
RESEARCH ARTICLE

SeqRepo: A system for managing local

collections of biological sequences

Reece K. HartID
1*, Andreas PrlićID

2

1 Biocommons, San Francisco, CA, United States of America, 2 Invitae, Inc., San Francisco, CA, United

States of America

* reece@biocommons.org

Abstract

Motivation

Access to biological sequence data, such as genome, transcript, or protein sequence, is at

the core of many bioinformatics analysis workflows. The National Center for Biotechnology

Information (NCBI), Ensembl, and other sequence database maintainers provide methods

to access sequences through network connections. For many users, the convenience and

currency of remotely managed data are compelling, and the network latency is non-conse-

quential. However, for high-throughput and clinical applications, local sequence collections

are essential for performance, stability, privacy, and reproducibility.

Results

Here we describe SeqRepo, a novel system for building a local, high-performance, non-

redundant collection of biological sequences. SeqRepo enables clients to use primary data-

base identifiers and several digests to identify sequences and sequence alises. SeqRepo

provides a native Python interface and a REST interface, which can run locally and enables

access from other programming languages. SeqRepo also provides an alternative REST

interface based on the GA4GH refget protocol.

SeqRepo provides fast random access to sequence slices. We provide results that dem-

onstrate that a local SeqRepo sequence collection yields significant performance benefits of

up to 1300-fold over remote sequence collections. In our use case for a variant validation

and normalization pipeline, SeqRepo improved throughput 50-fold relative to use with

remote sequences. SeqRepo may be used with any species or sequence type. Regular

snapshots of Human sequence collections are available.

It is often convenient or necessary to use a computed digest as a sequence identifier. For

example, a digest-based identifier may be used to refer to proprietary reference genomes or

segments of a graph genome, for which conventional identifiers will not be available. Here

we also introduce a convention for the application of the SHA-512 hashing algorithm with

Base64 encoding to generate URL-safe identifiers. This convention, sha512t24u, combines

a fast digest mechanism with a space-efficient representation that can be used for any

object. Our report includes an analysis of timing and collision probabilities for sha512t24u.

SeqRepo enables clients to use sha512t24u as identifiers, thereby seamlessly integrating

public and private sequence sets.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0239883 December 3, 2020 1 / 8

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Hart RK, Prlić A (2020) SeqRepo: A

system for managing local collections of biological

sequences. PLoS ONE 15(12): e0239883. https://

doi.org/10.1371/journal.pone.0239883

Editor: Ruslan Kalendar, University of Helsinki,

FINLAND

Received: September 13, 2020

Accepted: November 13, 2020

Published: December 3, 2020

Copyright: © 2020 Hart, Prlić. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Source code,

including code used to generate manuscript

figures, is available at https://github.com/

biocommons/biocommons.seqrepo.

Funding: Invitae, Inc. supported both authors in

developing SeqRepo. The funder provided support

in the form of salaries for authors [RKH, AP], but

did not have any additional role in the study design,

data collection and analysis, decision to publish, or

preparation of the manuscript. The specific roles of

these authors are articulated in the ‘author

contributions’ section.

https://orcid.org/0000-0003-3463-0775
https://orcid.org/0000-0001-6346-6391
https://doi.org/10.1371/journal.pone.0239883
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239883&domain=pdf&date_stamp=2020-12-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239883&domain=pdf&date_stamp=2020-12-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239883&domain=pdf&date_stamp=2020-12-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239883&domain=pdf&date_stamp=2020-12-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239883&domain=pdf&date_stamp=2020-12-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239883&domain=pdf&date_stamp=2020-12-03
https://doi.org/10.1371/journal.pone.0239883
https://doi.org/10.1371/journal.pone.0239883
http://creativecommons.org/licenses/by/4.0/
https://github.com/biocommons/biocommons.seqrepo
https://github.com/biocommons/biocommons.seqrepo


Availability

SeqRepo is released under the Apache License 2.0 and is available on github and PyPi.

Docker images and database snapshots are also available. See https://github.com/

biocommons/biocommons.seqrepo.

