to segment OAR in the pelvic region, such as total bone marrow, 
rectum, bladder, and bowel structures. Model predictions were evaluated on an independent test dataset (n = 15) 
using the Dice similarity coefficient (DSC), the 95th percentile of the Hausdorff distance  (HD95), and the mean surface 
distance (MSD). In addition, three experienced radiation oncologists rated model predictions on a scale between 
1–4 (excellent, good, acceptable, not acceptable). Model performance was also evaluated with respect to segmenta-
tion time, by comparing complete manual delineation time against model prediction time without and with manual 
correction of the predictions. Furthermore, dosimetric implications to treatment plans were evaluated using different 
dose-volume histogram (DVH) indices.

Results: Without any manual corrections, mean DSC values of 97%, 87% and 94% were found for total bone marrow, 
rectum, and bladder. Mean DSC values for bowel cavity, all bowel, small bowel, and large bowel were 95%, 91%, 87% 
and 81%, respectively. Total bone marrow, bladder, and bowel cavity segmentations derived from our model were 
rated excellent (89%, 93%, 42%), good (9%, 5%, 42%), or acceptable (2%, 2%, 16%) on average. For almost all the evalu-
ated DVH indices, no significant difference between model predictions and manual delineations was found. Delinea-
tion time per patient could be reduced from 40 to 12 min, including manual corrections of model predictions, and to 
4 min without corrections.
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Background
External beam radiation therapy combined with chem-
otherapy, is the treatment of choice for patients suffer-
ing from anal cancer. The overall treatment planning 
process involves many manual steps, such as treatment 
plan optimization, as well as manual delineation of 
organs at risk (OAR) and target volumes. Delineation 
can be performed based on different image modalities, 
such as computed tomography (CT), positron emission 
tomography or magnetic resonance imaging. This man-
ual delineation operation can produce semantic seg-
mentations, where each pixel, or voxel for 3D volumes, 
is classified as belonging to a set of predefined classes. 
Nevertheless, manual delineation is a time-consum-
ing process and suffers from inter-observer variability 
[1–4].

Medical image segmentation has become more auto-
mated in the field of radiation therapy (RT). A com-
mon, automated method, is atlas-based segmentation 
(ABS) [5], used in several commercially available soft-
ware solutions [6]. ABS algorithms use libraries of pre-
defined, expert-delineated structures, that vary in size 
and shape to cover anatomical variations. These prede-
fined structures can be transferred to a new image with 
the help of image registration methods using a single 
atlas or multiple ones. One disadvantage of ABS-based 
methods is that all data used to generate one or several 
atlases must be available during matching, making huge 
atlases not feasible in clinical workflows [7]. As an alter-
native to ABS, the use of neural networks has recently 
been considered instead. In fact, current state-of-the-
art methods for semantic segmentation in general, 
predominantly exploit various neural network models. 
As examples of methods for semantic segmentation, 
Badrinarayanan et al. [8] explored an encoder-decoder 
architecture, Ronneberger et  al. [9] introduced the 
U-Net architecture, Wu et al. [10] explored dilated con-
volutions in a fully connected network and Takikawa 
et al. [11] utilized gated convolutional layers for a shape 
stream, aiming to find boundaries of objects. Incorpo-
rating mechanisms for attention into neural network 
models has become an additional important concept 
towards semantic segmentation that aims to push the 
state-of-the-art. For example, Chen et  al. [12] utilized 
attention masks to fuse feature maps from different 

branches, Yuan et al. [13] proposed ways to make use of 
object context and Huang et al. [14] explored the use of 
criss-cross attention blocks.

Expanding on ideas from general semantic segmenta-
tion, recent proposed neural network models have shown 
great performance in medical image segmentation tasks, 
and are now even used for RT applications, such as OAR 
and target segmentation for head and neck, prostate, and 
breast cancer patients [15–19]. In addition, neural net-
work models have shown to outperform ABS methods 
[20, 21] and can reduce the overall manual intervention 
time [21, 22].

Even though many researchers have incorporated neu-
ral network-based segmentation methods for RT pur-
poses, only a few models for automatic segmentation of 
pelvic OAR and target structures have been proposed 
[18, 23–25]. Notably, automated deep learning-based seg-
mentation methods have rarely been applied to complex 
pelvic OAR structures, like small and large bowel, and 
resulted in relatively unsatisfactory segmentation metrics 
[23–25]. Furthermore, a detailed evaluation of the seg-
mentation predictions, including both quantitative and 
qualitative measures, is not always presented, making it 
difficult to evaluate the full clinical applicability.

