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Hedgehog (Hh) signaling aberrations trigger differentiation and proliferation in colorectal
cancer (CRC). However, the current approaches which inhibit this vital cellular pathway
provoke some side effects. Therefore, it is necessary to look for new therapeutic options.
MicroRNAs are small molecules that modulate expression of the target genes and can be
utilized as a potential therapeutic option for CRC. On the other hand, nanoformulations
have been implemented in the treatment of plethora of diseases. Owing to their excessive
bioavailability, limited cytotoxicity and high specificity, nanoparticles may be considered as
an alternative drug delivery platform for the Hh signaling mediated CRC. This article
reviews the Hh signaling and its involvement in CRC with focus on miRNAs,
nanoformulations as potential diagnostic/prognostic and therapeutics for CRC.
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INTRODUCTION

Colorectal cancer (CRC) is one of the leading causes of death globally with incidence rate
around two million (1). A number of factors such as the dietary habits, family history,
inflammatory bowel disease, elevated body mass index, socioeconomic status, environmental and
genetic factors affect the likelihood of developing CRC (2). Despite advancements in the preclinical
and clinical researches, devising a suitable cure for CRC still remains bleak. Thus, researchers keep
pursuing on personalized and targeted therapeutic approaches, development of efficient diagnosis/
prognosis biomarkers and clinical management which could inhibit CRC development. The
molecular landscape of CRC is multifarious and governed by various signaling pathways such as
the hedgehog (Hh) signaling and Wnt signaling pathways which orchestrate growth and
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development of tumor cells (3). Hh signaling play a crucial
role in regeneration of adult tissues by regulating the stem
cell behavior. It also interacts with other vital signaling
molecular cascades to control cellular proliferation, polarity
and differentiation (4). Aberrant expression of Hh signaling
is reported to be the culprit of dysregulation in cellular
behavior and contribute in the onset of many human
malignancies (5). Hh signaling and aberrant expression of
targeted molecules promote tumor microenvironment and
induce stemness of cancer cells (6, 7). Aberrant expression of
Hh signaling cascade has been reported to contribute in the
cancer progression and metastasis including medulloblastoma,
basal cell carcinoma, breast cancer, liver cancer, pediatric soft
tissue cancer, prostate, stomach, pancreas, and colon cancer (8).
Invertebrates and vertebrates share common signaling molecules
and mechanism in general, involving Hh ligands, patched1/2
receptor, transcriptional factors GLI-1/2/3, smoothened
(SMO) as a critical signal transducer and variety of regulatory
molecules (8). In mammals three Hh genes have been identified
namely, sonic hedgehog (SHH), Indian hedgehog (IHH), and
Desert hedgehog (DHH) which play a vital role in the embryonic
development and regeneration of different organs (9). Hh
signaling pathway can modulate the self-renewal of cancer
stem cells (CSCs) most commonly in hematological
malignancies, breast cancer, and CRC (10). There has been
significant progress regarding the development of small
molecule inhibitors to block Hh signaling. Several of these
molecules have been included in the clinical testing stage. Yet
finding a sustainable small molecule inhibitor is still a challenge.
On the other hand, microRNAs (miRNAs) are small molecules
that effectively regulate and modulate the expression of target
genes (11). Exploring miRNAs as diagnostic tool can aid in better
clinical management of CRC. Nanoformulations have been
investigated in many diseases for their efficient sustainability,
limited cytotoxicity, increased bioavailability and few side effects.
These features have urged scientists to explore these as a
therapeutic option for different cancers. In this review, we
delineate Hh signaling pathway as a vital therapeutic target for
CRC and shed light on the role of miRNAs that may be used as
potential diagnostic marker and therapeutic target for CRC.
Furthermore, the role of nanoformulations as contenders for
targeted delivery of Hh signaling inhibitors for the treatment of
CRC is discussed.
HEDGEHOG SIGNALING IN CANCER

Molecular link of Hh signaling with cancer was reported in basal
cell carcinoma when mutation in human PTCH1 gene was
observed (12, 13). It was confirmed that mutation in PTCH1 is
responsible for SMO activation to trigger aberrant Hh cascade
activation to induce carcinogenesis (Figure 1) (14, 15). Similarly,
increased expression of Hh targeted gene was reported in
different carcinomas including meningiomas, medulloblastoma
(16), small cell lung carcinoma (SSLC), gastro-intestinal cancer
(17), and colon cancer. Experimental work on genetically
Frontiers in Oncology | www.frontiersin.org 2
engineered mice models exhibits that in knock-out PTCH gene
mice model organism, increased expression of SMO was
observed with increased tumor size. The same experimental
study designed to knock out SMO in mice models revealed
reduction in tumor size and metastasis (6). However due to the
complex behavior of cancer onset and variation in contributing
factors, no significant molecular evidence was reported in KRAS
associated onset of pancreas and prostate cancer (18). Hh
signaling has been associated with cellular proliferation, tissue
polarity, stem cell transformation and carcinogenesis. The first
molecular association of Hh signaling with cancer was
established in 1996 during experimental studies on Gorlin
syndrome. Hh signaling was considered as a novel therapeutic
target of cancer by clinical use of Hh inhibitors (erivedge/
vismodegib) and was approved in 2012 by the FDA to treat
basal cell carcinoma (BCC). In this article, Hh signal in
carcinogenesis and recent molecular strategies to tackle cancer
cell progression using Hh inhibitors (19) were discussed.

Cancer is a complex heterogenetic disorder that transform
cellular microenvironment and involves multiple and
complicated crosstalk of signaling pathways. In PTCH+/− mice
models, inhibition of Hh signaling is an approach to limit cancer
cell proliferation (20). It is also observed that STAT-3 knock-out
significantly reduce the Hh-mediated delivery of BCC (21). It is
widely accepted that Hh signaling has close association with the
growth factor mediated pathways as Hh signaling is reported to
regulate the platelet derived growth factor ᾳ (PDGFR-ᾳ).
Furthermore, molecular crosstalk of Hh is reported to interplay
with many other pathways including NOTCH, mTOR, Wnt,
Muc5, EGF, IGF, TGF-b, RACK1, and PKC in different types of
cancers (22–25). It has been observed that TGF-b regulates
tumor microenvironment, while PDGFR-ᾳ and Notch play key
role in triggering CSC (22, 25). Recent studies highlighted that
inhibition of Hh signaling in cancer cells could be the iron gate
for cancer therapy in many cancer types (21).

