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Abstract

Recent clinical trials raised concerns regarding the cardiovascular toxicity of selective cyclooxygenase-2 (COX-2)
inhibitors. Many active dietary factors are reported to suppress carcinogenesis by targeting COX-2. A major question
was accordingly raised: why has the lifelong use of phytochemicals that likely inhibit COX-2 presumably not been
associated with adverse cardiovascular side effects. To answer this question, we selected a library of dietary-derived
phytochemicals and evaluated their potential cardiovascular toxicity in human umbilical vein endothelial cells. Our
data indicated that the possibility of cardiovascular toxicity of these dietary phytochemicals was low. Further
mechanistic studies revealed that the actions of these phytochemicals were similar to aspirin in that they mainly
inhibited COX-1 rather than COX-2, especially at low doses.
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Introduction

Consistent clinical studies have indicated that long-term
administration of COX-2 inhibitors is associated with an
enhanced risk of experiencing adverse cardiovascular events
[1,2]. Although the exact mechanism still remains unclear,
accumulating evidence supports the idea that COX-2 plays a
cardioprotective role after cardiac injury [3-5]. Functional
recovery after induced cardiac injury was improved in COX-2
transgenic mouse, but was greatly reduced by deficiency of
COX-2. In the search to identify promising cancer
chemopreventive agents, dietary phytochemicals have
emerged as potential agents based on their observed
anticancer activities as well as perceived safety [6]. Some
mechanistic studies revealed that active dietary factors, such
as EGCG, curcumin or resveratrol, might suppress
carcinogenesis by targeting COX-2 [7-13]. One question that
has been raised is why the lifelong use of phytochemicals that
likely inhibit COX-2 has reportedly not been associated with
adverse cardiovascular side effects. We hypothesize that those
naturally occurring compounds might share a similar
mechanism of action with aspirin, and might preferentially
target COX-1 rather than COX-2. To test this idea, we selected
a library of well-known active dietary factors and evaluated

their potential cardiovascular toxicity as well as their effects on
COX activity.

Materials and Methods

Reagents and chemicals
The COX-1 (#4841) and COX-2 (#12282) antibodies were

purchased from Cell Signaling Technology (Beverley, MA). The
antibody against β-actin (SC47778) was from Santa Cruz
Biotechnology (Santa Cruz, CA). Interleukin-1 beta (IL-1β) was
from Millipore (Billerica, MA). All other chemicals were obtained
from Sigma-Aldrich (St. Louis, MO) unless otherwise specified.

Cell culture
COX-2 Wild-type (COX-2+/+) and COX-2 knockout (COX-2-/-)

mouse embryonic fibroblasts (MEFs) were kind gifts from Drs.
Jeff Reese and Sudhansu K. Dey (University of Kansas
Medical Center) [14]. The cells were derived from COX-2
knockout mice supplied by Drs. Joseph E. Dinchuk and James
M. Trzaskos (DuPont Merck Pharmaceutical Co.) [15]. The
cells were cultured in monolayers at 37 °C, 5% CO2 using
Dulbecco’s modified Eagle’s medium containing 10% FBS, 1%
penicillin/streptomycin and 2mM L-glutamine. All other cell lines
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used in this study were obtained from the American Type
Culture Collection (Manassas, VA, USA) and maintained
following their instructions. Cells were cytogenetically tested
and authenticated before the cells were frozen. The passage
number was routinely limited to approximately 20 and
morphology monitored with each passage.

Cell viability assay
Cells were seeded in 96-well-plate at a density of 5000 cells

per well and allowed to incubate at 37 °C for 24 h for
attachment. After drug treatment for 8 h, 20 µL CellTiter96
Aqueous One Solution (Invitrogen, Carlsbad, CA) were added,
and cells were further incubated for 1 h at 37 °C. Finally, the
optical density was determined at 492 nm.

Measurement of NO
HUVEC cells (6×105) were seeded in a six-well plate in the

presence of 10% FBS. At 70-80% confluence, cells were
pretreated with vehicle or individual compounds in 1 mL fresh
medium for 2 h. After that, cells were incubated or not with
IL-1β (17.5 ng/mL) for another 8 h. Supernatant fractions were
collected for measurement of nitric oxide (NO). NO
concentration was measured as nitrite using the Nitrate/Nitrite
colorimetric assay kit (Cayman Chemicals, Ann Arbor, MI).

