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SUMMARY

The integrated energy station of new energy vehicle hydrogenation/charging/power exchange is pro-
posed, which also includes hydrogen production, hydrogen storage, electricity sales to users and the
grid (WPIES). To address the efficiency of renewable energy use, this paper proposes a future value
competition strategy for wind and photovoltaic (PV) allocation based on goal optimization (FVCS). In or-
der to better realize the distribution of wind power/PV in the integrated energy station and improve the
energy utilization efficiency of the integrated energy station, a two-layer optimization model of FVCS-
WPIES is proposed, in which the upper layer model aims to maximize the expected income. The goals
of the lower-level model are to maximize total profit, minimize battery losses, and minimize pollutant
emissions. The model also considers the hydrogen power constraint and the upper-level model penalty.
The comparison results show that the Pareto solution set is superior to the traditional model.

INTRODUCTION

With the increasing concern for environmental protection and energy security, how to improve energy efficiency and reduce pollution emis-

sions has become the focus of global attention. In this background, the rapid increase in electric vehicle (EV) ownership and the change in

energy supply structure have led the traditional gas station convert to an energy site that integrates renewable energy technologies. At

the same time, wind and photovoltaic (PV) power generation widely applied in integrated energy station system design. The reason is

that wind and PV and energy storage complementary technology can further improve operational efficiency and effectiveness of the inte-

grated energy stations. Therefore, optimization methodology is the key to resolve these problems related to integrated energy station

optimal scheduling and the wind and PV allocation in this research field.

Optimal scheduling of energy systems for integrated energy stations with EVs, Yuanzheng Li1 developed a multi-objective optimization

scheduling-based model for EV battery swapping stations (BSS) to minimize total operating costs while smoothing load fluctuations. Mingfei

Ban2 proposes a battery charging/swapping system based on wind power generation (W-BSCS), where wind turbines generate power to the

grid while also participating in a centralized charging station (CCS), which can charge EV batteries centrally and then distribute fully charged

batteries to multiple BSS, so the system also takes into account the vehicle routing problem (VRP). Hongtao Yuan3 proposes a model for

optimal operation in EV charging and storage, and establishes a battery fast charging model based on queuing theory, which can smooth

the total load curve of the grid and finally achieve the effect of alleviating the peak-to-valley difference of the grid and reducing the total oper-

ating cost. Yuechuan Tao4 proposes a data-driven two-stage charging and switching service schemebased on which users can independently

select multiple service types. Finally, a joint deep reinforcement learning and mixed integer linear programming solution algorithm is pro-

posed and used to solve themodel. G.K. Zaher5 proposed an EV charging and swappingmodel to determine optimal charging and discharg-

ing of EVs to maximize the profit of battery charging stations (BCS) owners, considering electricity price changes, grid connection limitations

and battery capacity losses. YangWang6 proposed two shadowprice-based coordinationmethods, namely peer-to-peermethod and leader-

follower method based on EV charging stations, and established a two-layer optimization model to simulate the game between two non-

cooperative entities, which solved by an improved nested column and constraint generation algorithm, which reduces the total operating

cost by 10%. Most of the traditional EV charging and switching stations are planning models,7–11 while the actual operation conditions of in-

tegrated energy stations are very complex. The aforementioned studies often consider one-sided factors only, and the models contain only

single objective in these optimization problems, which cannot provide better decision-making solutions in the optimal scheduling of inte-

grated energy stations. In order to solve the problem, Baojun Sun and Ridoy Das12,13 proposed the concept of multi-objective techno-eco-

nomic environment optimization for EV charging and discharging dispatching. Authors considered multiple objectives of battery degrada-

tion, grid interaction, CO2 emission and user cost in the dispatching model. However, the former study does not consider the influence of
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battery cycle life, which is not conducive to the long-term operation of battery charging and swapping stations; the latter does not consider

inclusion of clean energy sources such as wind and PV power generation. Alper14 proposed an all-in-one EV station (AiOEVS) and solved the

model through mixed integer linear programming, but the model did not consider wind power generation and electricity sales to the grid

module.MohdBilal15 introduced the Levy flight allocation strategy, adopted the improved salp swarm algorithm to optimize the scale of solar

panels (SP) and wind turbines (WT) of the grid, and considered the probability of insufficient power supply. Mehdi Ahmadi16 optimized the

integrated microgrid energy management of battery charging and switching stations in the case of high energy critical loads and analyzed

the risk of uncertainty using the conditional value-at-risk (VAR) index. In this paper, we combine the concept of many-objective optimization of

the economic environment and the inclusion of clean energy sources such as wind power and PV to optimize the scheduling of the energy

system of the integrated energy station.

For theobjective-basedoptimizationofductpowerallocationproblem,ZouJianxiao17proposesa solar activepower allocationmethodbased

on a multi-objective optimization technique, which simulates the active power allocation of the landscape by minimizing the error between

the output power of the wind-photo-cell hybrid system and the desired power of the grid, minimizing the number of start/stop switches of the

generation unit and maximizing the regulation capability of the wind turbine. Most active power control methods use batteries as filters to

compensate the active power output and determine the control role based on different objectives.18–20 The traditional active power distribution

method tends to bemore conservative in order tomaintain the reliability and safety of the distribution network, based on the output power and

rated power of the landscape power module for average distribution. In this paper, we combine the energy system dispatching of integrated

energy station with the target-based wind and PV allocation strategy, which can further improve the model’s optimal scheduling capability.

In order to better optimize the scheduling of the energy system model of the integrated energy station, this study proposes an optimal

scheduling model of the integrated energy station with wind and PV based on the future value competition strategy (FVCS). The model op-

timizes the allocation of wind and PV by FVCS and solves the allocated wind-photovoltaic integrated energy station (WPIES) by adaptive non-

dominated sorting genetic algorithm III21 (ANSGA-III for short). Then, the entropy weight method (EWM) is applied to choose the final solu-

tion from the Pareto solution set for the decisionmaking. Finally, a typical solution is analyzed to verify the reasonableness and reliability of the

model. The main contributions of this paper are summarized as follows.

(1) Propose an FVCS based on an objective-optimized wind and PV power allocation method to improve the efficiency and reliability of

energy system usage.

(2) The optimal scheduling model of wind power PV integrated energy station is proposed, which includes wind/PV/hydrogen produc-

tion/hydrogen storage/high voltage charge/EV charge/EV swap/power gridmodules. Thismodel can better describe the energyman-

agement system of integrated energy station.

(3) Propose an FVCS-WPIES bi-level optimizationmodel to improvemultiple benefits, including economic and environmental, through an

optimization-correction-optimization approach.

The components of this study are summarized as follows. Describes the optimal scheduling problem of the energy system of the inte-

grated energy station and the FVCS-WPIES bi-level optimization model. Section 3 describes the proposed ANSGA-III algorithm which

used to solve the FVCS-WPIES model. The model is compared to the literatures separately to verify the advantages of the FVCS-WPIES pro-

posed in this study. Then, the final solution is chosen fromobtained Pareto solution set according to the EWM. The typical solutions have been

analyzed in the results. The results verify the rationality and reliability of the proposedmodel. Finally, the application prospect of FVCS-WPIES

model has been discussed in detail. Schematic diagram of integrated energy station is shown in Figure 1. Finally, the fourth section makes a

summary.