Aberrant Hh signaling is a distinguished feature of various
human cancers (26). Gli1 and Gli2 are the two Hh pathway target
genes that are overexpressed in the CRC (27). A gene expression
microarray study conducted on 382 patients showed that Gli-1
was overexpressed in CRC patients. The expression of this target
gene was responsible for the tumor recurrence and poor survival
outcome in patients. In addition to this treatment of cell lines
such as the HCT-116, SW480 and SW620 with SMO inhibitor
GDC-0449 decreased the expression Gli target genes such as the
PTCH1, HIP1, and MUC5AC. Furthermore, treatment of cell
lines with GDC-0449 upregulated the expression of growth arrest
gene p21 and downregulated the expression of cyclin D1 (28).
The genetic silencing of SMO with 5E1, a specific antibody,
prevented cell migration and invasion along with reduction in
the expression of Hh target genes Gli-1 and Gli-2 (28). These
findings suggest that Hh signaling affects cell plasticity,
proliferation, invasion, and migration in CRC.

CSC functionality and polarity are dependent on the Hh
signaling pathway (29). It has also been reported that Hh
signaling induces chemotherapy and radiotherapy resistance in
cancer cells (30, 31). However, Hh inhibitors are reported to
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promote delivery of chemo-therapeutic agent including IPI-
926 (31).

Hh signaling pathway has its prime role in embryogenesis, i.e.
cell differentiation and growth. It does not always active in all
adults cells. However, in cells where stem cell development and
growth is required, Hh signaling triggers on (32). Genes involved
in the cellular differentiation i.e. proto-oncogenes and growth
factors are targeted by Hh pathway, but if these pathways get
activated by any mutation or if its regulation gets disturbed, then it
may lead to tumor development (33). It has been observed that
abnormal activation of the Hh pathway can lead to CRC.
Molecular evidence realized that in CRC tissues, SHh ligand gets
higher in number and increase the expression of all its
downstream components, particularly SMO upregulates
dramatically and difference in expression of GLI1 protein is
observed. From different studies, it was revealed that SHh is a
paracrine factor that works like aberrant p53 to inhibit anti-
oncogenes (34). SMO activation in an abnormal way causes
progression in colon cancer, and its expression was sharply
upregulated in colon cancer tissues as compared to the non-
cancerous colon tissues. It was observed that SMO expression is
directly proportional to the stages of cancer so its level of
expression can be used as an independent biomarker for liver
postoperative metastasis to liver (35). Similarly, a different
expression level of GLI1 was noted in normal tissue and
cancerous tissue. Increased expressions of GLI1 cause activation
of Hh signaling, which induce anti-apoptotic and anti-
inflammatory effects on cancer cells. These alterations are
potential driving forces for therapeutics to target GLI by
molecular inhibitors to induce the cellular deaths of colon
cancer cells. In one study it was reported that GLI1 regulation is
exceptional in colon tissues and it is also related to lymph node
metastasis (36). Recently, tumor suppressor gene RUNX3 is
reported to play a decisive molecular role to limit endothelial
proliferation in CRC. It has been observed that RUNX3 expression
Frontiers in Oncology | www.frontiersin.org 3
has inverse correlation with GLI-1 protein and it promotes GLI-1
ubiquitination in CRC. Molecular interplay of RUNX-3 gene to
limit metastasis and stemness by targeting hedgehog signaling
cascade could be a new contributing therapeutic agent to conquer
the unbeatable fort of carcinogenesis (37). Inhibitors of hedgehog
pathway are recognized in the scientific community as a
therapeutic strategy for cancer treatment. Hh inhibitors hold
promise for the development of a potential treatment option in
CRC as its results have been proved to be very promising,
suggesting that the targeting treatment of signaling pathway is a
hopeful way for antitumor treatment. Therefore, the members of
hedgehog signaling pathway are considered as significant
therapeutic targets for the clinical treatment of colon cancer
(38). The Hh signaling pathway has been seen to act as an
antagonist to Wnt pathway, which is directly involved in the
rapid increase of CRC cells. 90% of CRC have an active mutation
in the Wnt pathway; particularly APC gene mutations are
responsible agent, but Hh pathway mutations were not found as
a molecular culprit in majority of CRC cells (39). There is
mounting evidence that over-expression of SHh and SMO
participates in the onset of multiple cancers, also recognized as
SHh related carcinomas (40). Both these pathways have a
significant relation between them in the occurrence and
development of CRC and have numerous avenues for molecular
crosstalk between the two pathways (41). The colon’s mucosa has
a film of epithelial cells which gets replaced every week. It replaces
large number of progenitor cells and generates plenty of new cells
every day at the bottom of crypts i.e. small mucosal invaginations.
Maintenance of the balance of cell is regulated by extrinsic signals.
Morphogens, soluble proteins that make a long range of
concentration gradients, produce cellular responses to target
cells from a distance in a dose dependent way. It has been
proved that morphogens are the main regulator in adult colon
and support the notion that both Wnt and Hh pathways have
significant roles in CRC (42). The metastatic transition of human
FIGURE 1 | Therapeutic potential of miRNA inhibitors by targeting aberrant signaling cascades.
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colon carcinomas, which mainly occurs in the CD133+ epithelial
tumor stem cell population, includes deregulation of the Wnt–
TCF pathway and upregulation of the HH–GLI pathway (43).
During this phase of metastatic transition all ligand-driven
signaling pathways of Wnt are inhibited. In both CD133+ and
CD133− cells of colon carcinoma signatures of expression of gene
in various stages show that activity of Wnt–TCF i.e. non-
metastatic stops at early stages in colon carcinomas and to
become metastatic, the HH–GLI works actively in stem cells.
The molecular linkage was established in the deregulation and
upregulation of early adenoma-like Wnt–TCF and HH–GLI1
respectively. It was experimentally proved that upregulation of
HH–GLI causes downregulation of TCF and thus results in low
Wnt–TCF and high HH–GLI expression in metastatic colon
carcinomas. It was also observed that silencing of TCF induces
the HH–GLI signaling. The high regulation of Wnt–TCF causes
transcription repressor GLI3 and high regulation of HH–GLI
causes repression of Wnt–TCF and GLI3 (44).