In vitro COX enzyme assay
COX activity was evaluated using a COX Inhibitor Screening

Kit from Cayman Chemical Company (Ann Arbor, MI)
according to the manufacturer’s instructions.

Thromboxane B2 (TXB2) and 6-keto prostaglandin F1α (6-
keto PGF1α) assay

Cells (6×105) were seeded in a six-well plate in the presence
of 10% FBS. At 70-80% confluence, cells were pretreated with
vehicle or individual compounds in 1 mL fresh medium for 2 h.
After that, cells were or were not incubated with IL-1β (17.5
ng/mL) for another 8 h. Supernatant fractions were collected for
prostaglandin measurement using enzyme immunoassay kits
(Cayman Chemical Company).

Western blot analysis
Protein samples (20 µg) were resolved by SDS-PAGE and

transferred to Hybond C nitrocellulose membranes (Amersham
Corporation, Arlington Heights, IL). After blocking, the
membranes were probed with primary antibodies (1:1000)
overnight at 4 °C. The targeted protein bands were visualized
using an enhanced chemiluminescence reagent (Amersham
Corporation) after hybridization with a secondary antibody
conjugated with horseradish peroxidase.

Statistical analysis
All experiments were performed at least three times

independently. Statistical analysis was performed using the
Prism statistical package. Turkey’s t-test was used to compare
data between two groups. One-way ANOVA and the Bonferroni
correction were used to compare data between three or more

groups. Values are expressed as means ± S.E.M. and a p <
0.05 was considered statistically significant.

Results

Evaluation of potential cardiovascular toxicity
The imbalance between COX-1-derived pro-thrombotic

thromboxane A2 (TXA2) and COX-2-relateded anti-thrombotic
prostacyclin (PGI2) production has long been suspected to
contribute to cardiovascular side effects of COX-2 inhibitors
[16,17]. COX-2-/- mice are more prone to cardiovascular risk
than wild type mice, evidenced by increased cardiac ischemia
and/or reperfusion injury [18]. Therfore, we firstly examined this
idea in wildtype (COX2+/+) or knockout (COX-/-) mouse
embryonic fibroblasts (MEFs, Figure 1A). COX-2 deficiency
enhanced the ratio of thromboxane B2 (TXB2, the stable
breakdown product of TXA2) to 6-keto prostaglandin F1α (6-keto
PGF1α, the hydrolysis product of PGI2) by 22-fold. We further
tested such hypothesis in an in vitro model using human
umbilical vein endothelial cells (HUVECs). Again, the ratio of
TXB2/6-keto-PGF1α was dramatically increased by the selective
COX-2 inhibitor celecoxib, but not by aspirin, which is known to
target COX-1 rather than COX-2 (Figure 1B). All of these
findings support the reliability of the ratio of thromboxane B2 to
6-keto prostaglandin F1α as a biomarker for COX-2 inhibition-
related cardiovascular toxicity.

The potential cardiovascular toxicity of dietary
phytochemicals was then evaluated in this in vitro model.
Considering their clinically achievable serum concentrations, all
dietary factors were administrated at 3 µM [19-27]. Compared
with celecoxib, all of dietary factors only weakly disturbed the
ratio of TXB2/6-keto-PGF1α (Figure 2).

Considering the fact that people usually take selective
COX-2 inhibitors to relieve pain and reduce inflammation,
HUVECs were treated with IL-1β, an inflammatory cytokine
implicated in vascular diseases, to mimic pro-inflammatory
conditions. Stimulation of cells with IL-1β resulted in a
remarkable increase in COX-2 expression as well as 6-keto-
PGF1α synthesis. Similar to physiological conditions, the ratio
of TXB2/6-keto-PGF1α was significantly enhanced by celecoxib,
whereas was only weakly affected by aspirin as well as by
dietary factors (Figure 3).