The aim of this work was to develop and evaluate a 
deep learning-based model, for automated and improved 
multi-label segmentation of ten OAR structures in the 
pelvic region for anal cancer patients, these being total 
bone marrow (TBM), lower pelvic bone marrow (LPBM), 
iliac bone marrow (IBM), lumbosacral bone marrow 
(LSBM), bowel cavity, all bowel, small bowel, large bowel, 
rectum, and bladder. Mainly exploiting and combining 
ideas from U-Net [9], deep supervision [26] and Shuffle 
Attention (SA) [27], we present a modified U-Net archi-
tecture, using depth-weighted deep supervision and SA 
blocks [27], combining the advantages of spatial and 
channel-wise attention mechanisms [28]. In this work, 
we refer to our modified U-Net as Pelvic U-Net. Seg-
mentation performance was evaluated using quantitative, 
observational, dosimetric and time-based measures.

Methods
Dataset
The dataset used in this study consisted of 169 consecu-
tive patients with squamous cell carcinoma of the anus 

Conclusions: Our Pelvic U-Net led to credible and clinically applicable OAR segmentations and showed improved 
performance compared to previous studies. Even though manual adjustments were needed for some predicted 
structures, segmentation time could be reduced by 70% on average. This allows for an accelerated radiation therapy 
treatment planning workflow for anal cancer patients.
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(anal cancer) treated with RT at Skåne University Hos-
pital, Lund, Sweden, during the period Aug. 2009–Dec. 
2017. CT image acquisition was performed on four dif-
ferent CT scanners (Siemens SOMATOM (Siemens AG, 
Munich, Germany), Philips GEMINI TF (Philips, Eind-
hoven, Netherlands), GE Discovery 690 and GE HiSpeed 
NX/I (General Electric, Boston, USA)), with 120 peak 
kilovoltage (pKV) and standard vendor-specific, dose-
sparing, tube current settings. OAR structures were ret-
rospectively delineated on each slice of the RT planning 
CT (slice thickness 3 or 2.5 mm) by two clinical experts 
(MPN, JS), as previously described [29]. In brief, the 
outer borders of the bladder and the rectum were con-
toured. The inferior limit of the rectum was defined as 
the inferior border of the ischial tuberosities (therefore, 
parts of the anal canal were sometimes included), and the 
superior border was the rectosigmoid junction. Bowel 
cavity was delineated according to the definition used 
by Devisetty et al. [30], as an envelope from the anterior 
abdominal wall to the most posterior extent of the bowel, 
and from bowel edge to bowel edge in the lateral direc-
tion. The inferior limit of the bowel cavity was the rec-
tosigmoid junction or the most caudal extent of small/
large bowel, whichever was most inferior. For small and 
large bowel, the outer border of individual bowel loops 
was contoured. The bowel structure, referred to as ‘all 
bowel’ in this work, was a summation of small and large 
bowel. In cases where small bowel was difficult to sepa-
rate from large bowel on the non-contrast enhanced 
planning CT, previous diagnostic CT volumes with oral 
contrast were reviewed. Pelvic TBM was contoured in 
accordance with Mell et al. [31] as the external contour of 
bones from the superior border of the L5 vertebral body 
to the inferior border of the ischial tuberosities. To assist 
in the manual delineation process of bone marrow struc-
tures, a thresholding algorithm in the Eclipse treatment 
planning system (TPS) (Version 15.6, Varian Medical 
Systems, Palo Alto, CA, USA) was used. Pelvic sub vol-
umes (LPBM, IBM, and LSBM) were also contoured in 
accordance with Mell et al. [31]. Expert delineations are 
subsequently referred to as the ground truth (GT) data.

Eleven patients were excluded from the dataset due 
to the occurrence of hip prosthesis. From the remaining 
158 patients, 143 were used to train the Pelvic U-Net, 
while 15 patients were used as an independent test set, 
to evaluate the performance of the final model. The test 
patients were never used for model training or validation. 
All patients were exported from the Eclipse TPS using 
the Eclipse Scripting Application Programming Inter-
face (ESAPI), Version 15.6, Varian Medical Systems, Palo 
Alto, CA, USA.

The study was approved by the Regional Ethics Board 
of Lund, Sweden (EPN Lund, Dnr 2013/742).

Pre‑ and post‑processing for model training and testing
CT images and the corresponding Digital Imaging and 
Communications in Medicine (DICOM) RT structure 
sets were extracted from the TPS. Annotated structures 
were saved as binary segmentation masks and combined 
into a 3D volume with 10 separate image channels, one 
channel for each structure. The segmentation task was 
treated as a multi-label problem, where classes are mutu-
ally non-exclusive. Masks and images were cropped 
around the body contour and resampled to a common 
voxel size of 3.0× 1.0× 1.0 mm (inferior-superior, right-
left, anterior–posterior directions) using nearest neigh-
bor and bi-cubic interpolation, respectively. CT intensity 
values were normalized using global z-score normaliza-
tion, by computing the mean and standard deviation of 
all foreground voxel values over the entire training data-
set. Finally, CT intensity values were clipped to the 95th 
and 5th percentile.

