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Abstract

Study Design: Narrative review.

Objectives: This review aims to present current applications of machine learning (ML) in spine domain to clinicians.

Methods: We conducted a comprehensive PubMed search of peer-reviewed articles that were published between 2006 and
2020 using terms (spine, spinal, lumbar, cervical, thoracic, machine learning) to examine ML in spine. Then exclude research of
other domain, case report, review or meta-analysis, and which without available abstract or full text.

Results: Total 1738 articles were retrieved from database, and 292 studies were finally included. Key findings of current applications
were compiled and summarized in this review. Main clinical applications of those techniques including image processing, diagnosis,
decision supporting, operative assistance, rehabilitation, surgery outcomes, complications, hospitalization and cost.

Conclusions: ML had achieved excellent performance and hold immense potential in spine. ML could help clinical staff to
improve medical level, enhance work efficiency, and reduce adverse events. However more randomized controlled trials and
improvement of interpretability are essential to clinicians accepting models’ assistance in real work.
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Introduction

Due to popularity of soft computing approaches, artificial intel-

ligence (AI) had made great impact on every aspect of daily

life. AI techniques are revolutionizing medical domain by per-

forming complex and huge computational tasks. Nowadays AI

had made major progress in healthcare administration, clinical

decision support, patient monitoring and healthcare interven-

tions.1,2 As the most promising branch of AI, machine learning

(ML) automatically predict outputs based on features of inputs

through algorithms.3,4 ML have natural advantage of handling

big data comparing to traditional statistical methods. They have

more superior accuracy and repeatability than conventional

models and even expert operators. ML could provide subtle

information, which cannot detected by eye in desired image

tasks.5 In the era of big data, ML will dramatically improve

diagnostic accuracy and prognosis.3,6

Publications about applications of ML in spine significant

increased recently. However, the development of those tech-

niques for spine are still in infancy. Before clinicians adopt ML

in the practical work, preclinical steps are raising their atten-

tion, establishing elementary cognition and getting involved in

research. We aim to introduce current applications of ML in

spine to clinicians. Then identify opportunities and utilization

potentiality of future research.
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Methods

We conducted a comprehensive PubMed search of peer-

reviewed articles that were published between 2006 and 2020

using terms (spine, spinal, lumbar, cervical, thoracic, machine

learning) to examine ML in spine. Then exclude research of

other domain, case report, review or meta-analysis, and which

without available abstract or full text.

Results

Total 1738 articles were retrieved from database, and 292 stud-

ies were finally included. Count of articles significantly

increased in past 3 years, that indicates growing interest of

researchers. Key findings of current applications were com-

piled and summarized in this review.

Machine Learning

In 1959, Arthur Samuel defined “machine learning” as giving

computers the ability to learn without being explicitly pro-

grammed.7 Simply put, ML is that algorithms get the ability

of making decisions or predictions through learning data. Mod-

els present an analysis and generate desired outputs basing on

inputs features. Main ML tasks contain classification, regres-

sion, clustering, and dimensionality reduction. ML process

comprised by data collection, data preprocessing, feature engi-

neering, model selection, training, model evaluation and opti-

mization. Data collection is an important step, as quality and

quantity of data directly affect outcome. Secondly, data pre-

processing is to make data usable for computation, improve

accuracy, and shorten calculation process. Feature engineering

is creating features from raw data using domain knowledge.

That largely determines the final algorithms performance,

which can be broadly classified as feature extraction, feature

construction and feature selection. Next, dataset is divided into

training set, cross validation set, and testing set. Models are

built and trained on training sets. Then models are scored in

cross validation set for selecting better one. And various eva-

luation methods should be brought to assess models. For opti-

mization, the most basic method is gradient descent algorithm,

which minimize loss function through iterating.

ML was classified into supervised learning, unsupervised

learning and reinforcement learning according to different

forms. Supervised learning is that a learner describes the

input-output relationship based on labeled input variables with

a grounded truth.8 A model analyzed the training data to

synthesize the pattern between independent variables and

dependent variables. Then the testing dataset is to be predicted.

