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Combination drugs that impact multiple targets simultaneously are promising candidates for combating complex diseases due to
their improved efficacy and reduced side effects. However, exhaustive screening of all possible drug combinations is extremely time-
consuming and impractical. Here, we present a novel Hadoop-based approach to predict drug combinations by taking advantage
of the MapReduce programming model, which leads to an improvement of scalability of the prediction algorithm. By integrating
the gene expression data of multiple drugs, we constructed data preprocessing and the support vector machines and naive Bayesian
classifiers on Hadoop for prediction of drug combinations. The experimental results suggest that our Hadoop-based model achieves
much higher efficiency in the big data processing steps with satisfactory performance. We believed that our proposed approach can
help accelerate the prediction of potential effective drugs with the increasing of the combination number at an exponential rate in

future. The source code and datasets are available upon request.

1. Introduction

In the past few years, the novel effective drugs come out
slowly although there is a substantial investment into the
development of drugs. It is common for the pharmaceutical
industry to develop novel drugs targeting a certain target.
However, the once dominating paradigm of “mono drug
mono target” in drug development is now being challenged by
the clinical and pharmaceutical people, since the single drug
cannot always be effective for the complex diseases (such as
cancer and diabetes), which may involve multiple biological
pathways and complex pathological process. Therefore, the
drug combination, which consists of multiple drugs (the
effective chemical molecules), is now becoming a novel
strategy to combat complex diseases [1-3].

It is impractical to screen all possible drug combinations
experimentally since there will be an exponential explosion
when the number of single drugs increases. Therefore, a
great number of computational methods have been recently
developed for prediction of drug combinations [4-7]. In gen-
eral, there are three main kinds of computational approaches
to identify effective drug combinations: the method of the

first kind is to use the stochastic search technique, which
is successfully applied in various applications to solve the
large-scale combinatorial optimization problems of highly
complex systems, and the fast convergence can be achieved
with a small number of iterations to find effective drug
combinations [5]; the second type is to build a mathematical
model based on the median-effect equation in which the
“median” is the unified common link of single entity and
multiple entities. The disadvantage of this method is that it
is hard to interpret the molecular mechanism that underlies
the drug combinations [6]; the third type is based on the
systems biology principle, which aims to study the possible
effect of the various drug combinations on the molecular
networks or pathways which they may be involved in.
For example, Zhao et al. [4] integrated the molecular and
pharmacological features of drugs to predict new potential
drug combinations. Wu et al. [7] assumed that the single
drug or the drug combinations affected a subnetwork or
pathway in the cellular system. They proposed a molecular
interaction network-based method to identify effective drug
combinations by evaluating the overall effect of one drug or
drug combinations.
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Although these existing methods can predict novel drug
combinations or provide mechanistic insights into existing
ones, they are limited by their efficiency when the size
of combination space increases at an exponential growth
rate (e.g., the number of drugs increases from pairwise
combinations to three-wise combinations). Therefore, it is
necessary to develop prediction methods that are scalable to
data and computation. The Hadoop MapReduce system [8-
10] represents a novel program framework with the potential
to greatly accelerate data-intensive application. In the present
study, we developed the Hadoop-based method to identify
the potential effective drug combinations by integrating
the gene expression data under the effect of single drugs,
the basic information of drug combination, and human
disease pathway information. The classification algorithms
were then constructed based on the typical perceptron learn-
ing algorithm and generative learning algorithm: support
vector machine (SVM) and naive Bayesian for prediction of
novel effective drug combinations. The preliminary results
indicated that our Hadoop-based implementation of these
classification algorithms achieved higher efficiency than the
traditional implementation of the algorithms on the dataset
with a small number of samples due to insufficient number
of effective drug combinations validated. We believe that
the proposed Hadoop-based approach will be useful on the
larger dataset when the number of drug combinations greatly
increases in future.

