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ABSTRACT: Protease substrate profiling has nowadays almost become a routine task for experimentalists, and the knowledge
on protease peptide substrates is easily accessible via the MEROPS database. We present a shape-based virtual screening
workflow using vROCS that applies the information about the specificity of the proteases to find new small-molecule inhibitors.
Peptide substrate sequences for three to four substrate positions of each substrate from the MEROPS database were used to
build the training set. Two-dimensional substrate sequences were converted to three-dimensional conformations through
mutation of a template peptide substrate. The vROCS query was built from single amino acid queries for each substrate position
considering the relative frequencies of the amino acids. The peptide-substrate-based shape-based virtual screening approach gives
good performance for the four proteases thrombin, factor Xa, factor VIIa, and caspase-3 with the DUD-E data set. The results
show that the method works for protease targets with different specificity profiles as well as for targets with different active-site
mechanisms. As no structure of the target and no information on small-molecule inhibitors are required to use our approach, the
method has significant advantages in comparison with conventional structure- and ligand-based methods.

■ INTRODUCTION

Proteases are important targets in drug design, as they are part
of numerous fundamental cellular processes.1 There are seven
distinct classes of proteases, which are classified according to
the catalytic residue: serine, threonine, cysteine, aspartate, and
glutamate proteases, metalloproteases, and asparagine peptide
lyases.2 Among each protease class, the reaction mechanism is
highly conserved. In addition, proteases often have many
closely related family members, and lead compounds often hit
more than one target. Therefore, achieving target specificity
when designing protease inhibitors still represents a difficult
challenge.3

Current virtual screening strategies to find new small-
molecule inhibitors can be divided into two groups: ligand-
based approaches and structure-based approaches. To apply a
ligand-based approach, information on one or more ligands that
can bind to the target is required. From the set of known
actives, structurally diverse compounds with similar bioactivity
should be discovered.4

Structure-based methods require either an X-ray or NMR
structure or a homology model of the target. Of the structure-
based methods, docking and scoring is the most used method
in virtual screening. However, finding the correct binding

conformation through a docking experiment remains a
challenging task.5 Consideration of the flexibility of the protein
and ligand is not easy to achieve, even with flexible docking
methods.6 Another structure-based method is pharmacophore-
based virtual screening.7 The “stripping” of functional groups
has the advantage that scaffold hopping is possible if topological
pharmacophores are used.8

Shape-based virtual screening with ROCS9 is an alternative
to docking and pharmacophore-based virtual screening.10

Virtual screening results with ROCS show higher consistency
than the results of docking strategies. Inclusion of the
pharmacophore properties of the query molecule allows a
combination of the chemical information and the information
about the shape when screening for small-molecule inhibitors.
Screening of the DUD database11 using a combination of shape
and pharmacophore properties revealed a superior performance
of ROCS relative to docking approaches.12

With methods like proteomic identification of protease
cleavage site specificity (PICS)13 and terminal isotopic labeling
of substrates (TAILS)14 and the use of proteome-derived
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substrate libraries,13 protease specificity profiles can be readily
determined. In PICS, the carboxypeptide cleavage products of
an oligopeptide library, consisting of natural biological
sequences derived from human proteomes, are selectively
isolated, and liquid chromatography−tandem mass spectrom-
etry (LC−MS/MS) is used to identify the prime side sequences
of the cleaved peptides. Nonprime side sequences are
determined through automated database searches of the
human proteome. PICS thus enables simultaneous determi-
nation of prime and nonprime side sequences of cleaved
peptides.13 N-TAILS allows one to distinguish between N-
termini of proteins and N-termini of protease cleavage
products. Dendritic polyglycerol aldehyde polymers are used
to remove tryptic and C-terminal peptides. Tandem mass
spectrometry is used to analyze unbound naturally acetylated,
cyclized, or labeled N-termini from proteins and their protease
cleavage products.15 C-TAILS complements N-TAILS and
represents an isotope-encoded quantitative C-terminomics
strategy to identify neo-C-terminal sequences and protease
substrates.14 With the availability of those efficient approaches
for protease substrate profiling, the amount of information on
protease peptide substrates is growing every day. With the
cleavage entropy, a metric developed in our group,
quantification of protease specificity and ranking of proteases
according to specificity is possible.16 The MEROPS database
represents the biggest collection of known protease peptide
substrates, and it is constantly being improved and updated.2