As the GT delineation boundary of the bowel struc-
tures was defined 2  cm superior to the planning target 
volume (PTV), which had a large variation in size among 
the patients, a uniform segmentation boundary could 
not be provided to the model. Therefore, voxels inside 
the patient’s body, but outside the proximate boundary 
of the GT were excluded from the loss calculation during 
training.

Segmentations predicted by our suggested model were 
resampled and zero-padded to the same size as the origi-
nal, corresponding CT image volumes. For evaluation 
purposes, bowel structures were clipped superior to their 
corresponding GT delineation. Finally, a new DICOM 
RT structure set was generated [32] and imported to the 
TPS. All pre- and post-processing operations were per-
formed using in-house developed Python scripts.

CNN architectures
As a backbone model we used a modified U-Net archi-
tecture, first introduced by Ronneberger et  al. [9]. The 
U-Net model consists of a contraction (encoder) part and 
a localization (decoder) part. Input patches with a size 
of 1× 80× 160× 160(c × d × h× w) pixels, where c is 
the number of image channels, d the depth of the patch 
volume, w the width and h the patch height, were used 
as the input to the convolutional neural network (CNN) 
(Fig. 1a).

The contracting part of the U-Net is used to extract 
image feature representations at multiple levels and 
consists of a series of convolutional blocks. Each con-
volutional block consists of convolutional layers with 
a 3 × 3 convolutional kernel followed by Batch Nor-
malization [33] with a constant for numerical stability 
of ε = 1.00× 10−5 , as well as leaky rectified linear unit 
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(Leaky ReLU) activation with a negative slope of 0.01. 
Each convolutional block is followed by a MaxPooling 
layer with a 2 × 2 kernel and a stride of two, for down-
sampling purposes. The localization path projects the 
low resolution, discriminative features into a higher 

resolution pixel space using trilinear upsampling opera-
tions, where each upsampling is followed by a convolu-
tional block. In addition, the U-Net architecture uses 
skip connections at multiple levels, to copy features 
from the contracting path and concatenate them with 

Fig. 1 Proposed, deeply supervised Pelvic U-Net architecture for organs at risk (OAR) segmentation in the pelvic region (a). 3D patches with 
a size of 1× 80× 160× 160 pixels are extracted from computed tomography (CT) image volumes and used as the encoder input. A series of 
convolutional and max pooling operations is then applied to the input patch for feature extraction purposes. Feature map upscaling in the decoder 
part is performed using trilinear interpolation. High level features from the encoder are copied and concatenated with low level features using skip 
connections. In addition, shuffle attention (SA) blocks are incorporated into the skip connections, combining spatial and channel attention (b)
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the corresponding features of the localization path. This 
helps to recover information lost by the downsampling 
operations performed in the encoder part of the model 
[34].

In our suggested Pelvic U-Net, deep supervision, intro-
duced by Lee et  al. [26], was added. Deep supervision 
uses secondary segmentation maps of different resolu-
tions, derived from the Pelvic U-Net architecture. These 
are used to compute weighted auxiliary losses, which are 
added to the main loss function. Deep supervision has 
successfully been used in other medical imaging segmen-
tation tasks, demonstrating faster network convergence 
[35–38].

Finally, inspired by the work of Zhang and Yang [27], 
we incorporated shuffle attention (SA) modules into our 
model (Fig. 1b). The SA module combines the advantages 
of spatial attention and channel-wise attention, focusing 
on what features are important, and where these features 
can be found. A SA module first divides a feature map 
X into G groups, where each group represents sub-fea-
tures of X . The number of groups is a hyperparameter, 
which was chosen to be equal to G = 16 in our work. 
Each sub-feature is further split into a channel attention 
and a spatial attention branch. The channel attention 
branch uses global average pooling (GAP) [39] followed 
by a sigmoid activated attention mechanism. The spatial 
attention block uses group normalization (GN) followed 
by sigmoid activation. The outputs of the two attention 
branches are then combined by concatenation. Finally, 
a channel shuffle mechanism introduced in ShuffleNet 
V2 [40] is used, to enable cross information flow across 
the channel dimension. A PyTorch (Facebook, CA, USA) 
implementation of the Pelvic U-Net can be found on our 
GitHub repository https:// github. com/ MLRad fys/ Multi 
label- seman tic- segme ntati on- for- pelvic- OAR- struc tures. 
git.