Drug resistance, tumorigenesis, tumor progression,
metastasis, and tumor recurrence are the key functions that are
regulated by the CSC (45). These are subpopulations of
cancer cells with the ability of self-renewal. The Hh signaling
pathway has been reported to be involved in the activation of
CSCs in various neoplastic tumors such as the glioblastoma,
leukemia, and myeloma (46). The activated stem cells have been
demonstrated to play a pivotal role in the progression,
metastasis, and recurrence of tumors in colon, breast, liver,
and pancreatic tissues (47). In addition to its involvement in
regulating the CSCs, the Hh signaling along with the SMO and
Gli signaling pathways promotes cell migration, growth, and self-
sustenance of CSCs (48). The non-canonical Hh-signaling has
been reported as a crucial mediator for the survival of CSCs (49).
Both the canonical signaling and non-canonical signaling are
pivotal in regulating the expression of key genes involved in
growth and proliferation of cells (45). Accumulating lines of
evidence have reported the fact the aberrant non-canonical
hedgehog signaling can trigger uninterrupted cellular growth
in CRC. Zhang et al. demonstrated that both SMO and Gli
proteins were overexpressed in colon cancer cells and colonic
adenoma tissues (38). The SMO expression has been related to
prognosis and tumor status in CRC patients. The CSCs are
pivotal in stemness and growth of CRC. New studies have begun
to shed light on the fact that non-canonical Hh signaling and
Wnt signaling are the two key molecular cascades that are
disrupted in CRC stem cells. Both canonical and non-
canonical Hh-signaling positively and negatively regulates the
expression of Wnt in CRC stem cells. Regan et al. demonstrated
that non-canonical Hh signaling had a positive role in
maintaining growth and differentiation of CRC stem cells.
Moreover, continuous overexpression of non-canonical Hh
signaling promoted resistance in CRC stem cells and increased
their survival in a PTCH1-dependant, Gli-independent manner.
In addition to this, SMO dysregulation has been affiliated with
CSC growth and differentiation targeting; the dysregulated SMO
can be a potential target for the treatment of CRC (50). A
specifically designed Hh signaling antagonist GDC-0449
Frontiers in Oncology | www.frontiersin.org 4
(Vismodegib) has been reported to suppress growth and
trigger apoptosis in colon cancer cells via downregulating the
expression of Bcl-2 (51). Another study confirmed that GDC-
0449 has the ability to initiate apoptosis, decrease cellular
plasticity and invasiveness of CRC (28). Altogether these
findings indicate that non-canonical Hh-signaling has a
regulatory role in progression and spread of CRC via CSCs
modulation. Cancer is a multifactorial disease. There are
number of factors such as the age, genetic predisposition,
alteration in the genetic framework, diet and habits that can
trigger tumorigenesis (52). Studies over the past decades have
evidenced the involvement of various mutations in the signaling
machinery that contribute towards development of cancer (53).
Development of CRC like several other tumors involves
mutations in the signaling machinery. Mutations in KRAS,
MYB, and BRAF are the most critical mutations that trigger
tumorigenesis and can be targeted for therapeutic purposes (54–
57). The role of Hh signaling in CRC is still questionable. The
exact mechanism by which Hh signaling triggers growth and
proliferation, invasiveness and metastasis in CRC still requires
aggressive research. The scientific community seems divided on
the role of Hh signaling in CRC. Accumulating lines of evidence
have suggested that Hh signaling has the following implications
in CRC: 1) Hh signaling is expressed variably in CRC, and CRCs
as different components of the Hh signaling machinery are
expressed differently. 2) Hh pathway can trigger mutations in
CRC. 3) Hh signaling plays a role during the transformation of
the cells from adenoma-to-adenocarcinoma. 4) The SMO has the
most crucial role in the regulation of carcinogenesis of CRC (58,
59). Taken together, it can be evidenced here that the Hh role in
CRC still requires plenty of research.
ROLE OF MIRNAS IN COLORECTAL
CANCERS

MiRNAs are short non-coding single-stranded nucleotide
sequences (60), which affect almost all physiological processes
in cells such as development (61, 62), proliferation (63),
differentiation (64), apoptosis (65), signal transduction (66)
and many more. The altered expression patterns of miRNAs
are tightly linked with a wide range of anomalies including
various cancers; thus miRNAs screening could serve a very
good therapeutic and diagnostic tool in molecular biology (67).
Till date, more than 25,000 miRNA sequences have been
identified, and this number is growing fast amid current
research interests in miRNAs all over the world. According to
an estimation, 3–4% of human genome comprises of miRNAs
(68). These miRNAs interfere with numerous key regulators
of cellular processes by binding with post-transcriptional
products. For this reason, miRNAs are considered as
important biomarkers for many cancers including CRC (42).
In this section, we shall focus on miRNAs which interact with Hh
signaling and may affect CRC. There is a long list of miRNAs
which affect CRC progression. More than 500 miRNAs have
been found to be linked with CRC. Among these miRNAs few
January 2021 | Volume 10 | Article 607607
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miRNAs such as miR-21 (69), miR-143, and miR-145
are reported most frequently and are summarized in (70).
These miRNAs interact through various signaling pathways.
For example miR-143 significantly inhibits KRAS which
ultimately suppresses CRC (71). However, another study has
shown the opposite phenomenon where reduced levels of miR-
143 expression were detected in CRC tissues. Interestingly
transfection of cells with transient miR-143 turns the cells to
mimic SW480 cells, a CRC cell line, resulting in increased levels
of cell proliferation and apoptosis (72). Thus, we may say that the
role of particular miRNAs may also vary depending upon the cell
type. On the other hand, the role of miR-145 remains much
consistent as CRC suppressor in many studies. There has been a
reverse interaction between erythroblast transformation-specific
(ETS)-related gene (ERG) and miR-145 in CRC. Increased ERG
results in decreased miR-145 levels and promotes CRC. The
overexpression of miR-145 suppresses CRC by decreasing
expression of ERG (73). A similar relation between P21-
activated kinases 4 (PAK4), and miR-145 was also observed
where miR-145 appeared to downregulate phosphorylation level
of LIMK1 and cofilin in SW1116 cells through PAK4 (74). miR-
224 activates the Wnt/b-catenin signaling by deregulation of
GSK3b and SFRP2 to translocate b-catenin in CRC (75).
Similarly, miR-361 is also downregulated in CSC (65). miR-
150 is negatively correlated with circular RNA named Circ-
ZNF609 and important transcription factor of hedgehog
signaling i.e. Gli1 in HCT-116 cells (76). Another study stated
that overexpression of miR-150 positively affect the EMT and
subsequent downregulation of Gli1, further confirming the role
of miR-150 in CRC through hedgehog signaling (77). Similarly,
miR-142-3p appeared to promote cell invasion in CRC by
upregulation of RAC1 (78). There are miRNAs also targeting
other key regulators of hedgehog signaling. One such miRNA-
378 inhibits SUFU and promotes cell survival and tumor growth
(79). Another molecule, miR-146a, activates the Wnt pathway
and stabilizes b-catenin, thereby promoting CRC by regulating
the symmetrical cell division by a feedback loop of Snail-
miRNA-146a-b-catenin (80). All variants of hedgehog
pathways work upstream of epithelial-mesenchymal transition
(EMT) (81). A number of miRNAs regulate EMT in CRC such as
miR-29c which has been shown to be remarkably downregulated
and also associated with metastasis and significantly shorter
patient survival and this effect was reverted by transient
expression of miR-29c (82).

MiRNAs are crucial molecular factors to regulate post-
transcriptional processing, and more than 60% protein coding
genes are expected to regulate miRNAs, and their dysregulation
is often reported to trigger different human disorders including
cancer. In recent years, many reports highlighted the significance
of miR-34a as tumor suppressive molecular entity. It has been
figured out that miR-34a has inverse relation with the cancer
progression, and the expression of miR-34a declines with the
increased progression of cancer and vice versa (83).