In contrast, the unsupervised learner describes relationship of

input-output basing on unlabeled inputs.9 Algorithm analyses

input data features to identify clusters of data.10 Reinforcement

learning is that the learner constantly interacts with environ-

ment to find the best strategy through trial and error for max-

imizing rewards.11

Three common ML models are decision tree learning, sup-

port vector machines (SVMs), and artificial neural networks

(ANNs). Classification and regression decision tree (CART)

implements a classification or a regression task, which is more

visible and easier to understand than other modalities. The tree

comprises internal nodes (conditions), branches (decisions),

and leaves (ends), that is not computationally intensive and

therefore suitable for big data5,12 (Figure 1). SVMs accom-

plishes classification tasks by creating a maximum margin

hyperplane between 2 outcomes, or regression tasks by plotting

Figure 1. Schematic representation of decision tree learning algorithm.
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a best-fit plane13 (Figure 2). ANNs is a deep machine learner

inspired by how neurons connected and interacted in brain.10

Constructing in Hebbian learning, single neurons comprises an

entire network, where information flows from the inputs layers

to the outputs layers through multiple hidden layers, operating

by weights5 (Figure 3).

Underfitting and overfitting are 2 classical problems in ML.

If a model is too simple to fully learn features of training data, it

will present low accuracy both on the training set and test set,

which is called underfitting. Overfitting is that a model per-

forms well on training set, but poor on test data, since adjusting

too closely to former. The model memorizes specific training

observations, but cannot actually extract generalizable relation-

ships between variables.14 Common solutions of overfitting are

increasing sample, regularization, and dropout technique.

Image Processing and Diagnosis

Image processing. Intention of developing ML is to reduce man-

ual labor and save time for tasks needed judgment.15,16 Loca-

lization, segmentation, grading, calculating parameters of

image are time-consuming works, which should be accurately

performed by algorithm. Several models accurately detected

and quantitative measurement, comparable with human-

generated segmentations. Rak et al proposed a novel approach

to automatically segment vertebrae in three-dimensional

MRI.17 That CNN combined with a graph cut formulation

based on encoding swaps, which segments multiple vertebrae

without risking ambiguous segmentations of adjacent verteb-

rae.17 FU-Net combined traditional region-based level set with

CNN to accurate segment vertebrae, and outperformed other

techniques.18 Overall, deep learning pipelines for segmenting

vertebrae and intervertebral discs (IVDs) on MRI provided

high accuracy and eliminated laborious manual labeling.19,20

Paugam et al used supervised neural networks to perform

single-class or multi-class segmenting the grey and white

Figure 2. The simple support vector machine as a binary
classification.

Figure 3. The deep artificial neural network comprised by input layer, output layer, and multiple hidden layers.
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matter of spinal cord on MRI, which showed good results on

small amounts of data.21 In addition, convolutional neural net-

works (CNNs) model showed state-of-the-art performance for

automated lesion segmentation after spinal cord injury (SCI).22

Volumes extracted from lesion segmentation were significantly

associated with patient motor scores, that will potentially help

to advance modernized SC MR image analysis for both

research and clinical application.22 Likewise, ML algorithms

were trained to segment lumbar spinal canal areas on axial

views of lumbar MRI.23 And deep multiscale multitask learn-

ing network (DMML-Net) achieved highly accurate localiza-

tion and grading of neural foramina, surrounding vertebra and

discs for the pathogenesis-based diagnosis of lumbar neural

foraminal stenosis.24

Besides segmentation, models were also developed for auto-

matically identifying organ and lesion. Jimenez-Pastor et al

introduced a 2-stage decision forests and morphological image

processing technique to automatically detect and identify ver-

tebral bodies from arbitrary field-of-view body CT scans.25

Vertebrae automatic detection network achieved satisfying

accuracy and precision on CT or unannotated MRI.26,27 An

automated framework could detect myelopathic areas, combin-

ing diffusion tensor imaging (DTI) metrics with SVM.28

Another random forest (RF) model29 had potential benefit of

diagnosing and locating the level of cervical injury in CM,

using time-frequency components of somatosensory evoked

potentials.