We have developed a virtual screening workflow based solely
on the information on protease peptide substrate sequences
present in the MEROPS database that can be used to find new
small-molecule inhibitors. The types of possible interactions of
the substrate peptides are the same as for small molecules.
Therefore, it should be possible to find small molecules that
form the same interactions with a protease as the
corresponding peptide substrates. The idea of using an analysis
of the protease peptide substrate space to find small-molecule
inhibitors per se is not new. Recently it was shown in our group
that proteases that are close in substrate space are often
targeted by the same small molecules.17 Sukuru et al.18

developed a lead discovery strategy based on the similarity of
proteases in the protease substrate space. They recovered the
known inhibitors of proteases that are highly correlated. Their
approach allows one to use a ligand-based approach to find
inhibitors for proteases for which no ligands are known.
However, information on small-molecule ligands for a protease
that are similar in substrate space is needed in order to apply
their method.
In developing a virtual screening workflow that transfers

information on peptide substrate specificity to small-molecule
specificity, we are faced with a complex three-dimensional
problem. The relative positions of the features of the amino
acid side chains in the peptide substrates and the overall shape
of the bound peptide substrates are of high importance. In
addition, the relative frequencies of amino acids in the peptide
substrate sequences have to be considered. As a shape-based
virtual screening method is most suited to address the problem
and ROCS also offers the possibility to selectively weight
pharmacophore features, shape-based virtual screening with
ROCS is the method of choice for our virtual screening
problem.
We tested our method on four targets, thrombin, factor Xa

(fXa), factor VIIa (fVIIa), and caspase-3 (casp-3), which were
selected according to substrate specificity profiles. In addition

to showing different substrate specificities, the proteases also
have different catalytic mechanisms. Thrombin, fXa, and fVIIa
are serine proteases, while casp-3 is a cysteine protease.
Cleavage-site sequence logos for all four targets are shown in
Figure 1. Protease subpockets are termed S4−S4′ on the basis

of the corresponding substrate positions P4−P4′ according to
the convention of Schechter and Berger.19 The peptide’s scissile
bond lies between P1 and P1′.
The developed workflow is schematically depicted in Figure

2.

■ METHODS
Preparation of Substrate Sequence Data. Substrate

sequences were downloaded from the MEROPS database.2

Substrate positions P3−P1 were considered in a first step, as
most known inhibitors for the investigated proteases bind to
the corresponding protease subpockets. For casp-3, tetrapep-
tides ranging from P4−P1 were also explored. Unique tri- or
tetrapeptide sequences were downloaded from MEROPS.

Preparation of Substrate Structure Data. As MEROPS
provides only substrate sequences but no information on
substrate conformations, a way to convert the two-dimensional
sequences into three-dimensional structures is needed. It is
known that proteases universally recognize β-strands in their
binding sites.20 To obtain peptides in β-strand conformations,

Figure 1. Cleavage-site sequence logos for thrombin (168 substrates),
fXa (59 substrates), fVIIa (9 substrates), and casp-3 (651 substrates).
The sequence logos were created with weblogo.23 The height of the
single-letter amino acid code indicates the preference for that amino
acid in the respective subpocket. Thrombin, fXa, and fVIIa show
almost the same substrate specificity in S1 but differ in other
subpockets. Casp-3 shows the typical DEVD substrate specificity of
caspases.24
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we decided to use a mutation strategy based on a known X-ray
structure of a protease−substrate complex downloaded from
the Protein Data Bank (PDB).21 For fVIIa and fXa, no suitable
complex structures could be found, so the same template was
used for the three serine proteases fVIIa, fXa, and thrombin
(PDB code 1FPH22).
For casp-3, a different template was selected, as a template

protease−substrate structure was available (PDB code
2DKO25). The Molecular Operating Environment (MOE)
software26 was used for preparation of substrate conformations.
Only the template peptide substrate positions P3−P1 or P4−
P1 were kept. Mutations of the selected substrate positions
were carried out using the residue scan functionality within the
MOE software The residue scan functionality allows one to
perform single-point or multiple mutations within a peptide
sequence.
Mutating each peptide position independently to all of the 20

amino acids leads to a mutational space of 60 for a tripeptide.
Using the peptide substrate sequence lists, individual amino
acids present in the peptide substrates listed in MEROPS were
extracted from the 60 mutated sequences generated with the
MOE residue scan for each position P3−P1 or P4−P1. The
single amino acids for each substrate position were written to
individual pdb files.