Scutellaria barbata (SB) is a natural compound and has been
used for years as a potential compound among traditional
Chinese medicines against multiple cancers. In vitro and in vivo
Frontiers in Oncology | www.frontiersin.org 5
clinical trials have proved that its ethanol extract of SB is an
effective agent to induce apoptosis and limit cancer cell
proliferation (84). Ethanol extract of SB has been found
effective against human CRC HCT-8 cells and regulates
miR-34a expression. Molecular assay confirmed that SB extract
upregulates the miR-34a expression and negatively regulates the
Bcl-2, Notch and Jagged-1 gene expression. miR-34a mediated
down-stream targeted gene regulation plays a decisive role in
apoptosis and limits cancer cell proliferation. In one of the
studies, exogenous inactivation of miR-34a by using anti-miR-
34a oligonucleotide triggers Bcl-2, Notch1/2, and Jagged-1 genes
and promotes cancer growth (84, 85). Activation of miR-34a has
been associated with regulation of various cellular processes
including apoptosis, proliferation, and invasion (85). Molecular
evidence also established a link of miR-34a with downregulation
of Notch1/2 in colorectal CRCs (86).

miR-449a has been documented as tumor suppressor gene
and has been closely associated with SATB2 in different cancer
types including CRC cells. SATB2 could be used as diagnostic
marker for CRC and has comparative negative association with
miR-449a. It has been noted that in CRC xenograft mouse
models, increased expression of miR-449a promotes apoptosis
by negatively regulating the expression of SATB2 (87). Similarly,
molecular link has been established to understand the
transcriptional deregulation of SMO by miR-326, and it was
observed that upregulation of miR-326 negatively regulates SMO
protein to induce apoptosis and limit cellular proliferation
(88, 89).

Aberrant expression of GLI-1 (Glioma associated oncogene
homolog 1) is a key culprit in the metastasis, invasion, and
proliferation of various cancer cells. Ample lines of evidence have
shown that expression of miR-150 declines with the pathogenesis
of CRC. NCM-460 and SW-620 CRC cell lines were examined by
using dual luciferase assay to decipher the molecular relation of
miR-150 with GLI-1, and it has been noted that miR-150 inhibits
the expression of GLI-1 protein in Hh signaling (77). Molecular
evidence has proved that Hh is a cellular event responsible for
structural development, cellular regeneration, and stemness. In
multiple myeloma cancer (MMC), inverse relation of miR-324-
5p and hedgehog signaling has been observed. Increased
expression of miR-324-5p has significant inhibitory effect on
SMO and GLi-1 and limits cancer stemness of cells (90). Pro-
oncogenic effect of miR-212 is identified, and molecular relation
was established that miR-212 induces pancreatic ductal
adenocarcinoma (PDAC) by targeting PTCH-1 (91). miR-361-
3P has been reported to have profound impact on different
cancers including prostate cancer, breast cancer, lung cancer, and
cervical cancer. To decipher the molecular interplay of miR-361-
3p in retinoblastoma (RB) tissue and RB cell lines, Weri-Rb-1,
and Y79, real-time PCR analysis was performed, and it is
concluded that miR-361-3p expression is downregulated with
cancer progression. Forced expression of miR-361-3p is reported
to limit cancer cell proliferation by targeting GLI-1/3 and sonic
hedgehog signaling (92). Multiple miRNA expressions have been
associated with the onset of breast cancer including miR-454-3p,
miR-130b-3p, miR-421, and miR-301a-3p. These miRNAs are
January 2021 | Volume 10 | Article 607607
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noted to target PIEZO-2 gene. Downregulation of PIEZO-2 gene
in breast cancer has been molecularly linked with estrogen and
progesterone receptors which are responsible agents for Hh
signaling cascade in breast cancer (93).

Extensive research work on miRNAs has been done in recent
years to unfold the molecular complexity of carcinoma and to
bridge the gap towards new and effective therapeutic approaches.
miR-338-3p interaction with hedgehog pathway by using
recombinant lentiviral vectors PLV-THM-miR-338-3p and
PLV-THM-miR-338-3p inhibitor has been reported and
successful transfection in SW-620 CRC cells was achieved.
Increased expression of miR-338-3p was observed, it
significantly suppresses SMO protein and inhibits proliferation
ability. Molecular interplay of miR-338-3p is also confirmed by
Frontiers in Oncology | www.frontiersin.org 6
using PLV-THM-miR-338-3p inhibitor, and it was concluded
that it upregulates the SMO protein expression to initiate
hedgehog signaling pathway and induces CRC onset. miR-338-
3p could be a therapeutic agent to suppress CRC growth by
targeting SMO, (Figures 2 and 3) (94). Now, withstanding the
fact that SMO is a possible target of miR-338-3p. 40 CRC tissue
samples and 2 CRC cell lines, SW620 and SW480 were
investigated to understand the corresponding protein
expression of SMO and miR-338-3p by using semi-quantitative
RT-PCR, western and northern blotting assays. It was established
that miR-338-3p plays a significant role in metastasis and
progression of CRC carcinoma (95).

Accumulation of genetic and epigenetic errors can trigger the
aberrant signaling cascades. miRNAs are the critical key players to
FIGURE 2 | miRNAs targeting SMO oncogenic hedgehog pathway to induce apoptosis in CRC.
FIGURE 3 | Molecular interplay between several miRNAs and their downstream target genes to induce apoptosis.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Javed et al. Regulation of Hedgehog Signaling by miRNAs and Nanoformulations
fine-tune genetic expression upon exogenous factors including
DNA hypermethylation, hypomethylation, histone modification,
and deacetylation. Thus epigenetic-miRNA regulatory molecular
cascades are the contributing agents for onset of different types
cancers (96). Tumorigenic activation of SMO by over-expression
of Shh ligand is reported as responsible agent in 40% cases of
human hepatocarcinogenesis (97). Molecular balance between
cellular proliferation, differentiation, and renewal is modulated
by epigenetic regulatory network and miRNAs. miRNAs are the
functional short RNAs that control stemness of cancer cells and
promote stem cell self-renewal (97). CSCs are believed to be the
critical source for tumor initiation. It has been reported that SHH
signaling has reprograming potential for epigenetic memory
power within CSCs to modulate cancer hallmarks. miR-302-367
clusters regulate cellular plasticity molecular cascade by engaging
cyclin-D1, CDK-4, OCT-4 and SOX-2 genes (98).
MICRORNAS AS MASTER REGULATOR
OF STEMNESS AND METASTASIS