Problem statement and system model

This section introduces the models for each sub-module in FVCS-WPIES. It includes the wind turbine module, PV module, hydrogen produc-

tion module, battery energy storage system (referred to as BESS) module (BCS and BSS), FVCS (the upper-level model), WPIES (the lower-

level model), and the model constraints of FVCS-WPIES. Additionally, EVs contribute to charging and power exchange modules, while

hydrogen vehicles contribute to hydrogen refueling modules.

Before optimizing and building the model, we make the following assumptions. (1) The compressor and hydrogen storage tank (HT) op-

erate without hydrogen loss, and we calculate the capacity change of HT as equivalent to the state of charge (SOC) of BESS. (2) The SOC of

each high voltage unit arriving at the integrated energy station follows a uniform distribution. (3) Let the number of batteries in the fully

charged state beNfull
t , and the batteries in BCS and BSS are fully charged in 1 h. (4) The power prediction of the wind and PV power generation

system of the integrated energy station is accurate enough and the output power fluctuation is stable. The wind and PV in this paper is simu-

lated with constant values. (5) Each wind turbine and PV module can track the active power output.

Figure 2 displays the microgrid access schematic of the grid-connected FVCS-WPIES model. The power generated by wind and PV can be

supplied to the battery swapping stations (BSS), BCS, electrolyzer, and compressor. The electrolyzer utilizes the supplied power to generate

hydrogen, while the compressor compresses the hydrogen generated by the electrolyzer. The compressed hydrogen is stored in the HT, which

can then be used to purchase additional power from the grid. This is particularly useful whenwind power alone cannotmeet the load demandof

each sub-module. The solid black line in the figure represents the power flow, while the red dashed line represents the hydrogen flow.

Many scholars have made contributions in the field of integrated energy station optimization scheduling. Optimizing the schedule for an

integrated energy station involvesmultiple objective functions andmodules for PV, wind energy, and EV charging/swapping. To demonstrate
2 iScience 27, 109305, March 15, 2024



Figure 1. Schematic diagram of FVCS-WPIES model
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the benefits and versatility of the FVCS-WPIES model, this paper compares it with the existing integrated energy station optimization sched-

uling model. The specific comparison details are presented in Table 1.

The proposed WPIES model, as shown in Table 1, includes more modules and better reflects the operating conditions of integrated

filling stations compared to existing research studies on optimal scheduling. To improve the solution method, an improved NSGA-III

algorithm is used along with the FVCS scheduling strategy in this paper. This combination results in a more efficient solution for the

model.
Figure 2. Schematic diagram of grid-connected FVCS-WPIES microgrid access

iScience 27, 109305, March 15, 2024 3



Table 1. The model comparison difference of existing research results

Reference

Components

Objectives Method

EV

charge

EV

swap HVs PV Wind Grid BESS Hydrogen

Sun et al.13 U 3 3 U U U U 3 Cost

Pollution emissions

MOPSO

TOPSIS

Das et al.12 U 3 3 3 3 U U 3 Energy cost

Battery degradation

Grid net exchange

CO2 emission

MOO

MCDM

Zaher et al.5 U U 3 3 3 U U 3 BES profit MIP

Li et al.1 U U 3 U 3 U U 3 Inventory Cost

Smoothing load fluctuation

Modified NSGA-III

Saner et al.22 U 3 3 3 3 U 3 3 Demand

Energy charges

Linear Programming

Su et al.23 U 3 3 3 3 U 3 3 Load recovery

Power distribution network

economy

EV driving cost

Piecewise Linearization

SOCR

Wu et al.24 U 3 3 3 3 U 3 3 Charging cost Linear Programming

Dai et al.25 U 3 3 U 3 U U 3 Total cost MAPSO

Zhang et al.26 U 3 3 3 U U 3 3 Cost of generating electricity

Wind curtailment rate

Two-phase strategy

IMOEA

Hao et al.27 U 3 3 U 3 U 3 3 Total revenue Stackelberg

GA

Shojaabadi et al.28 U 3 3 3 U U 3 3 Total revenue A Game Theory

Dukpa et al.29 U 3 3 3 U U 3 3 Total revenue Linear Programming

Amiri et al.30 U 3 3 3 3 U 3 3 Charging cost

Busbar voltage deviation

NSGA-II

Shi et al.31 U 3 3 U 3 U 3 3 Total cost Robust Optimization Algorithm

Wen et al.32 U 3 3 U 3 U U 3 Total cost DRNN-LSTM

PSO

Xu et al.33 3 U U 3 U U U U Total operational cost Hybrid Stochastic/Distributionally

Robust Optimization

Ours U U U U U U U U Total profit

Battery loss

Pollutant Emissions

Future Value Competition

ANSGA-III
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Wind turbine model

Wind speed and tower height directly affect the power produced by wind turbines. The article uses the wind turbine model proposed byXu

et al.34 to estimate the power generation of wind turbines in integrated energy addition stations:

PWT =

8>>>>>>><
>>>>>>>:

0

PR

V 3
R � V 3

ci

,V3 � V3
ci

V3
R � V3

ci

,PR

PR

0

(Equation 1)

where V , PR , VR , Vci and Vco are the actual wind speed at the hub height of the wind turbine (m/s), the rated power of the wind turbine (kW), the

rated wind speed (m/s) and the cut-in and cut-out wind speeds (m/s), respectively.
4 iScience 27, 109305, March 15, 2024



Table 2. Photovoltaic panel parameters

hinv hloss href k

Value 0.95 0.86 0.12 0.004
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Photovoltaic model

The power generation of PV is determined by several parameters, the solar load on the surface of the PV panel (Gb) in W/㎡, the working

temperature of the PV panel (T0) in
�C, the inverter efficiency (hinv ) and the loss (hloss) in %, the power generation of the PV module can be

expressed as35:

PPV = ½hinv , hloss ,href , ð1 � k , ðT0 � Tref ÞÞ� ,APV,Gb (Equation 2)

where href is the benchmark efficiency of PV module at the benchmark temperature of 25�C (Tref ), unit is %. k is the temperature coefficient.

APV is the planned area of the PV array in the hybrid system (m2). Most of the data in the formula are provided by themanufacturer, as shown in

Table 2.

Hydrogen production system model

Electrolyzer model. Hydrogen gas is produced through the process of electrolysis of water. The overall reaction can be represented by

Equation 3. One of the most beneficial factors of using a polymer electrolyte membrane (PEM) electrolyzer is that it operates at a low tem-

perature and has a simple structure. The high purity hydrogen gas can be produced when the pressure goes up to 200 bar.33 The calculation

model of electrolytic water conversion for PEM electrolyzer is shown in Equation 4.36

H2O + Electricity/H2 +
1

2
O2 (Equation 3)
PELE
t =

mELE
t ,LHVH2

hELE

(Equation 4)

where hELE is the electrolyzer efficiency.m
ELE
t is themass flow rate of hydrogen gas at the output of the electrolyzer. LHVH2

is the lower calorific

value of hydrogen. PELE
t is the power consumed by the electrolyzer at time t. The specific parameter values in the electrolyzer are shown in

Table 3.