2. Methods

2.1. Datasets. All the basic information about single drugs
and effective drug combinations was extracted from the
Drug Combination Database (DCDB) (http://www.cls.zju
.edu.cn/dcdb/) [11]. In total, our data set contains 76 pairwise
drug combinations involving 103 single drugs, which have
well annotated gene expression information (more details
explained in the next section). The 76 drug combinations
were assigned as the positive samples in the classification
models, while the noneffective pairs (called the negative set)
were generated by randomly pairing drugs that appeared in
the set of the 103 single drugs. The negative set meets the two
requirements: (i) the noneffective pairs cannot exist in the
set of 76 effective pairs, and (ii) the number of noneffective
(negative) pairs is equal to that of effective (positive) pairs.

2.2. Feature Construction. In order to encode the drug
combinations, we focus on the possible effect of different
drug combinations on the pathways that they may be involved
in. The gene expression profiles of the 1309 small-molecule
drugs or compounds were downloaded from the Broad
Institute Connectivity Map Build02 (http://www.broadin-
stitute.org/cmap/) [12], and the size of total data is up
to 45GB. We kept the genes which have microarray
experiments with at least 3 replicates. The raw expression
profiles were processed by using MAS5 algorithm
supplied by Affymetrix, which is much faster than
RMA (robust multichip average) running on our limited
computing capability [13, 14]. The annotated gene set
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in each human disease pathway was sourced from the
Molecular Signatures Database (MSigDB, http://www.broad-
institute.org/gsea/msigdb/) [15]. We finally got 186 gene sets
which are related to the human disease pathways.

For the fact that we can only directly obtain the gene
expression data of single drugs, we should first represent
the feature of pairwise (or multiple) drug combinations. In
this study, we applied two different strategies to define the
combination feature described as below.

(1) This first kind of representation is a direct way to
define the combination feature as a linear function of single
drugs. For a drug D; in the drug combination (D,, D,), the
expression data of gene G; is denoted as P; if it is not affected
by drug D;, and denoted as C;, if it is affected by drug D;. Thus,
the combination effect of the pairwise drug combination of
D, and D, on G; is defined as

P P
D,y = (_C”G - 1) ¥ (—CZ'G - 1). 1)
11G 20G

Obviously, this is a simple way to get the combination
feature of any pairwise drug combination. However, the rep-
resentation cannot convey the intricacy of drug combinations
due to the complexity of human disease mechanism.

(2) Instead, we try another way to find the frequent feature
pattern of effective drug combinations and take them as
the feature of potential effective drug combinations. Here,
we assume that a pathway is affected if there exist genes in
this pathway whose expression level is significantly changed
under the effect of a single drug. We first performed the
Student’s t-test for each single drug to get the significantly
changed gene set and then mapped them into 186 human
disease pathways. This method is finally compared with Zhao
et al’s definition [4], which directly maps the target of the
drug into human disease pathway. Finally, we calculated
the frequency score of all pairwise drug combinations. The
frequency score is defined as below:

_ N;; (EC) @
" N;;(RC)’
where the denominator shows the number of patterns that
emerged in effective pairwise drug combinations and the
numerator presents the background frequent patterns in
randomly distributed pairwise drug combinations.

2.3. Feature Selection. The feature construction method
brings high dimensional feature space on a dataset with
small size of samples. To avoid the overfitting, we applied
several feature selection methods on our dataset. For the first
type of feature construction method mentioned above, we
performed the minimum-redundancy-maximum-relevance
(mRMR) [16] to select the most important feature for model
building, whereas, for the second one, we only need to set a
fixed threshold to take the most frequent emerging pattern as
the features. In this study, we chose the number of features as
one-fourth of the total sample number.



BioMed Research International

2.4. Model Construction. In the model building step, we
employed two popular machine learning algorithms, support
vector machine, and naive Bayesian to train a classifier
for predicting effective drug combinations. In the SVM
algorithm, the selection of kernel function and related param-
eters will have a great effect on the performance of the
trained classifier. In the training stage, we compared four
types of kernel functions: linear kernel, polynomial kernel,
Gaussian kernel, and tangent kernel. The SVM classifiers were
implemented by using LibSVM package [17]. There are two
important parameters when training SVM classifiers, cost
factor ¢ for outlier samples and gamma g in kernel functions.
There is no smart algorithm to select the best parameters in
the training stage, and we searched the optimal parameters
using grid search. The search range of the parameters (c
and g) is from 0.03125 to 32, with the step as 0.00001. The
second type of classification method we used here is the naive
Bayesian algorithm, which can be suitable to be parallelized.
In the later section, we will introduce how to implement the
MapReduce version of the naive Bayesian algorithm on the
Hadoop platform.