Cancer stem cells are the cells with self-renewal potential within
the tumor and are the key responsible agent for radio- and chemo-
resistance behavior of cancer cells. Increasing evidence strongly
suggests that CSCs are the responsible factor for the onset of
carcinogenesis in many human cancer types as cancer cells have
self-renewable stem cell like characteristics. Several microRNAs
expression have been associated to regulate cancer stemness
pathways and its downstream targeting genes (115). Tumor cells
were believed to derived from normal stem cells or progenitor cells
that undergo genetic or epigenetic modification and transform
themselves into CSCs by attaining unlimited self-renewable and
differentiation potential (116, 117). Recent findings provide
striking evidence that dysregulation of miRNAs regulates CSC
characteristics and induces tumorigenesis, and multi drug
resistance behavior of cancer cells. The four basic stemness
transcriptional factors, OCT4, Nanog, Sox2, and Rex1 are
responsible entities for cellular pluripotency and differentiation
(118, 119). Recent molecular evidence supports the notion that
members of the miR-290 family provide protective defense again
differentiation defects in ESCs and play a key role for OCT-4
stability (120). miR-302 family is reported to limit the self-renewal
ability and cellular differentiation by regulating the expression of
key genes in stem cells. miR-34 family members contribute
effectively in P53 dependent reprograming of human ESCs, and
it has been noted that loss of functional ability of miR-34 is
associated with the upregulation of pluripotency genes including
N-Myc, SOX2, and NANOG (115). miR-34a is also reported to
modulate neural differentiation by targeting SIRT1. It has been
widely accepted that miRNAs are the potential contributors to
regulate stem cell properties and stemness of cancer cells (115).

To understand the molecular underpinning of cancer
stemness, CSCs were isolated from SW-1116 colon cancer cell
lines with both CD133+/CD44+ and CD133−/CD44− surface
phenotype antigen for comparative analysis. Researcher found
62 differentially expressed miRNAs in cancerous and non-
Frontiers in Oncology | www.frontiersin.org 7
cancerous stem cells and noted 31 miRNAs overexpressed
including miR-29a and miR-29b, as well as 31 miRNAs under-
expressed including miR-449a, miR-4524, and miR-451 (117).
Exogenous expression of miR-451 declines the self-renewable
capacity of stem cells and decreases multi drug resistant potential
of cancer cells. Induced expression of miR-451 negatively
regulates COX-2 gene that plays a decisive role in Wnt cascade
activation and is believed to act as complementary factor for CSC
activation. Wnt pathway has a key association with intestinal
stem cell regulation and reported to linked with colon cancer
onset (117, 121). Inhibition of Wnt pathway leads to the
degradation of b-catenin in the cytoplasm and is unable to
initiate epithelial renewal. Increased expression of miR-21 is
noted to induce stemness by regulating Wnt activity and thus
initiates carcinogenesis by inhibiting the tumor suppressor gene,
TGF-bR2, that is a key regulatory gene for cellular differentiation
(122). One of the fundamentals signaling pathway to regulate
colon stemness is Notch. Notch cascade activation is believed to
induce cellular proliferation of progenitor cells. miR-34a is
shown to downregulate Notch signaling activity and regulate
cellular differentiation of targeted cells and colon stem cells (123)
(Table 1).

Putative Markers for CRC
LGR5 is a member of G-protein coupled receptor that can interact
and trigger activation of Wnt signaling via binding to furin-like
repeat FU2 domain of R-spondin (133). LGR5 has been reported
to be a putative marker for CRC stem cells. It has come to light less
lately that LGR5 triggers the activation of both Wnt and TGF-b
signaling in cancer stem cells. Overexpression of LGR5 increases
drug resistance and cancer stemness in both brain tumors and
CRC. LGR5 has been reported to have high expression in most of
the CRC cell lines and adenomas but this overexpression has
nothing to do with progression of tumor as presence of LGR5
increases cell-cell adhesion which in turn promotes stemness and
hampers invasiveness and migration (134). Experimentation
conducted on the triple positive cells having LGR5-positive
subpopulations demonstrated peculiar characteristics of self-
renewal, differentiation, colony formation, tumorigenicity, and
stemness (135). These findings suggest that LGR5 is a putative
marker of CRC stem cells. A transgenic mice experiment
confirmed the status of LGR5 as CRC stem cell marker.
Addition of suicide gene to a transgenic mice genome that was
activated in the presence of overexpressed LGR5 and tamoxifen
resulted in the death of LGR5 rich colorectal stem cells. The
absence of tamoxifen resulted in differentiation of LGR5 CSCs
(136). From these findings it can be concluded that LGR5 is a
putative CSC marker that should be considered as potential target
for advanced grade CRC and such CSCs must be eradicated before
the start of any combinational therapies for CRC. CD44 is a
surface protein responsible for interaction between cells and also
plays vital role in the adhesion and migration of the cells (137).
The CD44 has a specific binding site for hyaluronic acid which
facilitates interaction with selectin, osteopontin, fibronectin,
laminin, and collagen in the extracellular matrix (138). The
binding of hyaluronic acid with CD44 results in the activation
of epidermal growth factor receptor family kinases such as the
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MAPK and PI3/AkT that in turn promotes growth and
proliferation in various cancers (138). Majority of CSCs
population have CD44 surface markers along with other cell
surface markers that increase invasiveness and stemness (139).
Considering its abundance in CRC tumorous stem cells it has been
reported as putative marker for the detection of invasiveness and
metastasis. Cluster differentiation 24 is an emerging biomarker for
CRC (140). Overexpression of CD24 is affiliated with tumor
differentiation, invasion metastasis (141). In addition, CD24
overexpression also promotes poor survival rates in the patients
with CRC. These findings suggest that CD24 involvement
increases stemness in CRC stem cells and may be used as a
prognostic marker for patients with CRC.
NANOTHERAPEUTICS AS AN APPROACH
FOR THE TREATMENT OF CRC

Hh pathway can be targeted by the specific inhibitors at various
sites. Therefore, inhibitors of Hh pathway are useful anti-cancer
agents. Till now, several small molecules inhibitors have been
developed tested for their inhibitory effects on Hh signaling
pathway. A natural alkaloid cyclopamine obtained from the
corn lily V. californicum is the first Hh inhibitor reported.
Cyclopamine impedes the functioning of smoothened via
inhibiting its attachment to the heptahelical bundle (142).
However, cyclopamine has several drawbacks such as the limited
bioavailability, chemical instability, and shorter half-life.
Therefore, it cannot be considered as potential therapeutic
Frontiers in Oncology | www.frontiersin.org 8
target. Several small molecule antagonists such as the SANT1,
SANT2, SANT3, SANT4, CUR-61414, and GDC-0449 have been
synthesized and evaluated in pre-clinical models for their anti-
cancer activity in various solid tumors (143). The Hh small
molecule inhibitors were first evaluated in basal cell carcinomas.
Vismodegib a small molecule inhibitor of SMO is the first reported
drug used for the treatment of basal cell carcinoma (144). In
comparison to the cyclopamine, vismedegib was efficient to
culminate cancer growth in both advanced and metastatic basal
cell carcinomas. Over the years new therapeutic interventions in
the development of SMO for Hh signaling antagonists such as
LDE225 also known as the sonidegib has increased the drug
efficacy via increasing tissue absorption and better penetration
in the blood brain barrier for skin cancer and brain tumor
respectively (144). There are several SMO antagonists designed
to inhibit Hh pathway are in clinical trials that specifically target
medulloblastoma, ovarian cancer, pancreatic cancer, and colon
cancer (145). Yet the clinical success of these antagonists is still
limited. In order to understand the effects of these SMOs on
hedgehog dependent inhibition of CRC further investigation is
required for finding suitable and effective drug. In recent years
huge development in the field of nanotechnology has enabled us to
devise efficient therapeutics for various diseases (146). In addition
to this, nano-carriers have greater efficiency in delivering drug to
target site with limited cytotoxicity. These observations have urged
scientists to seek more efficient nano-drug delivery systems that
can hamper cancer progression and increase apoptosis. There have
been some serious drawbacks of utilizing SMO as inhibitors of Hh
signaling (147). The SMO antagonists have poor bioavailability,
TABLE 1 | MicroRNA mediated control of CRC stemness and progression.