Compressor model. The compressor works alongside the process of electrolyzing water to produce hydrogen. It is powered by a combi-

nation of the PVmodule, theWTmodule, and the power grid. The compressor’s job is to increase the pressure of the hydrogen from the low-

pressure storage tank to the high-pressure storage tank. Equation 5 shows themodel of the compressor. In this paper, we assume that there is

no hydrogen loss during the compression process.37

Pcomp
t = Ccomp ,

Tin 3 104

hmotor,hcomp,Dt

 �
pcomp
out

pcomp
in

�r � 1
r

� 1

!
,
mELE

t

3600
(Equation 5)

where Ccomp denotes the specific heat of hydrogen at constant pressure. Pcomp
t denotes the power consumed by the compressor motor at

time t. pcomp
in and pcomp

out are the compressor inlet pressure and outlet pressure, respectively. r denotes the specific heat ratio of hydrogen.

Tin indicates the hydrogen temperature at the compressor inlet. hcomp is the isentropic efficiency of the compressor. hmotor is mechanical ef-

ficiency. The specific parameter values in the compressor are shown in Table 4.

Hydrogen storage tank model. The purpose of the HT is to store hydrogen that is compressed and then supplied to the distributor as

needed to meet hydrogen demand for the HVs. This paper transforms the variation of hydrogen content in the HT into the form of electricity

variation in BESS. Equation 6 shows the variation of hydrogen content in the HT.

SOCHT
t+1 =

��
1 � 4HT

�
,SOCHT

t +
�
mELE

t � mHV
t

�
,CHT

�
(Equation 6)

where SOCHT
t and SOCHT

t+1 are the hydrogen storage content in HT at time t and t+1, respectively, unit is %.mHV
t is the hydrogen supplied to

HVs at time t. 4HT is the coefficient of hydrogen loss that occurs in HT. CHT is the total capacity of HT. The specific parameter values in the HT

are shown in Table 5.
Table 3. Electrolyzer parameters

hELE LHVH2

Value 62% 33.3 kWh/kg

iScience 27, 109305, March 15, 2024 5



Table 4. Compressor parameters

Ccomp Tin hcomp p
comp
in p

comp
out

Value 14.304 kJ/kg 293K 70% 1MPa 90MPa
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Vehicle flow modeling under TOU

Analyze and record statistics on the travel characteristics of electric cabs, electric private cars and hydrogen vehicles in a month, and

simulate the initial SOC state of car users when they arrive at the integrated energy station. Combined with the EVs charging and swap-

ping expectations, the resulting data are in line with the normal distribution.13 The SOC for EVs and hybrid vehicles (HVs) are uniformly

distributed upon arrival at the integrated energy station. UHV：ð0:2，0:5Þ. Integrated energy stations can offer charging and swapping

services for EVs. When an EV arrives at the station, the SOC will determine whether charging or swapping is required. The station

will select the appropriate service based on the time required for each mode of charging. When the battery level (SOC) of an EV is

less than 20%, users may consider fast charging due to the increased time cost. However, fast charging can cause excessive battery

loss. In such situations, users prefer battery swapping service. To facilitate this, the integrated energy station sets the initial SOC

to less than 20% when the EV arrives, allowing the refueling station to classify it as a power exchange mode. If the initial SOC is

greater than 20%, it is classified as a charging mode. The simulated hourly charging load of EVs, power exchange load, and

hourly hydrogen demand of hydrogen vehicles are shown in Figure 3. In this paper, the hydrogen demand of hydrogen vehicles is con-

verted to electrical load demand for comparison. The simulated power generation of PV and wind power in this region is shown in

Figure 4.

In the optimal scheduling of integrated energy systems, demand side management (DSM) can reduce total operating costs and separate

elastic and inelastic loads.38–40 Therefore, this paper has used the local time-of-use (TOU) price as the price for WPIES to buy electricity from

the grid, and the purchase price of user EVs and the price of selling to the grid have also changed with the change of TOU price. The TOU is

shown in Figure 5.

BESS model

For the swappingmode, the BESSmodel requires the battery SOC to be charged to 90%before it can be used for EVs swapping. For charging

mode, BESS uses the charger to charge the battery and discharges the EVs and the regional power system at the same time.With the premise

that charging and discharging states cannot be performed simultaneously, battery SOC states in the 90%–20% interval are possible. In the

optimization model developed in this study, two types of services are provided for EVs: charging and swapping. Combined with the afore-

mentioned analysis, themodel is undoubtedly very difficult and complex if the charging and swappingmodels are analyzed in a unifiedway in

the BESSmodule. Therefore, in order to simplify themodel, the BESSmodule is split into a BCS and a BSS, and the twomodules aremodeled

separately and calculated uniformly. This has several advantages. (1) When the EV changes the undercharged battery at the BSS, the BSS

charges the undercharged battery during that time period, while the BSS charges and discharges in the context of considering the time-

sharing tariff. (2) EVs are charging and swapping at the same time, while the total revenue of the integrated charging station is only calculated

for the total discharge of the BESS, the charging/swapping demand and the purchased power from the grid. (3) When in high tariff time, the

batteries in the BCS module are in charging state, and the spare fully charged batteries in the BSS module can be discharged after meeting

the EV swapping demand, thus reducing the total power purchased by the BESS from the grid. The structure of the BESS model is shown in

Figure 6.

BCS model in BESS. In the charging mode of BESS, the charging and discharging process of the battery is shown in Equation 7.

SOCBCS
t =

�
EBCS
t� 1 3 ð1 � sÞ+Pcharge;t 3 hcharge 3Dt1 � Pdisharge;t 3 hdisharge 3Dt2

�
CBCS

(Equation 7)

where SOCBCS
t is the SOC state of BCS at time t. EBCS

t� 1 is the charge of BCS at time t-1. s is the self-discharge rate of the battery. Pcharge;t is the

charging power of the battery at time t. hcharge is the charging efficiency of battery. Pdisharge;t is the discharge power of the cell at time t. hdisharge
is the discharge power of battery. Dt1 and Dt2 are the charge interval and discharge interval of the battery, respectively. CBCS is the total bat-

tery capacity of BCS.

BSS model in BESS. There are two states that the battery can be in: charged and fully charged in BESS’s swapping mode. When a car ar-

rives, the fully charged battery is swapped with the EV and the swapped battery is charged using the charger. It is assumed that each battery
Table 5. Parameters of hydrogen storage tank

4HT CHT

Value 0.01% 60kg

6 iScience 27, 109305, March 15, 2024



Figure 3. Number of EVs and HVs and power load
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needs to be fully charged within 1 h. The number of fully charged cells isNfull
t . The number of batteries in charge state isNcharge

t . The dynamic

model of the battery swapping station is represented as follows.8>><
>>:

Nfull
t = Nfull

t� 1 � NEV ;BSS
t� 1

WBSS
t =

XN
n

h�
0:9 � SOCEV ;BSS

t� 1;n

	
3CBattery

i (Equation 8)

whereA is the number of fully charged cells at t-1.NEV ;BSS
t� 1 is the number of EVs exchanged for electricity at t-1.WBSS

t is the amount of electricity

consumed by the battery after the swapping station and the EVs are fully charged in time t. SOCEV ;BSS
t� 1;n is the SOC state of the battery at the

time of arrival of the n-th electric car swapping at t-1. CBattery is the capacity of a single battery. In order to be able to meet the demand of the

next time period for the EV swapping, at time t the BSS will charge the battery swapped out before time t-1 to a full charge.