Model training
Model training was performed by 5-fold cross-validation 
using the adaptive moment estimation (Adam) opti-
mizer [41], a learning rate of lr = 0.01 and a batch size 
of 2. The learning rate was decreased using a polyno-
mial learning rate decay schedule with a power of 0.9. 
Each cross-validation model was trained for a total of 
1000 epochs, with 250 iterations per epoch. 3D patches 
with a size of 1× 80× 160× 160 pixels (c × d × w × h) 
were randomly cropped from CT image volumes and 
fed into the input layer of the CNN. To avoid overfitting 
during training, data augmentation techniques in form 
of random rotations (± 15°, around inferior-superior 
axis), mirroring (inferior–superior, left–right axis), scal-
ing (0.85–1.25) and gamma augmentations (0.7–1.5) 
were used. All spatial augmentations were performed in 

2D and implemented using the batchgenerators Python 
package [42]. Model optimization was performed by 
combining the soft Dice and the binary Cross-entropy 
(BCE) loss [43]:

where yi represents an annotated GT voxel, ŷi the cor-
responding prediction and N the total number of voxels. 
A small constant ε = 1× 10−8 is added to both the soft 
Dice loss and the BCE loss to ensure numerical stabil-
ity. Segmentation maps obtained at the different deep 
supervision stages in the decoder path of the model 
(see Sect.  2.3), were weighted exponentially in the loss 
function, where the lowest weight was assigned to the 
decoder output with the lowest resolution, and the high-
est weight was assigned to the decoder output with the 
highest resolution [38]:

where S is the number of Pelvic U-Net stages. All weights 
were normalized to sum up to one. The final loss, exclud-
ing the lowest stage of the Pelvic U-Net, is given by:

To reduce load on the graphics processing unit and to 
accelerate model training, automatic mixed precision was 
used. Model training was performed on a single GeForce 
RTX 2080 TI graphic cards (NVIDIA, USA), with a train-
ing time of five days per fold. The final model was estab-
lished by averaging the output prediction logits of all 
cross-validation models, resulting in a model ensemble. 
A detailed evaluation of the different cross-validation 
folds is provided in the supplementary material (Addi-
tional file 1: Table S1-S2, Fig. E1).

Segmentation evaluation
Segmentations predicted by the Pelvic U-Net, were eval-
uated using different measures (further described below): 
1) quantitative segmentation metrics 2) an observational 
assessment, 3) a time-based evaluation, comparing our 
deep learning method to both manual contouring time, 
and manual correction time of segmentations gener-
ated by our model, and by 4) comparing the dosimetric 

(1)

L = LSoftDice + LBCE

LSoftDice = −
2 N

i=1 ŷiyi + ε

N
i=1 ŷi

N
i=1 yi + ε

LBCE = −

N

i=1

yi log ŷi + ε + 1− yi log 1− ŷi + ε ,

(2)w =

S−1
∑

i=1

1

2i
,

(3)Ltotal =

N
∑

i=1

wi

[

LSoftDice + LBCE

]

i

https://github.com/MLRadfys/Multilabel-semantic-segmentation-for-pelvic-OAR-structures.git
https://github.com/MLRadfys/Multilabel-semantic-segmentation-for-pelvic-OAR-structures.git
https://github.com/MLRadfys/Multilabel-semantic-segmentation-for-pelvic-OAR-structures.git
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difference between manually delineated contours and the 
model’s predictions.

Quantitative evaluation metrics
To evaluate the segmentation performance of our model, 
the Dice similarity coefficient (DSC) [44] (Eq. 4), the 95th 
percentile of the Hausdorff distance  (HD95) [45] given in 
mm (Eq. 5), as well as the mean surface distance (MSD) 
[7] (Eq.  6) in mm were used. The DSC is a measure of 
overlap between two structures and is given by:

where |A| and |B| are the number of voxels in the two vol-
umes A and B and A ∩ B is the intersection of both sets, 
defining the overlapping voxels.

The symmetric Hausdorff distance measures the dis-
tance between two surfaces in mm and is given by:

where a and b are points of sets A and B and Kth
a∈A is the 

Kth percentile of the ordered Euclidean distance norm 
over a ∈ A . In this study, we computed the K = 95th 
percentile of the Hausdorff distance, which gives a more 
robust estimate of the maximum error by avoiding outli-
ers [45, 46].

(4)DSC(A,B) =
2|A ∩ B|

|A| + |B|
,

(5)
HDK (A,B) = max(dK (A,B), dK (B,A)),with

dK (A,B) = Kth
a∈A

(

min
b∈B

d(a, b)

)

,

The DeepMind open-source library for surface metrics 
[47] was used to compute the MSD, which measures the 
mean distances between two surfaces. The MSD is given 
by:

where d(A,B) and d(B,A) contain the average minimum 
distances from points on surface A to points on surface B 
and vice versa. In our work, we used the MSD as a sym-
metric measure, by summing the distances and comput-
ing their mean value.

Observational visual evaluation
Model predictions for TBM, all bowel, bowel cavity, small 
bowel, large bowel, and bladder were evaluated in form 
of a 2-stage, observational, visual assessment, individu-
ally performed by three  radiation oncologists (JE, SA, 
GA), with 7–20  years of clinical experience. During the 
first stage, model predictions for n = 15 patients were 
presented to each of the radiation oncologists (Fig.  2a). 
All structures were then rated on a scale between 1–4: 
1—Excellent; 2—Good; 3—Acceptable; 4—Not acceptable.

