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A B S T R A C T   

Aim: To assess the potential role of saffron in downregulating inflammation and cytokine storm during COVID- 
19. 
Main findings: Three main compounds of saffron, i.e., crocetin esters, picrocrocin, and safranal, present strong 
antioxidant and anti-inflammatory action for several disease states (e.g., Alzheimer’s, cancer, and depression) 
but have also been studied in COVID-19. In particular, based on our comprehensive review of both in vitro and in 
silico studies, saffron’s essential oils and other constituents appear to have both immunomodulatory and anti- 
asthmatic actions; these actions can be particularly helpful to treat patients with respiratory symptoms due to 
COVID-19. Moreover, crocin appears to reduce the COVID-19-related cytokine cascade and downregulate 
angiotensin-converting enzyme 2 (ACE2) gene expression. Last, in silico studies suggest that saffron’s astragalin 
and crocin could have inhibitory actions on SARS-CoV-2 protease and spike protein, respectively. 
Conclusion: Saffron represents a promising substance for toning down cytokine storm during COVID-19, as well as 
a potential preventive treatment for COVID-19. However, appropriate randomized clinical trials, especially those 
using biomarkers as surrogates to assess inflammatory status, should be designed in order to assess the clinical 
efficacy of saffron and allow its use as an adjunct treatment modality, particularly in resource-poor settings 
where access to drugs may be limited.   

1. Introduction 

COVID-19 represents the most important pandemic of the 21st cen-
tury so far. Among the many features of infection, the clinical mani-
festations and biological underpinnings linked to inflammatory 
processes have received significant attention [1]. In particular, the lung 
injury caused by SARS-CoV-2 activates inflammatory T cells and 
monocytes that start to produce interleukins such as Interleukin-1, -6, -8, 
-10. The production of the latter leads to cytokine release syndrome that 
causes injuries to multiple organs such as the liver, heart, kidney, and 
brain [2]. 

There are several therapeutic options for managing COVID-19, such 

as remdesivir, convalescent plasma, supportive care, monoclonal anti-
bodies, interleukin-6 (IL-6) receptor inhibitors, Janus Kinase inhibitors, 
and corticosteroids [3]. Regarding the latter, the targeted glucocorticoid 
receptor regulates several thousand genes), thus providing a solid evi-
dence as a treatment for COVID-19 [4–6]. Moreover, monoclonal anti-
bodies have shown promising results, especially those targeting different 
proteins of SARS-CoV-2, but have been linked to reduced emergence of 
novel viral variants [7]. 

Considering that a major part of the world’s population depends on 
phytomedicine (e.g., 80% of the population in Africa), we briefly review 
the evidence status regarding anti-inflammatory actions of saffron on 
COVID-19, following similar reviews with other phytochemical products 
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[8–11]. These findings could stimulate further research in the field, 
especially for use in countries where access to healthcare and medica-
tions are limited. 

2. Overview of saffron and its biological activities 

Medicinal use of saffron can date back thousands of years, with the 
earliest evidence of the plant depicted on artifacts from the Aegean 
Bronze Age around 3,000–1,100 BC [12,13]. Saffron is used to treat 
various ailments as part of traditional medicine practiced in a number of 
countries and cultures [13]. Traditional applications of saffron range 
from treating skin or metabolic conditions (such as erysipelas and dia-
betes in traditional Iranian medicine or acne in traditional Greek med-
icine to sexual dysfunction, as saffron is believed to possess aphrodisiac 
properties [14–16]. Saffron historically makes up part of both the Unani 
Medicine, which used saffron as an antidote during periods of Amra-
z-e-Waba (a term applied to denote rather fatal epidemics) [17], and 
Persian Medicine. Of note, textual searches for compounds with poten-
tial actions against respiratory diseases have increased in light of the 
COVID-19 [18]. 