Upper-level model

This paper discusses the challenges of integrating wind and PV power generation with TOU rates, EV and HV consumption. These uncer-

tainties can cause varying degrees of wind and PV abandonment in the integrated energy station, which in turn reduces the station’s total

revenue. To address this issue, the paper proposes a bi-level optimal schedulingmodel based on the FVCS. By separatingwind and PV power
Figure 4. PV and WT power generation

iScience 27, 109305, March 15, 2024 7



Figure 5. Charging and discharging price of integrated energy station
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in the integrated energy station, the upper-level model is constructed. The optimal allocation scheme of wind and PV power is then deduced

through the FVCS.

Future value competition strategy. In the upper-level model, PV and wind power are allocated to the EV charging module, hydrogen pro-

duction module, and Bss module respectively through a FVCS. Under the background of TOU, the operation and control conditions of the

energy system of the integrated energy station will change with the different power of PV and wind power generation at different times,

and the benefits generated will be different. Therefore, the FVCS proposed in this paper changes the previous wind and PV system power dis-

tribution in an average way. The allocation of the active power of the wind and PV in the integrated energy station is controlled by the wind and

PV energy allocation strategy based on target optimization, thus changing the energy share of each subsystem in the integrated energy station.

In the optimization process of the lower-level model (WPIES), the distribution value of wind/PV of each module is random, which affects the

electricity purchased by each module from the grid at each moment, and finally affects the overall income of the integrated energy station.

The upper-level model (FVCS) was used for pre-distribution to solve the power allocation scheme with the maximum total return. After solving

theWPIESmodel, the return objective functionwas comparedwith FVCS in order to enhance the active power distribution value ofwind/PV and

improve the optimization outcome of the FVCS-WPIES model. The principle of FVCS is illustrated in Figure 7.

FVCS calculates the distribution of active power from the wind and PV system to each subsystem bymeasuring the expected benefit of the

energy generated by the wind and PV flowing into each subsystem of the integrated energy station and solves the optimization model using

the Harris Hawks algorithm (HHO).41

To enhance the accuracy of the upper-level model, penalty functions are added to it. Once the lower-level model is resolved, if the actual

operating conditions during time period t fail to achieve the anticipated profit, the objective function value of the upper-level model is penal-

ized. The penalty function can be expressed in the following manner.

Xm
i = 1

ui maxf0; x1 � x2g (Equation 9)

where ui denotes the penalty weight. x1 denotes the value of the optimized objective function, i.e., the expected profit. x2 denotes the actual

profit after optimization of the lower-level model.

Upper-level model objective function. The objective function of the upper-level model is tomaximize the expected profit. Electricity allo-

cated to the hydrogen productionmodule is converted into hydrogen for HV hydrogenation, and the electricity allocated to the BESSmodule

is sold to the grid. The expected profit objective function of the upper-level model is shown in Equation 10.
Figure 6. Schematic diagram of BESS model

8 iScience 27, 109305, March 15, 2024



Figure 7. FVCS schematic
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max FFVCS
profit =

XT
t = 1

WBESS;WP
t 3Pprice

discharge;t +WEV ;WP
t 3Pprice

sell;t +WHT ;WP
t 3 hH2

3Pprice
H2

(Equation 10)

whereWBESS;WP
t is the amount of power allocated to BESS through FVCS in time period t. Pprice

discharge;t is the price of electricity sold to the grid in

time period t.WEV ;WP
t is the amount of power allocated to the EV chargingmodule via FVCS in time period t. Pprice

sell;t is the price of EV charging

at time t. WHT ;WP
t is the amount of power allocated to the hydrogen production module through FVCS in time t. Pprice

H2
is the price of selling

hydrogen. hH2
is the efficiency of converting electricity to hydrogen.

Lower-level models

This section presents the economic, operational and environmental objectives pursued for the optimal operation of integrated energy sta-

tions. At the core of the lower-level model energy management are three objective functions, consisting of maximizing total revenue, mini-

mizing battery losses and minimizing pollutant emissions, respectively.

Maximum total profit. From the perspective of the operation of an integrated energy station, the total profit of a station is a fundamental

goal. Energy management of EVs, hydrogen vehicles and the power grid based on TOU can maximize the operational benefits of integrated

energy stations. In this study, the total profit objective function of the integrated energizing station is shown as flows. The algorithm in the

code solves for the minimum value of the objective function. Therefore, we take the negative of the total profit objective function in the

code to obtain the minimum value as the result.

max FWPIES
profit = f BCSprofit + f BSSprofit + f EVprofit + f HTprofit (Equation 11)
WBESS;WP
t = WBCS;WP

t +WBSS;WP
t (Equation 12)
8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

f BCSprofit =
XT
t = 1

PBCS
discharge;t 3Dt2 3Pprice

discharge;t �
�
PBCS
charge;t 3Dt1 � WBCS;WP

t

	
3Pprice

buy;t

f BSSprofit =
XT
t = 1

h
0:9CBattery 3NEV ;BSS

t 3Pprice
sell;t � �

WBSS
t � WBSS;WP

t

�
3Pprice

buy;t

i

f EVprofit =
XT
t = 1

PEV
charge;t 3Dt2 3Pprice

sell;t � WEV
charge;t 3Pprice

buy;t

f HTprofit =
XT
t = 1

QHV
t 3Pprice

H2
�
 
DSOCHT

t，t� 1 3CHT

hH2

� WHT ;WP
t

!
3Pprice

buy;t

(Equation 13)

where PBCS
discharge;t and PBCS

charge;t are divided into the discharging power and charging power of BCS at time t. Pprice
buy;t is divided into the price of

electricity purchased from the grid in time t. PEV
charge;t is the charging power of EV at time t.WEV

charge;t is the amount of electricity purchased from

the grid by the EV charging module at time t. QHV
t is the weight of hydrogen required for HVs in time period t. DSOCHT

t，t� 1 is the change in

hydrogen SOC of HT in time t and time t-1.
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Table 6. Pollutant emission data by power generation type

Power generation methods SO2 (g) NOx (g) CO2 (g)

Photovoltaic power 0 0 20

Wind power 0 0 11

Nuclear power 0 0 12

Coal-fired power 26 13 872

Gas-fired power 2 50 400

Oil power 20 30 800

Utility grid 30 15 997
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Minimal battery loss. Reducing the Bss of integrated energy station can effectively increase the operating life of integrated energy station.