In addition to COX-2-related PGI2, endothelial-derived nitric
oxide (NO) also acted as an endogenous vasodilator and
protected the blood vessel wall by inhibiting platelet
aggregation. In this study, we observed that IL-1β treatment
caused a 2.6 fold increase in NO production compared with the
control group. More importantly, most dietary phytochemicals
had no effect on NO release (Figure 4A). We also excluded
generalized cytotoxicity by examining the effects of dietary
phytochemicals on cell viability and found that they had little
effect on HUVEC cell viability after 8 hours of treatment (Figure
4B). Taken together, these findings suggested that the possible
cardiovascular toxicity of dietary phytochemicals is low.

Dietary Phytochemicals Inhibit COX1 not COX2
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Figure 1.  Effect of COX-2 inactivation on TXB2 and 6-keto-PGF1α in murine embryo fibroblasts.  A. COX-2 deficiency
enhanced the ratio of thromboxane B2 to 6-keto prostaglandin F1α. Western blot analysis of murine embryo fibroblasts (MEFs). Cells
(6×105) were seeded in a six-well plate in the presence of 10% FBS. When cell reached 70-80% confluence, fresh culture medium
(1 mL/well) was added. After further incubation for 24 h, supernatant fractions were collected for prostaglandin measurement. Data
are presented as means ± S.E.M (n = 4) and the asterisk(s) indicate a significant (*, p < 0.05; ***, p < 0.001) difference versus the
COX-2 wildtype group. B. COX-2 inhibition enhanced the ratio of thromboxane B2 to 6-keto prostaglandin F1α. Human umbilical vein
endothelial cells (HUVECs) were seeded in a six-well plate in the presence of 10% FBS. At 70-80% confluence, cells were
pretreated with 1 mL fresh medium containing DMSO or each individual compound for 2 h, and then IL-1β (17.5 ng/mL) was added
together with each individual compound for another 8 h incubation. Supernatant fractions were collected for prostaglandin
measurement. Data are presented as means ± S.E.M. (n = 4) and the asterisk(s) indicate a significant (*, p < 0.05; **, p < 0.01; ***,
p < 0.001) difference versus Control.
doi: 10.1371/journal.pone.0076452.g001

Dietary Phytochemicals Inhibit COX1 not COX2
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Figure 2.  Effects of dietary phytochemicals on (A) TXB2 and (B) 6-keto-PGF1α under physiological conditions.  HUVECs
were seeded in a six-well-plate (6×105 cells per well). At 70-80% confluence, 1 mL fresh medium containing DMSO or 3 µM of each
individual compound was added and cells were further incubated for 8 h. Supernatant fractions were collected for prostaglandin
measurement. (C) The ratio of TXB2/6-keto-PGF1α. Data are presented as means ± S.E.M (n = 4) and the asterisk(s) indicate a
significant (*, p < 0.05; ***, p < 0.001) difference versus the vehicle control group.
doi: 10.1371/journal.pone.0076452.g002

Dietary Phytochemicals Inhibit COX1 not COX2
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Figure 3.  Effects of dietary phytochemicals on (A) TXB2 and (B) 6-keto-PGF1α under pro-inflammatory
conditions.  HUVECs were seeded in a six-well-plate (6×105 cells per well). At 70-80% confluence, cells were pretreated with 1 mL
fresh medium containing DMSO or 3 µM of each individual compound for 2 h and then IL-1β (17.5 ng/mL) was added together with
each individual compound for another 8 h incubation. Supernatant fractions were collected for prostaglandin measurement. (C) The
ratio of TXB2/6-keto-PGF1α. Data are presented as means ± S.E.M. (n = 4) and the asterisk(s) indicate a significant (*, p < 0.05; **, p
< 0.01; ***, p < 0.001) difference versus Group 1 (IL-1β).
doi: 10.1371/journal.pone.0076452.g003

Dietary Phytochemicals Inhibit COX1 not COX2
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Figure 4.  Effects of dietary phytochemicals on (A) nitric oxide (NO) production and (B) cell viability.  NO concentration was
measured as nitrite using the Nitrate/Nitrite colorimetric assay kit as described in “Materials and Methods”. Data are presented as
means ± S.E.M. (n = 3) and the asterisk(s) indicate a significant (**, p < 0.01) difference versus IL-1β group. Cell viability was tested
as described in “Materials and Methods”. Data are presented as means ± S.E.M. (n = 3) and the asterisk(s) indicate a significant (*,
p < 0.05; **, p < 0.01; ***, p < 0.001) difference versus control (DMSO).
doi: 10.1371/journal.pone.0076452.g004