Introduction

Many bioinformatics analysis pipelines require access to biological sequence data. One exam-

ple is genetic variation data, which requires access to all sequences that are used as references

in order to validate sequence bounds and to normalize variants [1,2].

A typical whole genome sequencing sample has between 3.5 and 12 million variants [3].

Variant analysis pipelines for data of such volume need fast, random access to an assortment

of genome, transcript, and protein sequences. While network-accessible databases [4,5] are

convenient, the latency is prohibitive for this high-throughput setting. Furthermore, depen-

dencies on remote services create risks for privacy, reproducibility, and overall system avail-

ability. These were the problems for which we developed SeqRepo in 2016 as a component for

the hgvs Python package [6]. Using SeqRepo increases validation and variant projection

throughput by nearly 50-fold relative to remote sequence access. We are unaware of tools simi-

lar to SeqRepo that enable the management and efficient distribution of sequence collections.

Sequence databases are often highly redundant within and between data providers. Dedu-

plication of sequence datasets may be efficiently achieved using a digest or hash algorithm,

such as SEGUID for protein sequences [7]. Here, we propose an approach that uses a variation

of the SHA-512 hashing algorithm [8] with Base64 encoding [9] to generate URL-safe identifi-

ers. The sha512t24u convention is a conceptual successor to SEGUID, but is computed

approximately twice as fast on 64-bit processors and may be used in URLs without encoding.

(SEGUID uses characters that are reserved for URL delimiters.) The GA4GH Variation Repre-

sentation Specification [10] and the GA4GH refget protocol [11] have adopted the sha512t24u

convention to generate computed object identifiers.

SeqRepo, presented here, provides these features:

1. Deduplication and compression of sequences;

2. Fast random access to sequences and sub-sequences;

3. Space-efficient storage and transfers of snapshots;

4. Ability to use of conventional, primary database identifiers and digest-based identifiers;

5. Publicly accessible snapshots of Human sequences;

6. Privacy and availability benefits appropriate for use in clinical settings.

Implementation

The sha512t24u digest

We sought a digest and encoding that is based on existing standards, that may be implemented

in prevalent programming languages, and may be readily used in URLs. Our method, dubbed

sha512t24u, constructs a SHA-512 binary digest, truncated to 24 bytes (192 bits), and repre-

sented using "base64url" encoding. Fig 1 shows an implementation in Python; sha512t24u has

also been implemented in Go, Java, javascript, and Perl.

PLOS ONE SeqRepo local sequence collections

PLOS ONE | https://doi.org/10.1371/journal.pone.0239883 December 3, 2020 2 / 8

Competing interests: Invitae, Inc. supported both

authors in developing SeqRepo. This does not alter

our adherence to PLOS ONE policies on sharing

data and materials.

https://github.com/biocommons/biocommons.seqrepo
https://github.com/biocommons/biocommons.seqrepo
https://doi.org/10.1371/journal.pone.0239883


SeqRepo library

SeqRepo consists of two components: a module, fastadir, that stores sequences non-redun-

dantly using an internal key, and a second module, seqaliasdb, that stores identifiers associated

with the internal key. SeqRepo is written in Python 3.

Sequence module: Fastadir. Sequences are stored in FASTA-formatted files and index

using Blocked GZipped Format (BGZF) [12]. Fast random access to BGZF files is provided by

the PySAM library [13].

When loading a sequence into SeqRepo, an internal sequence identifier is generated based

on the sha512t24u convention. If the sequence does not already exist, it is written in a FASTA

file with a timestamped filename using the internal sequence identifier as the FASTA identi-

fier. A sequence manifest database, implemented in SQLite, stores sequence length, alphabet,

and the path to the BGZF file that contains the sequence. Sequences in SeqRepo are immutable

and not deletable; therefore, sequence files never change and exist in all future SeqRepo snap-

shots. New releases require only the space for new sequences and manifest db.

Alias module: Seqaliasdb. Once a new or existing sequence is confirmed in the sequence

database, SeqRepo loads identifiers for the sequence as provided by the client. Identifiers are

stored in a second SQLite database as<namespace, alias> pairs and are associated with the

internal sequence identifier.