The dried stigma is the portion of the Crocus sativus saffron flower 
used for culinary and medicinal purposes [13]. Among the over 150 
chemical compounds identified in the stigma, the three main com-
pounds are crocetin esters, picrocrocin, and safranal (Fig. 1) [19–22]. 
The intense yellow color of saffron is attributed to the crocetin esters 
called crocins, which are glycosylated carotenoids. The latter vary in 
form and concentration depending on the saffron quality, and they can 
make up between 25 and 35% of total dry saffron weight [19,20]. The 
bitter taste of saffron is due to picrocrocin, a precursor of safranal, [19, 
20]. Over 40 compounds are responsible for the aroma of saffron, of 
which the major compound is safranal [19,22,23]. The concentration of 
safranal is minimal in fresh stigmas, and is generated during the 

dehydration and preservation process from picrocrocin [14,19]. 
A number of studies have investigated the effects of crocins on dis-

eases such as Alzheimer’s disease, cancer, and depression [13,16,20]. 
The digentibiosyl ester of crocetin, trans-crocin-4, was demonstrated in 
vitro to interrupt the aggregation process of β-amyloid protein, a process 
implicated in Alzheimer’s disease progression [24–26]. This crocin was 
found to alter the aggregation pathway by directly binding to the 
plaque-forming fragment of β-amyloid [24]. These findings suggested 
that crocin can affect pathogenic aggregation in Alzheimer’s disease 
directly through interaction with β-amyloid [24]. In another study 
investigating the effects of crocin on DNA damage in mice, trans-crocin-4 
was found to significantly decrease DNA damage induced by methyl 
methanesulfonate, a known DNA alkylating agent [27]. Crocin reduced 
injury in mice liver and spleen about 4.7- and 6.6-fold, respectively, as 
determined by microscopic analysis of cell nuclei [27]. Crocin was also 
examined in a randomized, controlled clinical trial of 40 multiple scle-
rosis patients with primary endpoints of reduced inflammation and DNA 
damage [28]. Levels of inflammation biomarkers, tumor necrosis 
factor-α (TNF-α) and interleukin-17, and DNA damage, measured by an 
oxidation biomarker, were significantly diminished after 4 weeks of 
treatment with crocin compared to the placebo-treated group [28]. 
These results indicate that crocin exhibits anti-inflammatory and 
anti-oxidative actions [15] with the potential to attenuate disease pro-
gression or reduce the side-effects of antineoplastic agents [13,27,29]. 

The effect of picrocrocin on DNA damage appeared to be minimal, 
though it decreased the proliferation of human adeno- and hep-
atocarcinoma cell lines [30]. Reports on the actions of the deglycosy-
lated form of picrocrocin, safranal, have been more extensive and 
highlighted its potential anticancer properties [31,32], as well as its 
effects in relieving depression, hunger, and inflammation [19,33]. 
Safranal was shown to exhibit anti-tumor activities against a neuro-
blastoma cell line by inhibiting cell proliferation and inducing apoptosis 

Fig. 1. Chemical structures of Crocin, Picrocrocin and Safranal from saffron.  
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[32]. A study using hepatocellular carcinoma cell lines demonstrated 
that safranal promotes cytotoxicity and apoptosis, through inhibition of 
DNA repair mechanisms and induction of endoplasmic reticulum stress 
[31]. These results indicate that the pro-apoptotic activity of safranal is 
mediated via up-regulation of cell-death proteins [31]. In addition to the 
anti-tumor activity attributed to safranal, anti-inflammatory properties 
have also been ascribed [33]. Using a colitis mouse model, researchers 
demonstrated that symptoms of inflammation were alleviated upon 
treatment with safranal [30]. Levels of interleukin-6 and TNF-α were 
reduced in safranal-treated mice, along with less crypt damage and 
macrophage infiltration in colon tissue compared to untreated mice 
[28]. These findings emphasize the potential of saffron-derived com-
pounds in treating a number of conditions. We briefly expand on current 
research investigating saffron and its effects on inflammation associated 
with COVID-19, following a comprehensive search and presentation of 
the pertinent literature (Supplementary File). Fig. 2 depicts the po-
tential actions of crocin, picrocrocin and safranal in COVID-19. 