2.5. Scalable Implementation of the Whole Mining Process

2.5.1. Building the Big Data Platform. For scalable implemen-
tation of our mining process, we used the machine virtualiza-
tion to build the Hadoop cluster. The master virtual machines
included 4 Intel core i3 processor cores and 4 GB RAM and
the two slave virtual machines with 2 Intel core i3 processor
cores and 2GB RAM. The software environment includes
Hadoop-1.2.1, Hive-0.11.0, and RHadoop (an integration of R
and Hadoop).

After building the scalable Hadoop cluster, we exploited
the Hadoop distributed file system to store the raw data
and used hive as data ETL tools for relational database and
program to process the local files.

2.5.2. Scalable Feature Construction. The feature construc-
tion stage can be regarded as a series of independent similar
processes on different samples and features. In the Hadoop,
we implemented a chain mapper to parallelize the processes,
including the gene expression preprocessing and the con-
struction of the proposed drug combination features.

2.5.3. Scalable Model Building. For the SVM algorithm, it
is difficult to implement the parallel version. Here, we only
parallelized the grid search of the optimal parameters, which
are time-consuming in the sequential implementation.

For the naive Bayesian algorithm, the implementation of
the scalable version using MapReduce is mainly composed
of three steps (shown in Algorithm 1): the calculation of the
prior probability for each class, the conditional probability for
each feature under each class, and the conditional probability
for each class under each feature.

2.6. Model Validation and Evaluation. A tenfold cross-
validation and leave-one-out cross-validation test were used

Step 1.
map:
foreach training sample: (C;, X ;)
emit (C;,1)
reduce:
emit (C;,sum (C;))
Step 2.
map:
foreach training sample: (C;, X ;)
foreach feature f,
emit (fi 1 C;,1)
reduce:
foreach class

o Sl G
emit < sam(C)’ sum (fj | Ci)>
Step 3.
map:
foreach class C;
foreach testing sample: (X ;)
emit (X, P(C)[TP(X;1C))

reduce:
emit (X;,argmax (P (C) [TP(X; | C,)))

ArLGorIiTHM 1: The workflow of the scalable version of the Naive
Bayesian algorithm implemented by MapReduce.

to evaluate the classification performance. To assess the per-
formance of the classification models, we used the accuracy
(ACCQ), sensitivity (SN, also called recall), specificity (SP),
and F-measure (F)). These measures can be calculated by
the numbers of true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN) for each classifier
[18-21]. These performance measures are defined as below:

TP + TN
TP + FP + TN + FN’
TP
" TP+FN’
p_ N ,
TN + FP
F - 2xTP
' FP+FN+2x TP’

ACC =

SN
(3)

3. Results

3.1. Optimization of the Prediction Model. The performance
of the prediction model using SVM algorithm is determined
by the representation of the features, the type of the kernel
function, and parameters. Here, the tenfold cross-validation
test was conducted to evaluate the model performance. We
employed three ways of feature representation, including
the linear addition, Zhao's frequent pattern [4], and our
frequent pattern. We further used four different types of
kernel functions, which are linear, polynomial, Gaussian, and
Tanh functions. As shown in Table 1, our proposed frequent
pattern performed much better than the other two patterns,



TaBLE 1: Comparison of the accuracy of the prediction models based
on SVM using various feature representation and kernel functions.

Linear Polynomial Gaussian Tanh

Linear addition pattern ~ 47.7% 47.7% 477%  53.0%
Zhao's frequent pattern [4] 50.0% 55.1% 574%  56.2%
Our frequent pattern 62.2% 64.6% 69.1%  65.4%

TaBLE 2: The performance of the independent test using our
definition of frequent pattern and Gaussian kernel.