For an excellent segmentation, no or almost no modi-
fications should be needed, while a good segmentation 
requires changes to a limited number of CT slices. An 
acceptable segmentation can still be used but requires 
corrections in several slices. The used rating method 
was first presented in the work of Huyskens et  al. [48]. 
In the present study, the number of slices that need to 

(6)MSD(A,B) =

(

d(A,B)+ d(B,A)
)

2
,

Fig. 2 2-stage observational evaluation process of segmentation predictions derived for n = 15 test patients. Uncorrected segmentations were 
rated on a scale between 1–4 by three radiation oncologists (a). Once rated, all structures were manually corrected (b) and rated a second time (c)
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be corrected was set to n < 10 slices for good segmenta-
tions. Very small deviations < 5  mm were not counted. 
A segmentation was rated as acceptable if n ≥ 10 slices 
had to be corrected. A not acceptable segmentation was 
considered useless and would have to be re-delineated for 
clinical uses.

Once the initial rating of the structures was com-
pleted, model predictions were corrected manually for 
all test patients by one of the radiation oncologists who 
generated the GT data (MPN, Fig.  2b). A second rating 
of the manually corrected segmentations was then per-
formed, approximately one month later, to verify that all 
segmentations were in full agreement with the clinical 
standard  (Fig.  2c). The second rating followed the same 
procedure as described above.

Evaluation of segmentation time
The time needed to manually correct predicted segmen-
tations for the test data was measured per patient and 
per structure, except for small bowel, large bowel and all 
bowel, which were corrected simultaneously. All man-
ual corrections where performed by the same radiation 
oncologist (MN), who generated the GT delineations. 
Correction time was then compared to the estimated, 
manual delineation time.

Dosimetric evaluation
Dose distributions derived from the clinical treatment 
plans, optimized based on the manually delineated struc-
tures, were overlayed on the predicted segmentations to 
evaluate any dosimetric differences A new dose optimiza-
tion was not performed. Structure volume, as well as dif-
ferent DVH inidices  (V10Gy,  V20Gy,  V30Gy,  V40Gy,  V50Gy, 
 Dmean) where extracted from the TPS using ESAPI. Sta-
tistical comparison between the DVH indicies for the two 
structure sets was performed using a non-parametric, 
two-sided Wilcoxon signed rank test, with a significance 
level of α = 0.05.

Results
Quantitative evaluation
Segmentation performance was evaluated using the DSC, 
 HD95 as well as the MSD (Table 1 and Fig. 3). All quanti-
tative metrics were calculated as the mean over all 15 test 
patients and computed on segmentations directly derived 
from the Pelvic U-Net (without manual corrections).

Mean DSC values were > 95% for all different bone 
marrow structures, with mean  HD95 values in the 
range of 2.16–3.77 mm and mean MSD values between 
0.18–0.37  mm. For bowel cavity, all bowel, and blad-
der, mean DSC values were 0.95, 0.91, 0.94, with mean 
 HD95 values of 4.44, 3.22 and 3.11 mm, and mean MSD 
values of 1.01, 0.65 and 0.63  mm, respectively. The 

predicted segmentations of small bowel and rectum 
resulted in mean DSC values of 0.87 for both struc-
tures, mean  HD95 of 7.64 and 6.34 mm and mean MSD 
values of 1.48 and 1.23  mm, respectively. The lowest 
mean DSC of 0.81 was found for the large bowel struc-
ture, with mean  HD95 and MSD values of 11.51  mm 
and 2.63 mm, respectively.

A detailed evaluation of the 5-fold cross-validation 
training can be found in the supplementary section 
(Additional file 1).

Figure  4 shows segmentation examples for the best 
and the worst segmentation case in the axial and sagit-
tal plane. The two patients were chosen according to the 
minimum and maximum mean DSC value computed 
over all evaluated structures.

For the best test case, all predicted segmentations were 
in good agreement with the clinical GT segmentations 
resulting in a mean DSC of 0.94. For the worst test case, 
parts of the large bowel were wrongly classified as small 
bowel and vice versa, which resulted in decreased DSC 
values for both structures (0.65, 0.37 for small and large 
bowel, respectively).

Determined through visual inspection of predictions 
for the test data, tissue near or enclosed by bone struc-
ture, usually delineated in the GT data, was not clas-
sified as bone by the Pelvic U-Net in occasional CT 
slices (Fig. 5a–c). In some cases, artefacts, caused by the 
thresholding algorithm used to assist the radiation oncol-
ogists in GT bone segmentations, were found (Fig. 5d, e). 
In other cases, such as the bladder, differences between 
model predictions and manual segmentations were 

Table 1 Summary of the quantitative evaluation. Dice similarity 
coefficient (DSC), 95th percentile of the Hausdorff distance 
 (HD95), and mean surface distance (MSD) were computed as the 
mean value over the test dataset ( n = 15)

TBM total bone marrow, LPBM lower pelvic bone marrow, IBM iliac bone marrow, 
LBM lumbosacral bone marrow, x  mean, sd standard deviation