MicroRNA Expression
pattern

Target Function Reference

miR-150 Upregulated Gli-1, 2 & 3 Downregulation of the expression of Gli-1/2/3 in CRC thus prevents
apoptosis

(77)

miR-34a Upregulated Bcl-2, Notch1/2, Jagged 1,2 CDK,
Cyclin-D, E2F, c-Myc and Cyclin-E2
SIRT1

Downregulates the expression of Bcl-2, Notch1 and 2, Jagged 1,2, and
CDK, Cyclin-D, E2F trigger apoptosis in CRC

(124)

miR-338-p Upregulated SMO, DLG5, GPrK-2 and CK1 Downregulates/inhibits the expression of SMO, DLG5, GPrK-2, and CK1
trigger apoptosis CRC

(94)

miR-150 Upregulated Gli-1/2/3 Downregulates/inhibits the expression of Gli-1/2/3 thus preventing
proliferation in CRC

(77)

miR-326 Upregulated SMO, EVC-1/EVC-2 Downregulates/inhibits the expression of SMO and EVC-1/EVC-2 in CRC (88)
miR-290/miR-302 Upregulated OCT-4, Nanog, Sox-2, and REX-1 Upregulates the expression of OCT-4, Nanog, Sox-2, and REX-1 and

triggers apoptosis in CRC
(125)

miR-21 Upregulated PTEN, AkT Increases stemness and
invasiveness in CRC via upregulation of Akt pathway

(69)

miR-148a Downregulated Wnt/b-catenin Reduces cancer stemness in CRC cell lines (126)
miR-137 Downregulated Doublecortin-like kinase 1 (DCLK1) Downregulates the DCLK1 and suppresses tumor growth in CRC (127)
miR-372/373 Upregulated Nanog/SMO Downregulates MAPK/ERK and VDR signaling thus increases cancer

stemness in CRC
(128)

miR-196b-5p Upregulated STAT3 Upregulates the expression of Nanog, SOX2 and OCT4 increases the
stemness profile of CRC stem cells and triggers drug resistance.

(129)

miR-195-5p Downregulated SOX2, CD133 Suppresses the stemness and chemo-resistance in CRC CSCs via
modulation of key signaling pathways proteins such as Notch2 and RBPJ.

(130)

miR-199a/b Downregulated Glycogen synthase kinase 3 b (GSK3
b)

Increases chemo-resistance in CRC via modulation of Wnt/b-catenin and
ABCG2 signaling pathway

(131)

miR-31 Upregulated EphB2/EphA2 signaling Increases cancer stemness via modulation of the EphB2/EphA2 signaling in
CRC CSc.

(132)
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drug resistance and non-specific activation of Gli (148).
Nanoformulations can address these drawbacks by increasing
bioavailability, reducing drug resistance and specific activation of
Gli. Based on current data there are two types of nano-based
Hh signaling inhibitors: Natural Inhibitors and synthetic
inhibitors. Cyclopamine comes under the list of natural
inhibitor that has faced severe criticism because of its limited
bioavailability, poor solubility, and several side effects.
However, nanoformulations of cyclopamine have reduced these
obstacles. It has been reported that cycolopamine loaded lipid
nanoparticles (NPs) efficiently reduced the growth of radiation
therapy treated breast and pancreatic cells (149, 150). In another
study, polymeric nanoparticles designed to carry both
cyclopamine and doxorubicin reduced the growth in orthotropic
breast cancer model (151). The polymeric nanoformulations of
cyclopamine and paclitaxel successfully cured prostate cancer
(152) and pancreatic cancer (153) in combination with
chemotherapy in mice. A biomimetic nanoparticle delivery
system having cyclopamine encapsulated in erythrocyte
membrane camouflaged PLGA resulted in super enhanced
bioavailability of cyclopamine. Moreover, a combination of
biomimetic NPs with paclitaxel NPs increased the delivery of
paclitaxel to the tumor tissue increased tumor profusion and
inhibited tumor growth in vivo (154). Vismodegib an FDA
approved natural inhibitor for Hh signaling pathway has limited
solubility and bioavailability. The polymeric nanoformulations for
vismodegib have resolved these issues. The encapsulation of
vismodegib in SN38 pro-drug polymer which is an active
metabolite of irinotecan to treat pancreatic ductal carcinoma
resulted in decreased tumor growth and reduced fibrosis. In
addition to this SN38 NPs facilitate the inhibition of Hh
signaling which is crucial for the communication between tumor
and stromal cells. SN38 NPs provided better diffusion for
vismodegib thus prevented the drug resistance. SN38 NP
encapsulation of vismodgib suppressed Gil1 expression in the
tumor microenvironment of xenograft model suggesting the fact
that SN38 NPs could aid in restoring normal drug resistance of the
tumor cells (155). In another study, pH-responsive polymeric NPs
containing vismodegib and gemcitabine inhibited growth of
pancreatic cancer cells (156). From these findings, NP mediated
drug delivery of Hh signaling inhibitors can be used a potential
tactic to trigger chemotherapy. Apart from cyclopamine and
vismodegib, several other natural Hh signaling inhibitors have
been reported to be delivered by the nanofomulations. Anthothecol
carrying PLGA nanoparticles have been reported to suppress
proliferation and colony formation of pancreatic cancer stem
cells through modulating the activity of the Gli-DNA binding
(68). Another study confirmed that a-mangostin carrying PLGA
nanoformulation disrupted the Gli-DNA binding activity in
pancreatic cancer cells. This resulted in decreased growth,
development, and metastasis of pancreatic cancer stem cells
(157). Nanoformulation of glabrescione B has been reported to
show tremendous anti-cancer activity in a Hh dependent manner
(158). Nano-carriers have been employed in the delivery of the
synthetic inhibitors of Hh signaling pathway. Quinacrine a
synthetic inhibitor of Hh signaling when loaded into NP
Frontiers in Oncology | www.frontiersin.org 9
formulation triggered the recruitment of GSK-3b and PTEN
which induced the apoptosis in cancer stem cells. In addition to
this qunacrine loaded NPs also reduced the expression of Gli vital
for the self-renewal of CSCs (159, 160). PLGA NPs encapsulating
the HPI-1 a specific inhibitor of Gli1 prevented growth and
metastasis of hepatocellular carcinoma mice model. Moreover,
HPl-1 delivery reduced the expression of CD133+ cells a type of
CSCs in hepatocellular carcinoma (161). A combination of the
NPs and gemcitabine reduced cellular growth in xenograft model
of pancreatic cancer in a ligand dependent paracrine activation of
Hh signaling pathway (162). GANT61 a specific Gli1 inhibitor
when encapsulated in PLGA NPs prevented the translocation of
Gli-1 to the nucleus and reduced the growth of CSCs (163).
Although there has been slight progress towards the utilization of
nano-carriers as a module to treat Hh mediated CRC, these
observations are in favor that nanoformulations could be used
as small molecules Hh inhibitors to cancer. It has come to light
less lately that nanoformulations can be used as a carrier for
the targeted delivery of the miRNAs. There are different
types of nanoparticle based formulations that are being used
for this purpose. Lipid nanoparticles, extracellular vesicles,
minicells (genetically developed from bacteria), dendrimers,
polyamidoamine (PAMAM), and inorganic materials such as
the silica, gold, and silver nanoparticles have been extensively
synthesized for delivering specific miRNAs to targeted tumors.
Oshima et al. have developed an in-vivo delivery system to target
liver and CRC. They specifically designed nano-scale coordination
polymers for the effective delivery of oligometastatic miR-655-3p.
Their findings revealed that co-delivery of miR-655-3p along with
oxaliplatin reduced tumor growth (164). Yang et al. successfully
formulated polyethyleneimine/hyalouronic acid mesoporous silica
nanoparticle loaded with oxaliplatin and miR-204-5p. This
nanoformulation enhanced the apoptosis and therapeutic
efficacy in HT-29 cell lines (165). Altogether these findings
suggest that nanoformulations are a suitable platform for the
delivery of miRNAs and can increase the therapeutic efficacy in
CRC (Table 2).