The main factors of battery wear are related to the number of cycles, operating temperature, charging and discharging efficiency, depth of

discharge (DOD), SOC, and end-of-charge voltage (EOCV).42 Therefore, in theWPIESmodel, the wear factor (kW$h/kW$h) for Li-ion batteries

with the same achievable cycle count depth of discharge (ACC-DOD) characteristics. This value is mainly related to the change in total battery

energy. Ignoring other factors in this application. In this study, theminimumobjective function of the loss of the BESS in the integrated energy

station is shown as follows.

min FWPIES
loss = Kw

XT
t = 1

PBCS
charge;t 3Dt1 +PBCS

discharge;t 3Dt2 +WBSS
t (Equation 14)

where Kw = 0:00015kW,h. This means that each kW$h of charging or discharging of the EV battery will reduce the available energy of the Li-

ion battery by approximately 0.00015 kW h.

Minimal pollutant emissions. Pollutants in conventional thermal power plants are mainly composed of SO2, NOx , CO2, CO and sus-

pended particulate matter (TSP). The development and utilization of WPIES can effectively reduce the emission of the aforementioned pollu-

tion, thus reducing environmental pollution. Specific emission data for wind, PV, nuclear, coal-fired, gas-fired, and oil-fired power generation

are shown in Table 6.

Application of the WPIES model will positively reduce global carbon emissions. The load of the integrated energy station is mainly pro-

vided by wind power and PV power generation. In this study, the environmental pollution emissions from the integrated energy station are

mainly caused by the electricity purchased from the grid. Therefore, the objective function is to minimize the emissions of SO2,NOx andCO2.

The objective function is as follows.

min FWPIES
CO2 ;SO2 ;NOx

=
XT
t = 1

WGrid
buy;t 3

�
eCO2

+ eSO2
+ eNOx

�
(Equation 15)
WGrid
buy;t = PBCS

charge;t 3Dt1 +WBSS
t +WEV

charge;t +
DSOCHT

t，t� 1 3CHT

hH2

� WWP
t (Equation 16)

where WGrid
buy;t is the amount of electricity purchased from the grid by WPIES in time period t. eCO2

, eSO2
and eNOx

are the emission factors of

SO2, NOx and CO2 per kW$h from the utility grid, respectively. WWP
t is the amount of wind and PV power generated at time t.
Model constraints

Hydrogen power constraint

Hydrogen electrolysis requires a large amount of electricity, and the hydrogen obtained by electrolysis of water needs to go through a

compressor and then to a HT, and the whole process takes some time. When HVs require more hydrogen than can be supplied by wind

and PV outputs, and the Bss cannot meet the demand, a hydrogen balance equation can be used to fully meet the requirement. However,

in such a scenario, a large amount of electricity is needed for hydrogen electrolysis, which has to be purchased from the grid. This can signif-

icantly increase the power purchase cost of the integrated energy station. Therefore, this paper introduces a chance-constrained hydrogen

equilibrium equation. Valuation confidence level based on the risk appetite of the decision maker33,43 to allow for integrated energy stations

that do not need to purchase large amounts of power from the grid when electricity prices are high andwind/PV output is insufficient. This will

result in hydrogen demand for HVs that may not always be met.

Pr =


mHV

t R xt
�
R1 � a (Equation 17)

where A is the hydrogen demand of HVs. a is a predefined small probability index.
10 iScience 27, 109305, March 15, 2024



ll
OPEN ACCESS

iScience
Article
Other constraints

The energy control in FVCS-WPIES formulates the optimal operation strategy of the systembasedon the charging/discharging loadof theEVbat-

tery, the battery scheduling of the EV power swappingmodule, and the hydrogen production rate of the hydrogen production system to achieve

the power balanceof thewhole system. The following constraints also need to be satisfied in theoptimal scheduling of integratedenergy stations.

Capacity constraint. The constraint is for the Bss and hydrogen storage systemof the integrated energy station, the energy storage system

cannot be higher than themaximum capacity of the system and cannot be smaller than theminimum capacity of the system. In this study, the

capacity state of the HT is transformed into the load state of the EV battery. The formula is shown as follows.

SOCHT
min % SOCHT

t %SOCHT
max (Equation 18)
SOCBESS
min % SOCBESS

t %SOCBESS
max (Equation 19)
SOCBESS
min = ð1 � DODÞ3 SOCBESS

max (Equation 20)
SOCHT
min = 0; SOCHT

max = 1;SOCBESS
min = 0:9; SOCBESS

max = 0:2 (Equation 21)

where SOCHT
min and SOCHT

max are the minimum and maximum capacity states of the HT, respectively. SOCBESS
min and SOCBESS

max are the minimum

load state andmaximum load state of EV battery, respectively. DOD is themaximumDODallowed for the battery. SOCBESS
t is the load state of

the BESS at time t. Too high or too low EV battery load state will cause rapid reduction of battery cycle life and energy storage efficiency, so

from the perspective of long-term operation of integrated energy station, this study constrains the maximum andminimum values of EV load

state, i.e., [0.2,0.9]. To ensure the energy supply of the Bss and the hydrogen storage system the next day, the load state of the batteries in the

BCSmodule at the end of the day is the same as the load state at the beginning. The capacity state of the hydrogen storage system at the end

of the day is the same as the capacity state at the beginning. The number of fully charged cells in the BSS module should remain the same at

the end of the day as it was at the beginning.

SOCHT
0 = SOCHT

T (Equation 22)
SOCBCS
0 = SOCBCS

T (Equation 23)
Nfull
0 = Nfull

T (Equation 24)

where SOCHT
0 , SOCHT

T are the capacity states of HT at the beginning and end of the day, respectively. SOCBCS
0 , SOCBCS

T are the load states of

the cells in the BCS at the beginning and end of the day, respectively.Nfull
0 ,Nfull

T are the number of fully charged cells in the BSS at the begin-

ning and end of the day, respectively.

Power constraint. This constraint is for electrolyzer power and EV battery charge/discharge power. The battery in BESS cannot exceed the

maximum discharge power and cannot be lower than the minimum discharge power. Electrolyzer cannot exceed the maximum power con-

sumption and cannot be lower than the minimum power consumption. The constraint formula is shown as follows.8<
:

0%PBESS
discharge;t %PBESS

discharge;max

0%PBESS
charge;t %PBESS

charge;max

(Equation 25)
PELE
min % PELE

t %PELE
max (Equation 26)

where PELE
min and PELE

max are the minimum power consumption and maximum power consumption of the electrolyzer, respectively.

Energy balance constraint. The power balance problem in this constrained output model is a prerequisite for the stable operation of the

FVCS-WPIES system. In this system, the daily energy generation and consumption should be equal, and the power allocated by the upper-

model should be equal to the power added by the lower-level model.

PGrid
buy;t =

�
PBCS
charge;t + PBSS

charge;t + PHT
charge;t

	
3 hcharge + PEV

charge;t � PWP
t (Equation 27)
PGrid
discharge;t =

PBCS
discharge;t+P

BSS
discharge;t

hdischarge

(Equation 28)
WFVCS
t = WWPIES;WP

t (Equation 29)
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Table 7. Algorithm and model specific parameters

Np Tmax Cr m mBCS mBSS CHV CHT P
price
H2

Value 400 1000 60 kW h 20 15 5 6Kg 60Kg 58Yuan/Kg
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where PGrid
buy;t is the power at time t when power is purchased from the grid. PHT

charge;t is the charging power of the hydrogen production system at

time t. PWP
t is the power supply of thewind and PV in time t. PGrid

discharge;t is the power sold to the grid in time t.WFVCS
t is the power allocated to the

WPIES system by the upper-model. WWPIES;WP
t is the power received by the WPIES system from the wind and PV system at time t.