Preparation of Databases. We used the DUD-E data-
base27 for all four of our test cases. Database preparation was
carried out with MOE. Duplicate entries were removed, and
both the actives and decoys of all data sets were subjected to
the MOE wash procedure to disconnect simple metal salts
drawn in covalent notation, remove counterions and solvent
molecules, add or remove explicit hydrogen atoms, and
rebalance protonation states.
For shape-based virtual screening, 25 conformations for each

active and decoy were created with OMEGA.28,29 The actives
database for casp-3 required special attention because several
entries contained not the bioactive but the prodrug form of the
molecule. Prior to conformer generation, we manually
hydrolyzed the lactones in the prodrug structures in MOE.
Potentially covalently bound molecules were kept, as the

interactions directing the ligand into the subpockets should still
be found.

Shape-Based Virtual Screening. To create the query for
shape-based virtual screening, first each individual amino acid
was loaded into vROCS, and the backbone features were
disabled. For alanine, a hydrophobic feature was added because
vROCS did not do this automatically as it did with the
functionalities of the other amino acids. Each amino acid was
then saved as a separate single amino acid query.

Figure 2. Workflow for shape-based virtual screening with vROCS using thrombin as an example. First, a suitable template peptide substrate
structure has to be extracted from the X-ray structure of a peptide substrate complex or manually generated. Only the amino acid positions P3−P1
are kept. With a MOE residue scan, each position P3−P1 is mutated into each of the 20 natural amino acids, leading to a mutational space of 60.
Through comparison with the substrate data downloaded from the MEROPS database, only the mutated amino acids present in the protease
substrate sequences are kept. In vROCS, single amino acid queries without considering the backbone are first created. In a second step, the final
query is created, and single amino acid queries for each position are combined according to the relative frequencies in the protease substrates. The
final query is used to perform a virtual screening with vROCS.
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To create a query correctly representing the relative
frequencies of amino acid side chains in the preferred substrates
of the corresponding protease, the relative frequencies were
first calculated in the following way: Absolute frequencies were
normalized according to the number of unique peptide
substrate sequences and natural occurrence of amino acids.
The normalization by the natural occurrence of the amino acids
was needed to remove the bias in the experimental results30 of
the MEROPS peptide substrate sequences. As vROCS does not
allow the number of times a feature should appear in the final
query to be set, each individual amino acid query has to be
loaded in according to the relative frequency in the protease
peptide substrates. Since vROCS does not handle a large
number of different amino acid queries to be loaded in a large
number of times, we further normalized the frequencies in such
a way that the most frequently occurring amino acid in the
substrate has a frequency of 20. Tables with relative amino acid
frequencies for each protease example can be found in Tables
S1−S5 in the Supporting Information. To build the final query,
each single amino acid query was loaded into vROCS according
to the obtained frequency table. The query was then used in a
ROCS validation run using the prepared actives and decoys
data set. Of the 25 conformations for each active and decoy,
only the highest ranked conformation was kept. Enrichment
factors at X% (EFX%) were calculated according to the following
metric:31

=
N

N
EF

Actives

Actives
X% sampled

sampled

total

total

where Activessampled is the number of actives found at X% of the
screened database, Nsampled is the number of compounds at X%
of the database, Ntotal is the number of compounds in the
database, and Activestotal is the number of actives in the
database.

■ RESULTS
The results of the shape-based virtual screening are summarized
in Table 1. In addition to enrichment factors at 1 and 2% of the
database screened, enrichment factors at 5% are also shown, as
they might be more relevant for industry-scale applications.
Figure 3 shows the receiver operating characteristic (ROC)
curves for the results listed in Table 1. The results of
performing the virtual screening using the query of one
protease with the data set of the other protease are shown in
Table 2.

■ DISCUSSION
Thrombin. The results for thrombin are lowest in terms of

area under the curve (AUC) when screening the DUD-E
database, but at the same time, the early enrichment is highest.

The highest-ranked decoys for thrombin all show the
guanidine functionality at the P1 position, which is also
fundamental for substrate recognition in the thrombin peptide
substrates.32

With regard to shape as well as chemical functionalities, the
highest-ranked decoys look like classical thrombin inhibitors
(Figure 4).33 The lowest-ranked actives on the one side are
smaller than the ROCS query, which leads to a penalty in
volume overlap and thus to a lower ranking. In addition, most
of them do not have the characteristic thrombin interacting
groups and in general miss functional groups that allow for
strong selective interactions with the binding site.