Oral Nanotherapeutics
Nanotherapeutics is one of the promising strategies that offer
dynamic surface functionalized modifications to improve
targeted drug delivery and to limit the adverse effects. Nano-
platform for drug designing offers potent routes to enhance drug
profile. Nanotherapeutics are generally comprise of three core
elements including nano-vehicle as carrier agent, target ligand
and therapeutic drug molecule (Figures 3 and 4) (166). Different
nanotherapeutics including lipid nanoparticles, organic and
inorganic nanoparticles, polymeric nanoparticles, nanocrystals
and plant derived nanomaterials have been used clinically
including Taxel®, Lipo-Dox®, Abraxene®, Abraxene®, Marqib®,
Onivyde® etc., and there is large number of nanotherapeutics in
pre-clinical and clinical trials that can be fabricated to target Hh
signaling cascade to reduce cancer cell proliferation (166, 167).

Oral chemotherapeutics are reported to have multiple
limitations that demand novel alternative therapeutics for cancer
treatment. Recently, the concept of oral nanotherapeutics paved
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the avenue in pharmaceutics towards more stable and high tumor
targeted therapy with minimize adverse effects. A successful pre-
clinical attempt has been performed by synthesizing redox
nanoparticles (RNPs) for colon cancer treatment. This novel
RNP contains nitroxide radicals for antioxidant activity and
to scavenge ROS (reactive oxidative species) in cellular
microenvironment. RNPs are specialized to accumulate in
colonic mucosa and targeted cancer cells predominantly. These
specialized oral-nanotherapeutics are also reported to limit cellular
toxicity issues upon prolong exposure and is significant agent to
inhibit tumor growth (Figure 5). It has been noticed that
synergistic effect of RNP and conventional therapeutics can
suppress adverse effects in gastro-intestinal tract and is an ideal
Frontiers in Oncology | www.frontiersin.org 10
candidate for future with significant potential in the existing pool
for cancer treatment (168).

Various attempts have been made for successful oral delivery
of targeted nanotherapeutics to treat cancer including bowel
inflammatory cancer and colon cancers. Engineered chitosan
based amphiphilic muco-adhesive drug-delivery strategies have
been examined in in-vivo therapeutic studies. In one of the recent
studies, SN38 (7-ethyl-10-hydroxycamptothecin) nanoparticles
and water insoluble curcumin are proved to be a significant
candidate to limit carcinogenesis and shrink tumor diameter
>4 mm. Thus, bio-adhesive chitosan based stable colloidal
nanotherapeutics is a novel and reliable approach to improve
the outcome of colon cancer treatment (169).
TABLE 2 | CRC inhibitors and nanoformulations.

Nanoformulation Ligand Target Cell line(s) Reference

Nanosized maghemite particle Antibody CEA HCT-116 (99)
Dextran- and PEG-coated superparamagnetic iron oxide
nanoparticles (abf-SPION)

scFv CEA LS174T (100)

Conatumumab (AMG 655)-coated nanoparticles Antibody DR5 HCT-116 (101)
Photosensitizer meso-Tetra(N-methyl-4-pyridyl) porphine tetra
tosylate chitosan/alginate nanoparticles

Antibody DR5 HCT-116 (102)

Gold and iron oxide HNPs scFv A33 antigen SW1222 & HT-29 (103)
Poly(lactide- coglycolide) nanoparticle loaded with
camptothecin

Antibody Fas receptor
(CD95/Apo-1)

HCT-116 (104)

Chitosan nanoparticles loaded with 5-ALA Folic acid FR HT29 and Caco-2 colorectal cancer cell lines
overexpressing folate receptor

(105)

FA-CS conjugates nanoparticles Folic acid FR HT-29 (106)
HPMA-copolymer-doxorubicin conjugates Peptide GE11 EGFR HT-29, SW480 and A431 (107)
T22-empowered protein-only nanoparticles 18-mer peptide T22

(T22-GFP-H6)
CXCR4 HeLa (108)

Chitosan nanoparticles encapsulating oxaliplatin (L-OHP) HA HA receptor HT-29 in C57BL mice (109)
MSN Coated with poly-(L-

lysine) and HA
CD44 receptor HCT-116 (110)

rHDL nanoparticles loaded with siRNA Apo A-I SR-B1 Model colorectal cancer metastasis in mice
(HCT-116)

(111)

HA-lipid shell nanoparticles Gene therapy, core
shell

P21-saRNA-322 HT-29 (112)

Survivin siRNA Cationic LCLs, Gene
therapy

Lipolex LoVo (113)

Exosomes Gene therapy miR-128-3p HCT-116oxR (114)
January 2021 | Volume 10 | Art
Apo A-1, Apolipoprotien A-1; CEA, Carcinoembryonic antigen; CXCR4, CXC chemokine receptor 4; DR5, Death receptor 5; FR, Folate receptor; HA, Hyaluronic acid; HNP, Hybrid
nanoparticle; EGFR, Epidermal growth factor receptor; DR5, Death receptor 5; HA, Hyaluronic acid; Scavenger receptor type B1.
FIGURE 4 | Schematic illustration of nanotherapeutic components.
icle 607607