Quantitative 
metrics 
(n = 15)

Structure DSC (x ± sd) HD95 [mm](x ± sd) MSD [mm] (x ± sd)

TBM 0.97 ± 0.00 2.16 ± 0.76 0.18 ± 0.03

LPBM 0.96 ± 0.01 3.77 ± 1.51 0.36 ± 0.11

IBM 0.95 ± 0.01 3.64 ± 1.90 0.30 ± 0.10

LBM 0.95 ± 0.01 2.90 ± 0.29 0.37 ± 0.07

Bowel cavity 0.95 ± 0.01 4.44 ± 1.18 1.01 ± 0.24

All bowel 0.91 ± 0.01 3.22 ± 0.86 0.65 ± 0.19

Small bowel 0.87 ± 0.08 7.64 ± 7.10 1.48 ± 1.33

Large bowel 0.81 ± 0.17 11.51 ± 15.92 2.63 ± 4.16

Rectum 0.87 ± 0.06 6.34 ± 5.20 1.23 ± 1.04

Bladder 0.94 ± 0.03 3.11 ± 1.08 0.63 ± 0.24
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observed, where the manual structure was not perfectly 
delineated (Fig. 5f, g). These findings are elaborated on in 
more detail in the discussion section of this work.

Observational evaluation
The result of the 2-stage observational evaluation per-
formed by three clinical experts is summarized in Fig. 6.

Fig. 3 Box and Whisker plot showing the result of the quantitative segmentation evaluation for the test dataset ( n = 15 ). (a) Dice similarity 
coefficient (DSC), (b) the 95th percentile of the Hausdorff distance  (HD95) and (c) the mean surface distance (MSD), were computed as the mean 
value over the test data. Overall, all segmented structures led to high DSC values, while some outliers were observed for small and large bowel 
structures
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Without corrections, TBM and bladder segmentations 
resulted in an excellent segmentation quality (89% and 
93% on average). For bowel cavity, most segmentations 
were judged to be either excellent (42%) or good (42%), 
with only minor segmentation faults. For all the above-
mentioned structures, none of the model predictions 
was assessed as non-acceptable. Most all bowel segmen-
tations were assessed as excellent (44%) or good (38%), 
while only a small fraction (2%) was not acceptable. For 
small and large bowel, segmentation assessments varied 
between no modifications needed (excellent) and accept-
able (some modifications needed), while 16% of the small 
and 27% of the large bowel segmentations were found to 
be non-acceptable and would have to be re-delineated.

After manual correction of the predicted segmenta-
tions, structures of nearly all test patients were assessed 
as excellent (97%), where no modifications are needed, 
and only a few as good (3%) (evaluation stage 2).

Observer ratings for TBM, bladder and bowel cavity 
resulted in the same median values, indicating a good 
agreement between the observes. Small and large bowel 
structures resulted in median values between 2–3, show-
ing minor variations between the observes (Table 2).

Evaluation of segmentation time
Mean correction times for TBM, bladder, bowel cavity 
and bowel structures were measured to be 1 min, 1 min, 
2 min and 8 min, respectively, resulting in a mean total 
correction time of 12  min per patient (Fig.  7a). Two 
clinical experts who generated the manual delineations 
(MPN, JS), estimated the mean time for complete man-
ual segmentation, e.g., segmenting the evaluated OAR 
structures from scratch, to be approximately 40 min per 
patient. With that, our deep learning-based approach, 
results in a large timesaving of 70% (Fig.  7b). In addi-
tion, model prediction time for all OAR structures was 
measured to be 4 min. This reduces the mean segmenta-
tion time by 90%, for cases where no modifications are 
needed.

DVH‑based evaluation
For bowel cavity, large bowel and small bowel, no signifi-
cant difference could be found between the dose using 
the manually, clinical delineations and the model’s pre-
dictions (Table 3). A significant difference was found for 
the DVH indices of the TBM (Volume,  V50Gy) all bowel 

(Volume,  V10Gy,  V20Gy) and bladder  (V10Gy,  V20Gy, 
 V30Gy) structures.

Discussion
In this work, we propose the Pelvic U-Net architecture 
for automated and improved pelvic OAR segmentation. 
Evaluation of our model was performed using observa-
tional and multiple quantitative measures.

The Pelvic U-Net resulted in credible and clinically 
applicable OAR segmentations, which was also demon-
strated by the observational and time-based evaluation. 
This indicates that our model can be used as a supportive 
tool in the RT treatment planning workflow for anal can-
cer patients.