Dietary Phytochemicals Inhibit COX1 not COX2
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Determination of the effect of phytochemicals on COX
activity in vitro

The differential effects between dietary factors and celecoxib
on cardiovascular toxicity biomarkers indicated that these
dietary phytochemicals might not be specific COX-2 inhibitors.
Accordingly, we determined their effect on COXs activity using
a COX inhibitor screening assay kit. Results clearly indicated
that most of the compounds are COX-1 inhibitors with a mild to
moderate COX-1 selectivity index (Table 1). Among eight
dietary phytochemicals, six selectively inhibited COX-1 activity
rather than COX-2. Another two flavonols (naringenin and
quercetin) are likely not COX1/2 inhibitors because their 50%
inhibitory concentrations (IC50) against COX1/2 activity was
higher than 400 µM.

Discussion

In this study, the cardiovascular safety of selected dietary
factors was systemically evaluated for the first time. Our data
indicated that the possible cardiovascular toxicity of dietary
phytochemicals was low because the compounds tested might
share a mechanism of action similar to aspirin and most
appeared to preferentially target COX-1 rather than COX-2.

Table 1. Inhibition of COX activity by dietary
phytochemicals.

Compound Natural Source COX-1 IC50 (µM) COX-2 IC50 (µM)
Celecoxib  95.4±12.7 0.02±0.009
Aspirin White willow 4.7±1.2 18.1±4.3
Apigenin Celery 94.1±12.3 146.4±16.5
Curcumin Curry 330.1±34.3 NA
Genistein Soybean 9.9±2.3 256.2±35.7
EGCG Green tea 17.9±4.2 28.6±3.8
Kaempferol Broccoli 110.6±7.5 235.8±19.7
Naringenin Orange NA NA
Quercetin Black tea NA NA
Resveratrol Grape 3.4±1.1 8.5±2.3

The effect of selected dietary factors on COX activity was evaluated using a COX
Inhibitor Screening Kit (Cayman Chemical) according to the manufacturer’s
instructions. IC50 values were calculated from a plot of percent inhibition versus
the logarithm of concentration. Data are presented as means ± S.E.M. of 3
independent experiments.
doi: 10.1371/journal.pone.0076452.t001

During the course of this study, EGCG, an active ingredient
in green tea, exhibited an unexpected cardioprotective property
and might merit further investigation. Among dietary factors
studied, EGCG exhibited the most potent inhibitory effect
against the ratio of TXB2/6-keto-PGF1α either under
physiological or pathological conditions. This finding was
consistent with several recent epidemiologic studies, which
suggested regular consumption of green tea might provide
cardioprotective effects [28,29]. This unanticipated finding
provides critical insight into the potential application of green
tea for cardioprotection.

Aspirin at low dose (81 mg per day) is widely accepted to be
able to provide both cardioprotective and chemopreventive
effects [17,23,30]. However, pharmacokinetic data analysis
revealed that at this dose, aspirin might mainly targets COX-1
rather than COX-2, because the maximal serum concentration
achieved was well below the reported whole blood COX-2 IC50

values [31,32]. In this study, we confirmed that most natural
product-based compounds were COX-1, rather than COX-2
selective inhibitors. This raised the question of whether those
natural occurring compounds exert their chemopreventive
activity, at least in part, by targeting COX-1. Although no
conclusion can be drawn due to insufficient data at this time,
accumulating evidence suggests that COX-1 is involved in
carcinogenesis [33-36]. For example, overexpression of COX-1
leads to tumorigenic transformation, whereas genetic disruption
of ptgs-1 greatly reduced cancer incidence both in skin and
colon. Although COX-1 is now becoming a target to be
reconsidered for cancer prevention or treatment, selective
COX-1 inhibition is still a controversial issue. For example,
inhibition COX-1 has been strongly implicated in the gastric
ulceration and bleeding induced by non-steroidal anti-
inflammatory drugs (NSAIDs) because people believe that
COX-1 is responsible for the prostaglandins essential for
normal mucosal physiology in gut. As no gastrointestinal
toxicity data were collected in this study, whether these
phytochemicals cause gastrointestinal bleeding is still unknown
and further study in these areas is required.
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