Energy storage system state constraints. In BCS and BSS systems, a single EV battery is not allowed to be charged and discharged at the

same time, but it is allowed to have a scenario where some batteries are in charging state while others are in discharging state. In hydrogen

production systems, simultaneous charging and discharging is allowed. The constraint formula is shown as follows.

lDt1 + lDt2 = ½0;1� (Equation 30)
lDt1 = ½0;1� (Equation 31)
lDt2 = ½0;1� (Equation 32)

where lDt1 , lDt2 are the charge state coefficient and discharge state coefficient, respectively. 1 means the battery is in charging or discharging

state, 0 means it is not in charging or discharging state.

RESULTS

In this section, we will first solve the two models separately using the multi-objective algorithm ANSGA-III. After finding the optimal solution,

we will compare the objective functions to verify the advantages of the FVCS-WPIES model. Next, we will use the entropy method to filter the

Pareto solution set obtained from the optimal solution of the FVCS-WPIES model, and select the optimal decision solution. Finally, we will

validate and analyze the selected optimal decision solution. The simulation experiments were conducted in MatlabR2021b with a computer

configuration of CPU 3.20 GHz, RAM 16.0 GB. The specific parameters of the algorithm and the model are shown in Table 7.

Model comparison

In order to confirm the effectiveness of the FVCS-WPIES model presented in this paper, a comparison model was used. The comparison

model employed the optimal scheduling model of the energy system of an integrated energy station, but without the FVCS strategy. This

model only utilizes theWPIESmodel and follows the scenario of the average wind and PV power distribution in conventional vehicle charging

stations. The ANSGA-III algorithm was improved on NSGA-III by introducing an adaptive parameter control strategy that can automatically

adjust the parameter values according to the characteristics of the problemand improved several strategies inNSGA-III. The specific contents

are as follows: (1) improve the elitist selection operator; and (2) improve the creation of offspring population, thus improving the algorithm

performance. In this paper, we optimally solved the FVCS-WPIES model and the comparison model using the ANSGA-III algorithm. The Par-

eto front resulting from the solution is shown in Figure 7. The code of the improved part of the ANSGA algorithm is as follows.
Algorithm 1. Tournament selection (p1;p2) procedure

Require: p1;p2

Ensure: p0

1: if feasible(p1) = TRUE and feasible(p2) = FALSE then
2:p0 = p1

3: else if feasible(p1) = FALSE and feasible(p2) = TRUE
then
4: p0 = p2

5: else if feasible(p1) = FALSE and feasible(p2) = FALSE
then
6: if CV(p1) > CV(p2) then
7: p0 = p2

8: else if CV(p1) < CV(p2) then
9: p0 = p1

10: else
11: p0 = random(p1;p2)
12: end if
13: else
14: p0 = random(p1;p2)
15: end if

12 iScience 27, 109305, March 15, 2024



Figure 8. Pareto frontier of two models

(A) FVCS-WPIES model.

(B) Comparison model.
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As can be seen from Figure 8, the Pareto front obtained by FVCS-WPIESmodel after adding FVCS strategy is more evenly distributed than

the Pareto front of WPIES model, with better value of each objective function. Next, we will compare all the schemes of the three objective

functions and analyze them.

From Figure 9, it can be seen that the three objective functions of the FVCS-WPIES model are smaller than the comparison model. The

objective function FWPIES
profit was reduced by 6389(Yuan) compared to the comparison model. That is, total profit is on average 12.67% higher

than the comparisonmodel. The objective function FWPIES
CO2 ;SO2 ;NOx

was reducedby 5,446.64 (g) compared to the comparisonmodel. On average,

the total emissions are 21.65% lower than the emissions produced by the comparison model. The objective function is reduced by 34.94

(kW$h) compared to the comparison model. The average battery loss of this model is 77% lower than the battery loss in the comparison

model. From the aforementioned data, we can see that the values of the three objective functions after solving the FVCS-WPIES model

are smaller than those of the comparison model, and the Pareto solution set of the FVCS-WPIES model dominates the Pareto solution set

of the comparisonmodel. Based on the analysis, it can be concluded that the FVCS-WPIESmodel is superior to the comparisonmodel. Addi-

tionally, the FVCS strategy proposed in the paper outperforms the traditional model’s average wind and PV distribution strategy. In the next

step, the Pareto solution set obtained by solving the FVCS-WPIES model will be examined to further validate the model’s effectiveness.

Typical solution decisions

In this paper, the EWM is used to make decisions on the Pareto solution set after solving the FVCS-WPIES model. EWM is a multi-criteria

decision analysis method, based on the concept of information entropy, by calculating the entropy value and entropy weight of the criteria,

to determine the weight of each criterion. The information entropy reflects the amount of information and uncertainty of each criterion, while

the method takes into account the correlation between the criteria. Therefore, the entropy method can effectively exert the relationship be-

tweenmultiple criteria and improve the accuracy and reliability of decisionmaking. The EWMsolves the FVCS-WPIESmodel decision steps as

follows.

(1) Indicator positive normalization.

x0ij = max
�
xij
� � xij (Equation 33)

(2) Data normalization.

rij =
x0ij � min

�
x0j
	

max
�
x0j
	
� min

�
x0j
	 (Equation 34)

(3) Calculating information entropy.
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Figure 9. Two models objective functions

(A) Total profit.

(B) Total emission.

(C) Battery loss.
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Ej = � 1

lnm

Xm
i = 1

pij ln pij (Equation 35)
pij =
rijPn

j = 1

rij

(Equation 36)

(4) Weighting and score calculation.

wij =

�
1 � Ej

�
Pn
j = 1

�
1 � Ej

� (Equation 37)
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Figure 10. Pre-distribution value of wind/PV for each module of the upper-level model
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Si =
Xn
j = 1

wjrij (Equation 38)

After solving by the EWM, the objective weights are [0.3599, 0.3355, 0.3046], the optimal entropy value of the decisioned scheme is 0.5922,

and the optimal result objective function value is [-49881.6381, 19342.6391, 6.4026]. The result corresponds to the group 252 solution of the

Pareto solution set of the FVCS-WPIES model. The objective function values for this solution are F1 (total profit) =�49881.6381, F2 (pollutant

emissions) = 19342.6391, F3 (battery losses) = 6.4026. The next stepwill be to summarize the optimal solution decidedby the entropymethod,

analyze the operating conditions of the solution and verify the rationality of the FVCS-WPIES model.