Namespaces from identifiers.org are used when available. Aliases are required to be unique

within a namespace. If an<namespace, alias> pair already exists, SeqRepo verifies that the

associated sequence identifier matches the sequence being loaded; if it does not, the older asso-

ciation is deprecated in the database and a new association is made. Identifier associations are

timestamped, making it possible to see the naming history of any sequences.

For new sequences, SeqRepo generates a set of computed identifiers using computational

digests and loads these as with conventional identifiers. Currently, these digests are

sha512t24u, MD5, SEGUID, and SHA-1.

Snapshots

Snapshots are created using hard links in the file system. Therefore, new snapshots consume

only the space required for the incremental BGZF and database files. Similarly, transfers with

rsync transfer only the incremental changes.

Interfaces

SeqRepo includes two interfaces: the native Python interface, and a read-only REST-based

interface to be used for local access by programs written in other languages. The SeqRepo

package also implements the GA4GH refget protocol to support clients that require that inter-

face. The refget implementation passes the compliance suite provided by the authors. Table 1

summarizes operations supported by these three interfaces.

Fig 1. The sha512t24u digest in Python.

https://doi.org/10.1371/journal.pone.0239883.g001

PLOS ONE SeqRepo local sequence collections

PLOS ONE | https://doi.org/10.1371/journal.pone.0239883 December 3, 2020 3 / 8

http://identifiers.org
https://doi.org/10.1371/journal.pone.0239883.g001
https://doi.org/10.1371/journal.pone.0239883


SeqRepo interfaces represent identifiers as W3C Compact URIs (CURIEs), mapping

<namespace,alias> to the<prefix, reference> nomenclature; the converse operation is also

supported when CURIE-formatted identifiers are provided as sequence identifiers.

Installation scenarios

SeqRepo supports four installation scenarios:

1. A read-write instance, loaded and maintained locally with the seqrepo command line

interface.

2. A read-only instance of the human collection, mirrored and updated using the seqrepo

command line tool.

3. A docker data-only container for linking with other application containers. This approach

is useful to share a single data container with multiple docker applications.

4. SeqRepo and refget REST interfaces, also available as a docker image.

Detailed instructions for each of these options are available at the GitHub repository

(https://github.com/biocommons/biocommons.seqrepo).

Results

sha512t24 timing and statistical analysis

Members of the SHA-1, SHA-2, and MD5 family of digests were compared for timing. Because

SHA-512 is specified in terms of 64-bit operations, the increased complexity of this algorithm

is offset by the ability to process data twice as fast as with 32-bit operations specified by shorter

digest algorithms. SHA-512 provides 512 bits of digest, which is far more than required for

even extremely large sets of messages. Because this digest will be used as a key and transmitted

widely, a practical tradeoff between key size and collision probability is desirable. Base64

results in encodings that are ceil(4/3) of the size of the input message; therefore, the truncation

length should be modulo 3 for efficiency. The probability of collision was evaluated for a series

of modulo-3 truncation lengths, and 24 bytes was chosen as a compromise between number of

expected messages (sequences) and collision probability. For example, in a corpus of 10e+18

sequences, a key size of 24 bytes is expected to result in a collision probability of<1e-21. See

Table 1. Summary of operations provided by the Python interface, REST interface, and refget protocol interface.

Python interface SeqRepo REST interface refget protocol

get service

information

N/A /v1/ping /sequence/service-info

put sequence store(seq, identifiers[]) N/A N/A

get sequence fetch(ir, [start], [end]) sr[ir][start:

end]

/v1/sequence/:ir ("start" and "end" query parameters

optional)

/sequence/:digest ("start" and "end" query

parameters optional)

put aliases store(seq, identifiers[]) N/A N/A

get metadata translate_identifier(ir) /v1/metadata/:ir /sequence/:digest/metadata