Factor Xa. In the same way as for thrombin, the highest-
ranked decoys for fXa all contain the guanidine group and are
shaped like classical fXa inhibitors. The number of peptides
used for creation of the ROCS query for fXa is much lower
than for thrombin, as in comparison there is little data in the

Table 1. ROCS Resultsa

protease AUC EF1% EF2% EF5% Nsubstrates(MEROPS) Nactives Ndecoys

thrombin 0.66 20.36 19.51 9.65 168 369 25174
fXa 0.74 15.98 13.08 7.80 59 413 24893
fVIIa 0.84 4.30 2.79 8.19 9 68 1782
casp-3 (P3−P1) 0.75 0.50 0.50 1.69 651 199 10666
casp-3 (P4−P1) 0.74 1.99 2.48 2.58 651 199 10666

aThe AUC values are better for fVIIa and casp-3 than for thrombin and fXa. However, thrombin and fXa show high early enrichment values. The
results for fVIIa show that even without a low number of known substrate sequences, high AUC values and early enrichment can be achieved. The
numbers of ranked actives and decoys in the data set are included, as the results for AUC and early enrichment are dependent on them.

Figure 3. ROC curves for all examples and data sets. Early enrichment
is high in all cases except for casp-3.

Table 2. Validation Runs for Shape-Based Virtual Screeninga

validation run AUC

casp-3 with thrombin query 0.56
casp-3 with fXa query 0.63
casp-3 with fVIIa query 0.56
fXa with thrombin query 0.70
thrombin with fXa query 0.73

aThe AUC values for the validation runs with the casp-3 data set show
that actives are not found if the query from a different protease is used.
The results for both the thrombin and fXa data sets show that it is not
possible to differentiate between fXa and thrombin ligands, as their
substrate specificities are too similar.
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MEROPS database about fXa substrates. Despite the limited
number of available substrates, the AUC values are quite high
when screening the DUD-E database.
Factor VIIa. Also in fVIIa the highest-ranked actives and

decoys all possess the guanidine functionality at the S1 binding
position. In the case of fVIIa, the lowest-ranked actives miss the
guanidine functionality. They even possess negatively charged
groups in some cases, in contrast to the substrate specificity at
the S1 position (Figure 5). For fVIIa there are only nine
substrates listed in the MEROPS database, which is even fewer
than for fXa. Therefore, for fVIIa the vROCS query might miss
some important information because of incomplete substrate
data. However, in view of the low number of known substrates,
it is impressive how good the method performs in terms of
AUC and early enrichment.

Caspase-3. In the case of casp-3, the carboxylate group at
the S1 position seems to be required for the compound to be a
high-ranked active or decoy (Figure 6). Interestingly, among
the highest-ranked actives, several of them are prodrugs.34 If the
lactone functionality in the prodrugs is not opened and
converted to the bioactive form, they are ranked lowest in the
virtual screen. However, if used in their bioactive form, small
molecules that are administered in prodrug form are among the
highest-ranked actives. As casp-3 shows typical DEVD
specificity25 and thus also high specificity at S4, for casp-3 we
used a model based on positions P3−P1 as well as a second
model based on P4−P1. Using a broader substrate position
range did not considerably improve the AUC and early
enrichment. However, different actives and decoys were ranked
highest, depending on how many substrate positions were used.

Figure 4. Highest-ranked decoys and actives and lowest-ranked actives when screening the DUD-E validation database. Both the highest-ranked
actives and decoys possess guanidine-like functionalities at the P1 position, which are also preferred in the peptide substrates of thrombin. The
lowest-ranked actives do not show the typical functional groups present in the thrombin peptide substrates. In addition, some of the inhibitors are a
lot smaller than the query, which results in a large shape penalty.