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Javed et al. Regulation of Hedgehog Signaling by miRNAs and Nanoformulations
There are a number of inhibitors related to Hh signaling
namely sonidegib, saridegib, itraconazole, BMS-833923, LEQ-
506, Taladegib, Glasdegib, TAK-441, Vismodegib, and several
others (Table 3). But a very limited data is available regarding the
use of these inhibitors for CRC. In addition to this majority of
work done so far is on Wnt/b-catenin and mutations in this
pathway. Therefore a lot of potential works need to be done
against the implementation of such inhibitors in the clinical trials
(Table 3).
FUTURE PERSPECTIVE

The Hh pathway is activated during regeneration and tissue repair
in adults. Compelling pieces of evidence have indicated that
inhibition of Hh pathway can prevent tumor progression and
increased apoptosis. However, the clinical outcomes of such
inhibition are unsatisfactory. The tumor heterogeneity and
complex signaling crosstalk are the two major stumbling blocks
that challenge the specificity of a specific Hh inhibitor. A tumor cell
can trigger multiple signaling pathways simultaneously that can
hamper the anti-proliferative abilities of a single inhibitor.
Frontiers in Oncology | www.frontiersin.org 11
Therefore, an outlook for new inhibitors of Hh signaling pathway
that can hamper the activity of interconnected pathways is
necessary. miRNAs have been reported to regulate the expression
of vital genes involved in the proliferation and spread of CRC. They
have been extensively examined for their putative role as diagnosis
and prognosis markers for stratification of risk groups. Exploring
the interplay between miRNAs and Hh signaling can aid in the
development of therapeutics for Hh mediated CRCs. In addition to
this miRNAs can regulate the cancer stem cells proliferation and
metastasis (170). Therefore, they can be utilized as a probe to
investigate cancer stemness and drug resistance in CRC stem cells.
miRNAs modulating the expression of the proliferative genes is a
hallmark in CRCs. A suitable drug delivery system can transfer
miRNA modulating moieties to the target cell can impede the
proliferative capabilities. Development of such delivery system
will revolutionize therapeutics. Considering such scenario,
nanoformulations can be a suitable platform for the treatment of
various malignancies including cancer. Nanoformulations are
advantageous because of their specificity, low toxicity, limited side
effects, and enhanced bioavailability of the cargo such as various
natural compounds i.e., berberine, paclitaxel curcumin, and SMOs.
Hh signaling can be targeted with nanoparticles, but there are
several drawbacks affiliated. Drug resistance is themajor hurdle with
the devising of NPs for Hh signaling. The complex interaction of Hh
pathway makes it difficult to be targeted with nanoformulations of
SMO. It has been reported that SMO nanoparticles were unable to
hamper tumor growth when Gli was activated via non-canonical
Hh signaling. In addition to this the interaction of Hh signaling with
other molecular cascades such as the Wnt and Notch also affect the
targeting capacity of small molecular inhibitors of Hh signaling. The
nanoformulations have to overcome cellular resistance which is an
effective barrier for suitable nano-drug delivery which can be
overcome by the combination of nanoformulations such as
FIGURE 5 | Schematical representation the passage of oral nanotherapeutics to treat colon cancer.
TABLE 3 | Representation Hh signaling inhibitor under clinical trials.

Therapeutic
Agent

Development
Phase

Type of Cancer Trial Identity

Vismodegib Phase I Myelomas NCT01330173
Phase II Medulloblastoma NCT01878617
Phase IV Basal cell

Carcinoma
NCT02436408

Phase II Colorectal Cancer NCT00636610
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pegylated liposomes and formulations that prevent quick release of
cargo (Chitosan). Compelling research has dictated the fact that
only 0.7% of the total nanoformulation reaches the solid tumor
(171). This can lead to the development of side toxicity which is a
major concern for most of the nanoformulations. However, recent
advances in nano-drug delivery have culminated the side toxicity by
implementing the use of biphosphonates. In addition, combining
NP formulation can modulate the tumor microenvironment to
enhance the drug delivery. A combination of cycolopamine and
paclitaxel nanoformulation designed to impede the Hh signaling
disrupted the extracellular matrix of the tumor cells and increased
drug profusion. In addition choice of nanoformulation, size of the
NPs and their diffusion in the cell, cost of production, clinical
translation, and cancer cell resistance are the limiting barriers that
Frontiers in Oncology | www.frontiersin.org 12
need to be addressed for designing specific Hh inhibitors.
Overcoming these challenges can improve treatment methods for
cancer patients. Altogether miRNAs and natural compounds
mediated regulation of Hh signaling might help us devising new
diagnostic/prognosis and therapeutics for CRC.
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Chojnowska K. Gli proteins: Regulation in development and cancer. Cells
(2019) 8(2):147. doi: 10.3390/cells8020147

6. Park K-S, Martelotto LG, Peifer M, Sos ML, Karnezis AN, Mahjoub MR,
et al. A crucial requirement for Hedgehog signaling in small cell lung cancer.
Nat Med (2011) 17(11):1504. doi: 10.1038/nm.2473

7. Bailey JM, Swanson BJ, Hamada T, Eggers JP, Singh PK, Caffery T, et al.
Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res
(2008) 14(19):5995–6004. doi: 10.1158/1078-0432.CCR-08-0291

8. Ingham PW, Placzek M. Orchestrating ontogenesis: variations on a theme
by sonic hedgehog. Nat Rev Genet (2006) 7(11):841–50. doi: 10.1038/
nrg1969

9. Skoda AM, Simovic D, Karin V, Kardum V, Vranic S, Serman L. The role of
the Hedgehog signaling pathway in cancer: A comprehensive review.
Bosnian J Basic Med Sci (2018) 18(1):8. doi: 10.17305/bjbms.2018.2756

10. Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by
inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol (2011)
8(2):97–106. doi: 10.1038/nrclinonc.2010.196

11. Wen D, Danquah M, Chaudhary AK, Mahato RI. Small molecules targeting
microRNA for cancer therapy: Promises and obstacles. J Controlled Release
(2015) 219:237–47. doi: 10.1016/j.jconrel.2015.08.011

12. Hahn H, Wicking C, Zaphiropoulos PG, Gailani MR, Shanley S,
Chidambaram A, et al. Mutations of the human homolog of Drosophila
patched in the nevoid basal cell carcinoma syndrome. Cell (1996) 85(6):841–
51. doi: 10.1016/S0092-8674(00)81268-4

13. Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM, et al.
Human homolog of patched, a candidate gene for the basal cell nevus syndrome.
Science (1996) 272(5268):1668–71. doi: 10.1126/science.272.5268.1668
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