All interfaces support rapid access to slices of chromosome-sized sequences. The SeqRepo provides two mechanisms to fetch sequence slices: A fetch() method, and a

dict-style access that permits a SeqRepo instance to be accessed as a Python dictionary. The SeqRepo REST interface and refget protocol are read-only interfaces. "ir"

denotes an identifier of the form namespace:alias; an alias may be used without namespace if it is globally unique. The refget protocol itself currently requires the use of

digests for queries.

https://doi.org/10.1371/journal.pone.0239883.t001

PLOS ONE SeqRepo local sequence collections

PLOS ONE | https://doi.org/10.1371/journal.pone.0239883 December 3, 2020 4 / 8

https://github.com/biocommons/biocommons.seqrepo
https://doi.org/10.1371/journal.pone.0239883.t001
https://doi.org/10.1371/journal.pone.0239883


S1 Code for details on the timing and statistical analyses. Note that the truncated digest used

here is not the same as the truncated digest proposed in the SHA-2 family of algorithms; in

particular, we use the SHA-512 initialization vector in order to enable prefix abbreviations for

larger digests.

Human SeqRepo collections

SeqRepo may be used for sequences of any type from any species. The current Human releases

(available on https://dl.biocmmons.org/) consume approximately 12 GB on disk (with

indexes) and consist of over 925,000 unique sequences from NCBI35, NCBI36, GRCh37 (with

patches), GRCh38 (with patches), JRGv1, JRGv2, RefSeq (NM, NP, XM, XP, NG), and

Ensembl (ENST, ENSP). The differential size between snapshots is approximately 1 GB, and is

easily incrementally updated using the seqrepo command line interface. The command line

interface enables users to easily import fasta files into custom sequence collections.

SeqRepo Python interface

SeqRepo provides a facile interface for accessing sequences, demonstrated in Fig 2.

Fig 2. Examples of the native Python interface. SeqRepo retrieves sequences and metadata using conventional identifiers (i.e., from NCBI, Ensembl, GRCh,

LRG, and other sources) and from digest identifiers (i.e., sha512t24u, ga4gh, md5, SEGUID). Identifiers are namespaced, and generally written as

"<namespace>:<alias>". Aliases are always unique within a namespace. See the SeqRepo repository for installation instructions and S2 Code for example

details.

https://doi.org/10.1371/journal.pone.0239883.g002

PLOS ONE SeqRepo local sequence collections

PLOS ONE | https://doi.org/10.1371/journal.pone.0239883 December 3, 2020 5 / 8

https://dl.biocmmons.org/
https://doi.org/10.1371/journal.pone.0239883.g002
https://doi.org/10.1371/journal.pone.0239883


SeqRepo REST API

SeqRepo also provides a REST API to access sequence slices and metadata from any language

while preserving the performance advantages of local sequence collections. An example of

using the REST interface from a Linux command line is shown in Fig 3.

Timing comparison with NCBI E-utilities and ENA refget

Data serialization/deserialization and network latency can incur significant performance pen-

alties on high-throughput systems. In order to quantify these factors in the context of sequence

retrieval, we measured elapsed time for fetching 1,000 random sequence slices of 1–30 nucleo-

tides from all chromosomes of GRCh38 using NCBI E-utilities [4], the European Nucleotide

Archive implementation of refget, and SeqRepo. Results are showing in Table 2.

Fig 3. Examples of the SeqRepo REST API. See the SeqRepo repository for installation instructions and S2 Code for example details.

https://doi.org/10.1371/journal.pone.0239883.g003

Table 2. Timing results for remote and local sequence sources.

NCBI E-Utilities ENA refget SeqRepo Python API SeqRepo REST API

elapsed time (s) 892 245 0.663 1.16

throughput (slices/s) 1.12 4.08 1508 858

relative throughput �1 3.64 1346 766

Timings are for 1,000 sequence lookups from 1) NCBI nucleotide sequences using the E-utilities interface, 2) European Nucleotide Archive using the refget protocol, 3)

Local SeqRepo using the native Python interface, 4) Local SeqRepo interface using a SeqRepo REST API. Local SeqRepo access offers the best performance; using the

SeqRepo REST API adds overhead, but enables access from other programming languages. Details are provided in S3 Code.