Although direct comparisons with other studies should 
be undertaken with caution, we believe that the results 
obtained in this work compare favorably with previous 
studies of deep learning-based OAR segmentations in the 
pelvic region. In a recent study, Sartor et al. [25] trained 
a 3D U-Net-like architecture using CT volumes of 191 
anorectal cancer patients. The lower mean DSC values in 
that study compared to our study (e.g., bowel cavity 0.82 
vs. 0.95) could be attributed either to differences in model 
performance or differences in the dataset. Notably, OAR 
in our study were retrospectively and rigorously con-
toured on each CT slice by two clinical experts accord-
ing to clearly defined instructions, in contrast to previous 
studies, e.g. in the work of Sartor et al. [25] or Men et al. 
[24], who used clinically available structure sets as the 
GT. While a retrospective re-contouring is associated 
with potential drawbacks such as time consumption and 
a risk of decreased generalizability, the reduced vari-
ability of the final structure set most likely facilitates the 
model performance.

A very limited number of previous studies have used 
deep learning approaches to differentiate between the 
small and large bowel. Men et al. [24] trained a 2D dilated 
CNN, based on a modified VGG-16 model [49], on CT 
volumes of 278 rectal patients for automatic segmenta-
tion of pelvic OAR. Despite the use of oral contrast, the 
mean DSC values for the small and large bowel (0.62 and 
0.65, respectively) were lower than in our study (0.87 and 
0.81, respectively).

The overall good segmentation performance of our 
model was also demonstrated by the observational 
assessment. None of the pelvic bone marrow, bladder, 

(See figure on next page.)
Fig. 4 The best (a) and the worse (b) segmentation result shown for total bone marrow, bladder, bowel cavity, small bowel, large bowel, and all 
bowel structures. Test cases were chosen based on the minimum and maximum average Dice similarity coefficient (DSC). All presented structures 
were in good agreement with the ground truth (GT, expert delineation) for the best test case, resulting in a mean DSC of 0.94. For the worst case, a 
mean DSC of 0.8 was found, mainly due to inaccurate segmentations of the small and large bowel structures, indicated by the yellow arrows. Parts 
of the small bowel were wrongly classified as parts of the large bowel and vice versa
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Fig. 4 (See legend on previous page.)
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and bowel cavity structures was rated as not acceptable. 
Even for the more complex all bowel structure, most 
segmentations were rated to be either excellent (44%) or 
good (38%). For small and large bowel, some structures 
were rated as not acceptable (16% and 27%, respectively). 
Median ratings between the observers were found to be 
the same for TBM, bladder and bowel cavity. For small 
and large bowel, the median ratings varied between 2–3, 
indicating minor inter-observer variability.

Evaluation of segmentation time presented in this study 
was performed by comparing model prediction time to 
manual delineation time, as well as to the time needed to 
manually correct the model’s predictions. In our study, 
the mean segmentation time can be reduced from 40 min 
to about 12  min per patient, including manual correc-
tion, resulting in a segmentation time reduction of 70%. 
In addition, the prediction time of our model was meas-
ured to be 4 min for all OAR structures together, reduc-
ing manual segmentation time by 90% for cases where 
no manual intervention is needed. This time might be 
reduced further with future advances in computational 
hardware. Segmented CT slices outside of the GT (2 cm 
above the PTV) were removed in bowel structure predic-
tions. This time was not included in our time-based eval-
uation but was considered to be negligible.

Important to mention is that not all the presented 
OAR, e.g., small, and large bowel, are used in today’s clin-
ical routine, due to the time available for manual deline-
ation. The presented Pelvic U-Net model might be a first 
step to address this issue.

A few outliers for large and small bowel segmentations 
were found in our test dataset, potentially limiting their 
clinical use. Nevertheless, compared to other work [24], 
our model shows improved segmentation quality for 
these structures. As described earlier, GT segmentations 
were generated with support from diagnostic CT images 
with oral contrast enhancement, which helps identifying 
large and small bowel structures. However, despite the 
improved image contrast, distinguishing between large 
and small bowel can be a difficult task even for an experi-
enced radiation oncologist, which might also explain the 
minor inter-observer variability in the observational rat-
ings. Furthermore, some of the used training patients had 
a stoma, which might have affected the overall configura-
tion of the bowel structure.

In addition to the observational and quantitative 
evaluations, we also presented a dosimetric evaluation. 
A statistically significant difference was found for some 

Fig. 5 Observations made during a more detailed, visual comparison, between the segmentation structures predicted by the Pelvic U-Net and 
the manual, ground truth (GT), delineations for multiple test patients. In some 2D image slices, tissue near the actual bone structures was not 
segmented (a–c). Furthermore, incorrect delineations caused by the automatic, thresholding-based segmentation algorithm used for generating 
the GT bone marrow data were found (d, e). In addition, rare, manual delineation errors for e.g., the bladder could be observed (f, g)
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of the DVH indices for bladder, all bowel and TBM. For 
the TBM structure, we hypothesize that the threshold-
ing algorithm, used to assist in manual delineation of 
the bone marrow, might have led to coarser GT seg-
mentations or even thresholding artefacts (Fig.  5a–e). 
Further, in some occasional 2D CT slices, tissue near or 
enclosed by the bone structure was not segmented by 
the Pelvic U-Net (Fig.  5b, c). Differences between the 
models’ predictions and the GT might also be caused 
by a combination of manual delineation errors, e.g., 
for the bladder structure (Fig.  5f, g), possibly due to 
the time available for delineation, and errors caused by 
the deep learning model itself. It should be noted that 
little is known about the clinical impact of the rela-
tively small observed differences in the evaluated dose 
parameters. However, one cannot rule out that the 
differences might have clinical relevance. Therefore, 