Typical solution analysis

This section analyzes the SOC state changes of BESS and HT, the purchased power of EV, HT, and BESS modules at each moment, the net

gain of HV and EV at each moment, the charging and discharging power of the BESS system at each moment, and the wind and PV power

share of each sub-module of the integrated energy station at each moment. Under the hydrogen power constraint 1 � a = 99%, the opti-

mization results of the 252nd solution decided by the EWM are shown in the following. Among them, Figures 10 and 11 shows the SOC state

changes of the BESS and HTmodules for one day, and Figure 12 shows the number of fully charged and not fully charged batteries in the BSS

at each time of day. In the upper-level model, the solution result of the FVCS strategy is the pre-distribution value of the wind/PV of each

module in the lower-level model. If the profit value in the solution of the lower-level model is less than the expected profit of the upper-level
Figure 11. BCS module and HT module SOC state change diagram
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Figure 12. Number of batteries in different states of charge in the BSS module at different times
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model, the penalty coefficient is increased, and the iteration and optimization are carried out again. The solution results of the upper-level

model are shown in Figure 10.

Figure 13 shows the purchased electricity for HT, BESS and EV for each time of the day. It can be seen that after passing the hydrogen

power constraint, in the peak hours of the TOU, only the 14:00 and 19:00 h show a large number of power purchases, and these 2 h are exactly

the two moments when the HV hydrogen demand is the largest, so there will be a large number of power purchases from the HT module

during the peak hours of the tariff. With the hydrogen power constraint, there is no large amount of power purchase during the remaining

peak hours of 12:00–13:00, 15:00–16:00, and 20:00–21:00, which greatly reduces the cost of hydrogen production at the integrated energy

station and thus increases the overall revenue. where the purchased power of the BESSmodule and the EVmodule is less than the purchased

power of the HT, and thus shown in the enlarged subplot of Figure 13. Figures 14 and 15 shows the returns of EV and HV for each time period.

Figure 16 shows the charge and discharge quantities of the BESS system for each time period, i.e., the total charge and discharge quan-

tities of all batteries in the BCS module and the BSS module for each time period, where the charge quantity is a positive number and the
Figure 13. BESS module and EV module power purchase by time period
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Figure 14. EV and HV earnings by time period
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discharge quantity is a negative number. From the graph, we can see that during the peak hours of 13:00–16:00 and 19:00–22:00, the EV en-

ergy storage battery is overall is discharged externally, providing power to EV charging or selling to the grid, thus reducing the purchased

power from the grid, reducing the operating cost of the integrated energy station and increasing the total revenue. And the graph also shows

that during the low tariff hours between 3:00–6:00, the battery also has a discharge operation, the reason analysis is because the power allo-

cated by the wind and PV is high during this timewhile the EV load is low during this time, so there will be a discharge phenomenon during the

low tariff hours.

Figure 16 shows the percentage of wind and PV for each sub-module of the FVCS-WPIES system. As can be seen from the figure, after the

WPIES bi-level optimization model with the addition of FVCS is solved by the ANSGA-III algorithm, the wind and PV is assigned to the BESS

module in priority, while the part exceeding the power demand of the BESSmodule is assigned to the HTmodule in priority. However, during

the peak tariff hours of 12:00–16:00, some of the wind and PV power will be provided for EV charging, thus reducing the operating costs of the

integrated energy station and increasing the overall revenue. Compared with the results of the comparison model, the FVCS-WPIES model

reduces the wind/PV distribution value of the BESS module, thus greatly reducing the loss of the BESS module, and therefore increasing the

overall income of the integrated power station. In summary, through the analysis and demonstration in this section, it can be concluded that

the optimal scheduling model of the energy system of the integrated energy station with FVCS is better than other optimal scheduling

models with average distribution of wind and PV. Therefore, the rationality of the FVCS-WPIES system model proposed in this paper can

be verified.
Figure 15. Total charge and discharge of BESS module by time period
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Figure 16. Wind and PV ratio of each sub-module

(A) HT module.

(B) BESS module.

(C) EV module.
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Application prospects

A more accurate and complex model is needed to describe the FVCS-WPIES system in the actual operating conditions of an integrated en-

ergy station. China has started developing comprehensive energy stations by transforming traditional gas stations into facilities that also

incorporate wind/PV and hydrogen storage. These stations have been put into operation. Furthermore, BESS and HRS technologies are rela-

tively mature and have already been implemented in several places in real life. The FVCS-WPIES system model proposed in this paper can

improve the efficiency of renewable energy utilization, reduce operating costs, and improve the operating life of integrated energy stations

compared with the independent open large BESS and HRS technologies. Therefore, FVCS-WPIES has good use and practicality in promoting

the development of electric and hydrogen vehicles in the future.

Conclusions

This paper proposes an energy management model for grid-connected FVCS-WPIES systems. The model supports the development of EV

charging and swapping as well as HV. It plays a crucial role in the optimal scheduling of future energy systems in integrated energy stations.

The FVCS-WPIESmodel has reduced operating costs, battery losses, and pollutant emissions of energy stations with wind and PV power. The

FVCS-WPIESmodel has been comparedwith the conventionalmodel of an integrated energy station with an average distribution of wind and

PV power, and the model has been solved separately using the ANSGA-III algorithm. The results have indicated that the Pareto solution set

solved by the FVCS-WPIES systemmodel proposed in this study has dominated the Pareto solution set of the conventional model. Therefore,

it has been concluded that the FVCS-WPIES model has been more applicable to the optimal scheduling of energy systems in integrated en-

ergy stations than the conventional model. Finally, the Pareto solution set has been determined using the EWMafter solving the FVCS-WPIES
18 iScience 27, 109305, March 15, 2024



ll
OPEN ACCESS

iScience
Article
model. The 252nd solution has been selected as a typical solution for analysis, and the analysis has verified the rationality of the FVCS-WPIES

model.

Limitations of the study

In future studies, the FVCS-WPIES optimization model will be improved to better integrate the actual operating conditions of the integrated

energy station. The FVCS model will heavily depend on actual data and forecasts of wind and PV power generation. Therefore, planning

studies will be required to obtain actual data from integrated energy stations. The uncertainty of the demand of wind/PV and car users

will largely affect the day-ahead optimal scheduling of the integrated energy station, so the robustness optimization of the model will

also be an important research element in the future. Finally, neural networks and deep learning will be combined with many-objective opti-

mization algorithms to improve the solving efficiency of the model, solve the real-time decision-making problem, and realize the real-time

adjustment of the day-ahead scheduling.
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METHOD DETAILS

Future Value Competition Strategy

In the upper-level model, PV and wind power are allocated to the EV charging module, hydrogen production module, and battery storage

systemmodule respectively through a FVCS. Under the background of TOU, the operation and control conditions of the energy systemof the

integrated energy station will changewith the different power of PV andwind power generation at different times, and the benefits generated

will be different. Therefore, the FVCS proposed in this paper changes the previous wind and PV system power distribution in an average way.

The allocation of the active power of the wind and PV in the integrated energy station is controlled by the wind and PV energy allocation

strategy based on target optimization, thus changing the energy share of each subsystem in the integrated energy station. In the optimization

process of the lower-level model (WPIES), the distribution value of wind/PV of each module is random, which affects the electricity purchased

by each module from the grid at each moment, and finally affects the overall income of the integrated energy station. The upper-level model

(FVCS) was used for pre-distribution to solve the power allocation scheme with the maximum total return. After solving theWPIES model, the

return objective function was compared with FVCS in order to enhance the active power distribution value of wind/PV and improve the opti-

mization outcome of the FVCS-WPIES model. The principle of FVCS is illustrated in Figure 7.