https://doi.org/10.1371/journal.pone.0239883.t002

PLOS ONE SeqRepo local sequence collections

PLOS ONE | https://doi.org/10.1371/journal.pone.0239883 December 3, 2020 6 / 8

https://doi.org/10.1371/journal.pone.0239883.g003
https://doi.org/10.1371/journal.pone.0239883.t002
https://doi.org/10.1371/journal.pone.0239883


SeqRepo tests were performed on a modern laptop with a solid-state disk. NCBI E-utilities

and ENA refget tests were performed on a AWS c4.large instance in us-east. Given the magni-

tudes of the differences between the methods, we did not seek higher precision timings. See

Supplementary Information for methods and timing data.

NCBI imposes rate limiting of 3 queries per second without an API key, or 10 queries per

second with an API key, which we used. It was also necessary to implement rate limiting and

retry logic in order to successfully retrieve all sequences. A genomic slice can be retrieved in

one query, resulting in a theoretical maximum throughput of 10 sequence slices/second.

Server-side rate limiting also defeats client-side parallelism.

As can be expected, there is a significant difference in overall throughput between the dif-

ferent approaches of accessing sequence data. The comparison presented here is intended to

inform system architecture decisions. In particular for high-performance applications, local

access is recommended. We are currently investigating further optimization with in-memory

caching.

Conclusion

SeqRepo permits the use of conventional identifiers and digests for accessing and retrieving

sequences. It is not necessary to adopt digest-based identifiers when using SeqRepo. This dif-

ference makes it possible to easily translate between conventional identifiers and digest identi-

fiers. Furthermore, a locally-maintained SeqRepo instance enables pipelines to transparently

mix public and custom sequences, such as masked sequences or alternative assemblies for vari-

ant calling.

Since its release in 2016, we have released 19 snapshots and improved namespace support

for the GA4GH Variation Representation Specification. While refget and SeqRep can translate

from GA4GH sequence identifiers to conventional aliases, SeqRepo is currently the only ser-

vice that can translate from conventional identifiers to GA4GH sequence identifiers. This ser-

vice is essential for translating variation to GA4GH standards.

Circular sequences are not directly supported by SeqRepo. However, such sequences may

be stored in a linear form. We anticipate adding support for circular sequences in the future.

SeqRepo currently implements only the BGZF backend described here. However, generalizing

the interface to REDIS, AWS Aurora, or AWS S3 (as used by refget) would be straightforward

and is under consideration.

Deciding between remote and local sequence services requires considerations of runtime

performance, maintenance effort, data currency requirements, data privacy, and overall system

availability. We demonstrated a 600-fold performance improvement for using local sequence

storage rather than remote services. Although the relative performance benefit of using local

sequences is unsurprising, the magnitude of the difference provides guidance regarding this

important choice when designing an analysis pipeline, particularly if high-throughput is

desired. SeqRepo significantly lessens the effort required to maintain a local sequence reposi-

tory and provides significant performance benefits over remote sequence lookup services.

Supporting information

S1 Code. SHA-512 timing and collision analysis (jupyter notebook).

(PDF)

S2 Code. API examples (jupyter notebook).

(PDF)

PLOS ONE SeqRepo local sequence collections

PLOS ONE | https://doi.org/10.1371/journal.pone.0239883 December 3, 2020 7 / 8

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0239883.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0239883.s002
https://doi.org/10.1371/journal.pone.0239883


S3 Code. Timing comparisons (jupyter notebook).

(PDF)

Author Contributions

Conceptualization: Reece K. Hart.

Data curation: Andreas Prlić.

Formal analysis: Reece K. Hart.

Investigation: Reece K. Hart.

Methodology: Reece K. Hart.

Project administration: Reece K. Hart.

Resources: Andreas Prlić.

Software: Reece K. Hart.

Validation: Reece K. Hart.

Writing – original draft: Reece K. Hart.

Writing – review & editing: Reece K. Hart, Andreas Prlić.