3. Current evidence on saffron in COVID-19-related cytokine 
storm 

Saffron appears to be an important component of a diet with anti- 
inflammatory actions, as assessed on the basis of the dietary inflam-
matory index, alongside other ingredients such as turmeric, vitamin C, 
bromelain, and omega-3 fatty acids [11,34,35]. Of note, in addition to 
saffron, honey has been suggested as an important natural product with 
anti-inflammatory actions against COVID-19 [36]. Besides saffron, 
clove, garlic, galangal, licorice, and rhubarb in Persian Medicine, as well 
as fragrant herbs (which are used as sprays and fumigants), vinegar, and 
other compounds in Unani Medicine, have been traditionally used in 
diseases which are clinically similar to SARS-CoV-2 infection [37–40]. 

Principally, saffron’s essential oils and other constituents appear to 
exhibit both immunomodulatory and anti-asthmatic actions. Saffron has 
been considered an immune-boosting component, which may be useful 
in patients with COVID-19 and a weak immune system [41]. The 
immune-promoting action of saffron could be attributed mostly to its 
activity on Toll-like receptors, other inflammatory signaling pathways, 

increasing the levels of IgG, Th1–Th2 ratio, and less to a direct antiviral 
action on SARS-CoV-2 [41]. Nonetheless, recent in silico studies 
demonstrated that crocin-1 showed strong hydrogen bonding with the 
SARS-CoV-2 Receptor Binding Domain/ACE2 complex, implying a 
direct antiviral action of crocin-1 [42]. Moreover, based on additional in 
silico studies including molecular docking, saffron’s astragalin was 
shown to inhibit the main protease rather than the spike protein of 
SARS-CoV-2, while crocetin exhibits high affinity for the spike protein as 
well as the main protease, as well as the ability to permeate the lipid 
bilayer based on molecule dynamics simulations [18,43,44]. 

Based on the antioxidant, anti-inflammatory properties of saffron, 
and experimental evidence, some investigators have proposed that 
crocin may: a) reduce the COVID-19-related cytokine cascade, b) lead to 
the upregulation of Peroxisome proliferator-activated receptor-gamma 
(PPARγ) and downregulation of nuclear factor kappa-light-chain- 
enhancer of activated B cells (NF-κB), and c) downregulate ACE2 gene 
expression through activation of the Nf2 pathway [45]. Thus, re-
searchers have called for future clinical trials in the field [45]. 

In addition, a plausible role of saffron on reducing anxiety and 
depression, most likely through inhibition of monoaminoxidase-b, has 
been proposed [41,46]. Therefore, the potential benefits of saffron could 
hold promise during the COVID-19 pandemic, particularly in the treat-
ment of psychiatric and neurologic sequelae of the post-COVID syn-
drome [47]. 

Last, the broader importance of saffron has been re-appreciated 
during the pandemic’s parallel efforts to address other medical emer-
gencies, such as stroke, myocardial infraction, and other ischemic con-
ditions. Of note, trans-sodium crocetinate, a successor of its prodromic 
molecule, crocin, is currently tested in clinical trials for its oxygen 
diffusion enhancement capability, as well as its potential to act as 
radiosensitizer for cancer treatment [48]. 

4. Conclusion 

In summary, saffron is a promising, anti-inflammatory and anti-viral 
herbal medicine and may have an important role in the prevention of 
severe COVID-19; however, extensive studies and clinical trials are 

Fig. 2. Actions of Crocin, Picrocrocin and Safranal in COVID-19. Abbreviations: ACE-2: Angiotensin-converting enzyme 2; COVID-19: Coronavirus Disease; MD: 
Molecular Dynamics; Nf2: Neurofibromatosis Type 2 Protein; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; PPARγ: Peroxisome proliferator- 
activated receptor gamma; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2. 
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required before any use in clinical practice. We observed that saffron is 
consistently contextualized with other herbal medicine products to treat 
clinical symptoms that are similar, more or less, to those observed 
during COVID-19. Further research towards use of a combination of 
medications including saffron are needed to determine its efficacy and 
safety in treating and/or preventing COVID-19. The active saffron 
compounds present promising pharmacological agents and may serve as 
templates for the design of novel anti-viral (semisynthetic) compounds. 
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