FVCS calculates the distribution of active power from the wind and PV system to each subsystem bymeasuring the expected benefit of the

energy generated by the wind and PV flowing into each subsystem of the integrated energy station and solves the optimization model using

the Harris Hawks algorithm (HHO).

To enhance the accuracy of the upper-level model, penalty functions are added to it. Once the lower-level model is resolved, if the actual

operating conditions during time period t fail to achieve the anticipated profit, the objective function value of the upper-level model is penal-

ized. The penalty function can be expressed in the following manner.
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Xm
i = 1

ui maxf0; x1 � x2g (Equation 39)

where ui denotes the penalty weight. x1 denotes the value of the optimized objective function, i.e., the expected profit. x2 denotes the actual

profit after optimization of the lower-level model.
Upper-level model objective function

The objective function of the upper-level model is tomaximize the expectedprofit. Electricity allocated to the hydrogen productionmodule is

converted into hydrogen for HV hydrogenation, and the electricity allocated to the BESS module is sold to the grid. The expected profit

objective function of the upper-level model is shown in Equation 40.

max FFVCS
profit =

XT
t = 1

WBESS;WP
t 3Pprice

discharge;t +WEV ;WP
t 3Pprice

sell;t +WHT ;WP
t 3 hH2

3Pprice
H2

(Equation 40)

whereWBESS;WP
t is the amount of power allocated to BESS through FVCS in time period t. Pprice

discharge;t is the price of electricity sold to the grid in

time period t.WEV ;WP
t is the amount of power allocated to the EV chargingmodule via FVCS in time period t. Pprice

sell;t is the price of EV charging

at time t. WHT ;WP
t is the amount of power allocated to the hydrogen production module through FVCS in time t. Pprice

H2
is the price of selling

hydrogen. hH2
is the efficiency of converting electricity to hydrogen.

The objective function of the upper-level model is to maximize the expected profit. Electricity allocated to the hydrogen production mod-

ule is converted into hydrogen for HV hydrogenation, and the electricity allocated to the BESSmodule is sold to the grid. The expected profit

objective function of the upper-level model is shown in Equation 41.

max FFVCS
profit =

XT
t = 1

WBESS;WP
t 3Pprice

discharge;t +WEV ;WP
t 3Pprice

sell;t +WHT ;WP
t 3 hH2

3Pprice
H2

(Equation 41)

whereWBESS;WP
t is the amount of power allocated to BESS through FVCS in time period t. Pprice

discharge;t is the price of electricity sold to the grid in

time period t.WEV ;WP
t is the amount of power allocated to the EV chargingmodule via FVCS in time period t. Pprice

sell;t is the price of EV charging

at time t. WHT ;WP
t is the amount of power allocated to the hydrogen production module through FVCS in time t. Pprice

H2
is the price of selling

hydrogen. hH2
is the efficiency of converting electricity to hydrogen.
Lower-level models

This section presents the economic, operational and environmental objectives pursued for the optimal operation of integrated energy sta-

tions. At the core of the lower-level model energy management are three objective functions, consisting of maximizing total revenue, mini-

mizing battery losses and minimizing pollutant emissions, respectively.

From the perspective of the operation of an integrated energy station, the total profit of a station is a fundamental goal. Energy manage-

ment of EVs, hydrogen vehicles and the power grid based on TOU canmaximize the operational benefits of integrated energy stations. In this

study, the total profit objective function of the integrated energizing station is shown as flows. The algorithm in the code solves for the min-

imum value of the objective function. Therefore, we take the negative of the total profit objective function in the code to obtain the minimum

value as the result.

max FWPIES
profit = f BCSprofit + f BSSprofit + f EVprofit + f HTprofit (Equation 42)
WBESS;WP
t = WBCS;WP

t +WBSS;WP
t (Equation 43)
8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

f BCSprofit =
XT
t = 1

PBCS
discharge;t 3Dt2 3Pprice

discharge;t �
�
PBCS
charge;t 3Dt1 � WBCS;WP

t

	
3Pprice

buy;t

f BSSprofit =
XT
t = 1

h
0:9CBattery 3NEV ;BSS

t 3Pprice
sell;t � �

WBSS
t � WBSS;WP

t

�
3Pprice

buy;t

i

f EVprofit =
XT
t = 1

PEV
charge;t 3Dt2 3Pprice

sell;t � WEV
charge;t 3Pprice

buy;t

f HTprofit =
XT
t = 1

QHV
t 3Pprice

H2
�
 
DSOCHT

t，t� 1 3CHT

hH2

� WHT ;WP
t

!
3Pprice

buy;t

(Equation 44)

where PBCS
discharge;t and PBCS

charge;t are divided into the discharging power and charging power of BCS at time t. Pprice
buy;t is divided into the price of

electricity purchased from the grid in time t. PEV
charge;t is the charging power of EV at time t.WEV

charge;t is the amount of electricity purchased from
22 iScience 27, 109305, March 15, 2024
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the grid by the EV charging module at time t. QHV
t is the weight of hydrogen required for HVs in time period t. DSOCHT

t，t� 1 is the change in

hydrogen SOC of HT in time t and time t-1.

Reducing the battery storage system of integrated energy station can effectively increase the operating life of integrated energy station.

The main factors of battery wear are related to the number of cycles, operating temperature, charging and discharging efficiency, DOD, SOC

and end-of-charge voltage (EOCV) [42]. Therefore, in the WPIES model, the wear factor (kW$h/kW$h) for Li-ion batteries with the same ACC-

DOD characteristics. This value is mainly related to the change in total battery energy. Ignoring other factors in this application. In this study,

the minimum objective function of the loss of the BESS in the integrated energy station is shown as follows.

min FWPIES
loss = Kw

XT
t = 1

PBCS
charge;t 3Dt1 +PBCS

discharge;t 3Dt2 +WBSS
t (Equation 45)

Where Kw = 0:00015kW,h. This means that each kW$h of charging or discharging of the EV battery will reduce the available energy of the Li-

ion battery by approximately 0.00015 kW h.

Application of the WPIES model will positively reduce global carbon emissions. The load of the integrated energy station is mainly pro-

vided by wind power and PV power generation. In this study, the environmental pollution emissions from the integrated energy station are

mainly caused by the electricity purchased from the grid. Therefore, the objective function is to minimize the emissions of SO2,NOx andCO2.

The objective function is as follows.

min FWPIES
CO2 ;SO2 ;NOx

=
XT
t = 1

WGrid
buy;t 3

�
eCO2

+ eSO2
+ eNOx

�
(Equation 46)
WGrid
buy;t = PBCS

charge;t 3Dt1 +WBSS
t +WEV

charge;t +
DSOCHT

t，t� 1 3CHT

hH2

� WWP
t (Equation 47)

where WGrid
buy;t is the amount of electricity purchased from the grid by WPIES in time period t. eCO2

, eSO2
and eNOx

are the emission factors of

SO2, NOx and CO2 per kW$h from the utility grid, respectively. WWP
t is the amount of wind and PV power generated at time t.
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