Figure 5. Lowest-ranked actives of fVIIa. Some actives are ranked low despite possessing the guanidine functionality important for binding to the S1
subpocket. This is probably caused by missing information in the vROCS query, as there are only nine substrates listed for fVIIa in the MEROPS
database.
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The lowest-ranked actives were similar for both substrate
position ranges, however.
Importance of the Template Peptide. As the results of

the shape-based virtual screening runs may very much depend
on the query conformation, we investigated the importance of
the template peptide. We compared the results of using either a
thrombin protease−substrate complex as the template for the
mutation strategy or a casp-3 protease−substrate complex for
fXa and fVIIa, for which there are no protease−substrate
complexes available in the PDB. The results in Table 3 show
that for the fXa DUD-E validation runs, the results do get a
little worse in terms of AUC and early enrichment when a casp-
3 protease−substrate complex is used as the template for the
mutation strategy instead of a thrombin protease−substrate
complex. For fVIIa the AUC is not affected by using a different
protease−substrate complex as the template for the mutation
strategy. Only the early enrichment values decrease a little
when the casp-3 protease−substrate complex is used as a
template instead of the thrombin protease−substrate complex.

The results show that the mutation strategy works even when
the peptide substrate sequences and the template peptide show
low sequence identity. As long as a template peptide in an
extended β-sheet conformation is available, our method can be
applied.

Comparison with Alternative Virtual Screening Strat-
egies. The main advantage of our method is that it does not
require a structure or knowledge of any small-molecule ligands
for a virtual screening to be performed when dealing with a
protease target. Only information on protease substrate
sequences is required. If there are no substrates for the desired
protease target listed in the MEROPS database, substrate
specificity profiling is done rather quickly, in comparison with
generating a structure or finding small-molecule inhibitors.
The advantage compared with the method of Sukuru et al.18

is that we directly transfer the information about the known
peptide substrates for a protease to the small-molecule space.
Thus, to find new inhibitors no prior knowledge of small-
molecule ligands is required.

Figure 6. Examples of high-ranked actives and the lowest-ranked actives for casp-3 when substrate positions P3−P1 were used. It should be noted
that CHEMBL329917, CHEMBL101545, and CHEMBL327298 were used in their bioactive form in the virtual screening experiments, which means
that the lactone ring present in the prodrug form was opened. The lowest-ranked actives are small and do not possess the negatively charged group
that could interact favorably with the S1 subpocket of casp-3. This leads to a high shape penalty in shape-based virtual screening and to a lack of
matching functional groups with the vROCS query.

Table 3. Influence of Different Protease−Substrate Complex Templatesa

protease AUC EF1% EF2% Nsubstrates(MEROPS) Nactives Ndecoys

fXa (thrombin protease−substrate complex template) 0.74 15.98 13.08 59 413 24893
fXa (casp-3 protease−substrate complex template) 0.68 6.54 10.66 59 413 24893
fVIIa (thrombin protease−substrate complex template) 0.84 4.23 2.79 9 68 1782
fVIIa (casp-3 protease−substrate complex template) 0.84 2.86 2.21 9 68 1782

aThe AUC values and enrichment factors for the DUD-E screening for fXa decrease when a casp-3 protease−substrate complex template is used
instead of a thrombin protease−substrate complex template. For fVIIa the choice of protease−substrate complex template has no effect on the AUC,
while the early enrichment is slightly lower for the casp-3 protease−substrate complex template.
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As ROCS uses a very fast and efficient algorithm for the
virtual screening runs, hundreds of thousands of molecules can
be screened within hours. In combination with the easy
accessibility of the data required for building the query, our
method has significant advantages over docking and other
structure-based methods as well as ligand-based approaches
using small-molecule ligands as the basis for virtual screening
experiments.

■ CONCLUSION
We have presented a method that enables the fast and efficient
derivation of a model derived from protease peptide substrate
data that can be readily applied to screen for small-molecule
ligands. We have applied it to four different proteases that cover
different active-site mechanisms, substrate specificities, and
binding-site shapes. In all four cases, the method performed
well in terms of AUC and early enrichment. Even in the case of
fVIIa and fXa, where available substrate data is limited, the
method successfully recovered actives from the very challenging
data sets prepared from the DUD-E database. The workflow
described herein represents the first approach to use protease
substrate sequences as the training set for a virtual screening
experiment. As the query creation in vROCS allows one to
include information on the relative frequencies of amino acids
of substrates in the respective subpockets and focus on the
properties of side chains in substrates, scaffold hopping is made
possible. The method can easily be applied to different protease
systems. Thus, we believe it can also be applied to members of
other enzyme types, such as kinases. In summary, we have
developed a new tool to be used for rational drug design,
allowing the huge amount of data on protease substrates to be
used for finding new small-molecule inhibitors.
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