Fig. 6 Observational evaluation results of pelvic organs at risk (OAR) segmentations. Segmentation predictions for n = 15 test patients were 
inspected by three clinical experts and rated on a scale between 1–4 (Excellent—Not acceptable). Results are presented as the mean ratings for 
each structure for both the uncorrected segmentations (stage 1) and the manually corrected segmentations (stage 2)

Table 2 Comparison of median ratings between the three 
observers for all evaluated structures. The same median ratings 
could be found for total bone marrow (TBM), bladder and bowel 
cavity. Median ratings for small and large bowel structures varied 
between 2–3

Observer median ratings ( n = 15)

Observer SA GA JE

Structure Median (range) Median (range) Median (range)

TBM 1 (1–2) 1 (1–1) 1 (1–3)

Bladder 1 (1–2) 1 (1–3) 1 (1–1)

Bowel cavity 2 (1–2) 2 (1–3) 2 (1–3)

All bowel 2 (1–3) 2 (1–3) 1 (1–4)

Small bowel 3 (1–3) 2 (1–4) 3 (1–4)

Large bowel 3 (1–4) 3 (1–4) 2 (1–4)
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AI-segmentations need to be reviewed and adjusted if 
needed before clinical use.

Even though our Pelvic U-Net model resulted in 
improved segmentation metrics and decreases the over-
all segmentation time, our study comprises certain limi-
tations. First, a single institution dataset was used for 
both training and testing. Before any firm conclusions 
can be drawn regarding generalizability, our model needs 

to be tested on independent datasets. Second, for some 
OAR there is currently no international consensus on 
exactly how they should be delineated. For instance, the 
definition of bowel cavity recommended by the Radia-
tion Therapy Oncology Group (RTOG) [50] differs from 
the definition used in our study (clearly described in the 
methods section). If other clinicians and researchers 

Fig. 7 Time-based evaluation result comparing the mean manual delineation time for all test patients ( n = 15 ) against the time needed to 
manually correct model predictions and model prediction time (without corrections). Mean manual correction times per structure are shown in 
the Box and Whisker plot (a). Mean segmentation time could be reduced from 40 min to about 12 min per patient using manually corrected model 
predictions, and to 4 min, using predictions of the Pelvic U-Net only (b)

Table 3 Result of the dosimetric evaluation between the clinical treatment plans, optimized based on the manually delineated 
structures and the same dose distribution overlayed on the uncorrected segmentations derived from the Pelvic U-Net

Bold values indicate statistically significant differences from a two-sided Wilcoxon signed rank test with a significance level of α = 0.05.

OAR organs at risk, DVH dose-volume histogram, TBM total bone marrow
a Volume [cm.3],  V10Gy −  V50Gy [%],  Dosemean [Gy] for TBM

Volume  [cm3],  V10Gy −  V50Gy [cm.3],  Dosemean [Gy] for bladder, bowel cavity, all bowel, small bowel, and large bowel

p‑values for evaluated pelvic OAR structures ( α = 0.05)

DVH  indicesa

Structure Volume V10Gy V20Gy V30Gy V40Gy V50Gy Dosemean

TBM  < 0.001 0.670 0.064 0.285 0.421  < 0.001 0.583

Bladder 0.073 0.041 0.035 0.026 0.277 0.715 0.421

Bowel cavity 0.073 0.064 0.073 0.169 0.421 0.557 0.679

All bowel 0.007 0.010 0.026 0.055 0.095 0.175 0.561

Small bowel 0.229 0.268 0.241 0.390 0.583 0.765 0.160

Large bowel 0.073 0.107 0.107 0.229 0.208 0.160 0.151
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were to use our model, this needs to be considered. To 
further improve our presented method and the segmen-
tation accuracy for small and large bowel structures, oral 
contrast CT images could be added to the training data 
and incorporated in future model training processes.

Conclusions
We developed and thoroughly evaluated the Pelvic 
U-Net, a deep-learning model for multi-label segmenta-
tion of pelvic OAR structures. The overall segmentation 
quality was improved, when compared to previous stud-
ies. Model predictions resulted in clinically, acceptable, 
and credible segmentations. Even though manual cor-
rections were needed for some structures, Pelvic U-Net 
led to average time savings of 70%. We believe that our 
model can be utilized in the clinical day-to-day planning 
process for fully automated segmentations for most of 
the presented OAR. This will enable an accelerated and 
improved treatment planning process for anal cancer 
patients treated with external beam radiation therapy.
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