Run ACC SN Sp F,

1 67.7% 70.6% 64.3% 0.706
2 65.0% 54.5% 77.8% 0.632
3 60.9% 44.4% 71.4% 0.471
4 64.0% 66.7% 60.0% 0.690
5 68.2% 61.5% 77.8% 0.696
6 65.5% 41.7% 82.4% 0.500
7 77.8% 64.3% 92.3% 0.750
8 72.2% 76.9% 60.0% 0.800
9 72.0% 66.7% 80.0% 0.741
10 70.4% 66.7% 75.0% 0.714
Average 68.4% 61.4% 74.1% 0.670

TAaBLE 3: The performance of the one-class SVM classifiers using
different kernel functions.

Tanh
80.3%

Gaussian
88.2%

Linear
ACC 46.1%

Polynomial
81.2%

TaBLE 4: Comparison of the average efficiency between the scalable
and sequential version.

Mining steps Scalable version Sequential version
Microarray processing 2h 3min 6h18m
Feature construction 8min 34s 18min 3s
Naive Bayesian 15s 3s

SVM grid search 27min 65 1h 11 min

regardless of the types of the kernel functions. The result
in Table 1 also suggests that the Gaussian function achieved
higher accuracy than the other types of the kernel functions.

3.2. Independent Test. In this section, we evaluated the
prediction performance using our proposed frequent pattern
and the Gaussian function on the independent test, which is
mimicking a true prediction since the model trained on one
dataset is used to test on an unseen dataset. We randomly split
the whole set of the 76 drug combinations into two datasets (a
training set and a testing set). The ratio is about 4 : 1 between
the number of the samples of the training set and that of the
testing set. The split of the dataset and the independent test
is repeated for 10 times. The performance of the 10 runs and
their average is presented in Table 2. As shown in Table 2,
the model trained by using our proposed frequent pattern
performed as well on the independent test, suggesting that
our model can predict the unseen data equally well.
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3.3. Classification by the One-Class SVM Classifier. In the
task of the two-class classification, the assignment of the
negative samples (noneffective drug combinations) is not
perfect since the unknown pairwise drug combination (we
now consider it as noneffective drug combination) may be
proved to be an effective drug combination in future. To avoid
this problem, we constructed the one-class SVM classifier
trained on the dataset with only effective drug combinations.
We made use of leave-one-out cross-validation to assess
the accuracy of one-class SVM classifiers using different
types of kernel functions. As shown in Table 3, without the
bias of negative samples, the accuracy of SVM classifiers
has significantly increased for polynomial, Gaussian, and
hyperbolic tangent kernel, while the linear classifier remains
at a lower performance. We have also conducted a test on
some nonpositive samples, namely, drug combination that
has not yet been approved, and also randomly repeated for
10 times, each testing set containing 76 negative samples. The
average result of these 10 repeat experiments suggests that
67.1% of the unknown pairwise samples were predicted as
noneffective drug combinations, which is consistent with the
fact that there exists a low possibility of the effective drug
combinations in the large number of randomly chosen pairs
of drugs.

3.4. Extension to a Scalable Mining Process. In this section,
we constructed a scalable version of the mining tool for
identifying the effective drug combinations and compared
its efficiency to that of the sequential implementation by the
traditional way. The preprocessing steps (including microar-
ray processing, single drug, and drug combination feature
construction) were parallelized by a chain of mappers. The
naive Bayesian algorithm is implemented by a series of
MapReduce jobs.

The detailed comparison results of our scalable version
and the sequential version in efficiency are listed in Table 4. It
is clearly shown in Table 4 that the scalable version achieved
higher efficiency in some big data processing steps such as
microarray processing, feature construction, and SVM grid
search. For naive Bayesian, the scalable algorithm did not
have the advantage against sequential naive Bayesian, since
our final dataset for model construction and evaluation was
quite small. However, we believed that the prediction of drug
combinations will benefit from our proposed scalable version
with the increasing size of the search space of possible drug
combinations in future.

4. Conclusions

In this study, we proposed a novel Hadoop-based approach
to predict drug combinations by implementing the support
vector machine and naive Bayesian classifiers using the
MapReduce programming model, which can advance the
improvement of scalability of the prediction algorithm. We
believe that our proposed model can be potentially useful
when more than two drugs (the increasing availability of
the number of the drug combination) are combined for
combating the complex diseases in the long run.
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