References
1. den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, et al. HGVS

Recommendations for the Description of Sequence Variants: 2016 Update. Hum Mutat. 2016. https://

doi.org/10.1002/humu.22981 PMID: 26931183

2. Tan A, Abecasis GR, Kang HM. Unified representation of genetic variants. Bioinformatics. 2015; 31:

2202–2204. https://doi.org/10.1093/bioinformatics/btv112 PMID: 25701572

3. Hwang K-B, Lee I-H, Li H, Won D-G, Hernandez-Ferrer C, Negron JA, et al. Comparative analysis of

whole-genome sequencing pipelines to minimize false negative findings. Sci Rep. 2019; 9: 3219.

https://doi.org/10.1038/s41598-019-39108-2 PMID: 30824715

4. Sayers E. A General Introduction to the E-utilities. Entrez Programming Utilities Help [Internet]

Bethesda (MD): National Center for Biotechnology Information (US). 2010.

5. Ruffier M, Kähäri A, Komorowska M, Keenan S, Laird M, Longden I, et al. Ensembl core software

resources: storage and programmatic access for DNA sequence and genome annotation. Database.

2017; 2017. https://doi.org/10.1093/database/bax020 PMID: 28365736

6. Wang M, Callenberg KM, Dalgleish R, Fedtsov A, Fox N, Freeman PJ, et al. hgvs: A Python package

for manipulating sequence variants using HGVS nomenclature: 2018 Update. Hum Mutat. 2018. https://

doi.org/10.1002/humu.23615 PMID: 30129167

7. Babnigg G, Giometti CS. A database of unique protein sequence identifiers for proteome studies. Prote-

omics. 2006; 6: 4514–4522. https://doi.org/10.1002/pmic.200600032 PMID: 16858731

8. National Institute of Standards and Technology. Secure Hash Standard (SHS). Gaithersburg, MD

20899–8900: U.S. Department of Commerce; 2015 Aug. Available: https://nvlpubs.nist.gov/nistpubs/

FIPS/NIST.FIPS.180-4.pdf.

9. Josefsson S, et al. The base16, base32, and base64 data encodings. RFC 4648, October; 2006. Avail-

able: https://tools.ietf.org/html/rfc4648.

10. Babb L, Wagner AH, Schuilenburg H, Cline M, Riehle K, Lee J, et al. ga4gh/vr-spec: 1.1. Zenodo; 2020.

https://doi.org/10.5281/ZENODO.3344568

11. GA4GH. Refget protocol. 2019 Jul. Available: http://samtools.github.io/hts-specs/refget.html.

12. Li H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics. 2011;

27: 718–719. https://doi.org/10.1093/bioinformatics/btq671 PMID: 21208982

13. PySAM Developers. PySAM GitHub repository. GitHub; Available: https://github.com/pysam-

developers/pysam.

PLOS ONE SeqRepo local sequence collections

PLOS ONE | https://doi.org/10.1371/journal.pone.0239883 December 3, 2020 8 / 8

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0239883.s003
https://doi.org/10.1002/humu.22981
https://doi.org/10.1002/humu.22981
http://www.ncbi.nlm.nih.gov/pubmed/26931183
https://doi.org/10.1093/bioinformatics/btv112
http://www.ncbi.nlm.nih.gov/pubmed/25701572
https://doi.org/10.1038/s41598-019-39108-2
http://www.ncbi.nlm.nih.gov/pubmed/30824715
https://doi.org/10.1093/database/bax020
http://www.ncbi.nlm.nih.gov/pubmed/28365736
https://doi.org/10.1002/humu.23615
https://doi.org/10.1002/humu.23615
http://www.ncbi.nlm.nih.gov/pubmed/30129167
https://doi.org/10.1002/pmic.200600032
http://www.ncbi.nlm.nih.gov/pubmed/16858731
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://tools.ietf.org/html/rfc4648
https://doi.org/10.5281/ZENODO.3344568
http://samtools.github.io/hts-specs/refget.html
https://doi.org/10.1093/bioinformatics/btq671
http://www.ncbi.nlm.nih.gov/pubmed/21208982
https://github.com/pysam-developers/pysam
https://github.com/pysam-developers/pysam
https://doi.org/10.1371/journal.pone.0239883