Algorithms had automatic measured parameters of spine,

comparable to manual measurements. There were fully auto-

matic algorithms to evaluate of lumbar lordosis and Cobb angle

for scoliosis.30,31 A CNN model was able to determine the

spine shape and calculate posture parameters in biplanar radio-

graphs, which could act on intervention in deformities or

degeneration.32 Another novel cascade amplifier regression

network robustly auto-mated quantitative measure spine on

T1-weighted MR.33

Diagnosis. In the outpatient primary care setting, a general prac-

titioner must determine to refer a patient to spinal subspecialist

for consultation when discover specific radiographic findings,

however large proportion of referrals ultimately fail to meet

criteria for surgical intervention.34,35

ML could provide auxiliary information to optimize the

referral process and save time of patients and surgeons.34 Deep

learning had been reported to successfully apply for diagnosis

of liver masses, parkinsonian disorders, hip fractures and esti-

mating bone age.36-40 Combining multiple data, ML can pro-

vide accurate diagnostic predictions and risk warnings. With

increasing applications of CNNs to radiological imaging, AI

was expected to gradually change clinical practice.41

ML obtained fine diagnostic accuracy in disease prediction

and differentiation, mainly running through radiological ima-

ging. A deep neural network (DNN) had predicted cervical

myelopathy (CM) based on MRI.42 CNNs had well differen-

tiated spinal schwannomas and meningiomas as well as tuber-

culous and pyogenic spondylitis using MRI.43,44 Likewise,

ML methods had been developed for preoperative differentia-

tion of cancer based on 3D CT, enhanced CT, and enhanced

MRI.15,45-47

Similarly, clinical and radiographic data-driven ML models

showed excellent prediction of radiographic progression in

axial spondyloarthritis (axSpA).48,49

ML models could obtain features that cannot be detected by

naked eye. Texture features of IVDs and endplate zones are

different between people with and without low back pain

(LBP), that may not be consistently discovered by clinicians.50

RF and linear mixed-effect model analysis identified texture

features from lumbar MRI to assist surgeons recognizing peo-

ple with LBP.50 Intermittent claudication may cause by multi-

ple diseases, like lumber spinal canal stenosis (LSS) and

peripheral arterial disease. Texture analysis with ML offered

highly reproducible quantitative parameters that increase accu-

racy for severe LSS detection. A decision tree classifier

revealed higher performances for LSS grading compared to

qualitative assessments using the reference cut-off cross-

sectional area (CSA).51

ML also added extra information from other disease exam-

ination or routine screening. These features may overlook by

specialist who just focus on their domain. Additional health

assessment will enhance healthcare, save payment and

decrease examinational radiation. Several tools tended to be

excellent approaches for distinguishing osteoporosis, such as

metabolites, low-frequency guided waves, ocal classification

of CT textures, segments of DXA images, and spine radio-

graphs.52-61 Currently a few deep learning models predicted

high-risk osteoporosis populations using spine X-ray.62 The

best method employed VGGnet for feature extraction and RF

training.62Yasaka et al63 operated a CNNs with lumbar verteb-

rae CT to output BMD, which significantly correlated with

DXA’s outcome and perform better than vertebrae CT values.

Models could be applied to predict osteoporosis through

abdominal CT or chest CT that widely used in daily clinical

practice.63,64 Likewise, SVM classifiers could use dual-energy

X-ray absorptiometry (DEXA) studies to identify lumbar spine

fractures routinely.65 Jamaludin et al developed an automatic

ML model to accurately identify and quantify scoliosis from

total body DXA.66

Besides intuitive radiomics, ML combining various auxili-

ary examination can provide accurate diagnosis. LBP has phy-

siological relationships with abnormal muscle activation.67

Clinically interpretable models produced good to excellent pre-

dictive capability to LBP using functional kinematic and elec-

tromyography (EMG) variables with FDboost.67 Another SVM

analyzed two-dimensional walking motion, and classified the

underlying disease of the intermittent claudication with 79.7%
accuracy.68 Also SVM had applied to distinguish chronic lum-

bar radiculopathy on electroencephalography (EEG).69 In addi-

tion, ML may offer the initial suspected diagnosis based on a

simple test which is more available in regions with limited

medical resources.70 Objective functional impairment (OFI)

could provide hints for the suspected cause of back and leg

pain, for which Staartjes et al carried out five-repetition sit-
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to-stand test combining with a ML algorithm.71 Tan et al72

developed and validated a natural language processing (NLP)

system to identify 26 findings related to LBP from x-ray and

MR radiology reports. Furthermore, deep learning algorithms

were devised for automatic scoliosis screening and classifica-

tions, using unclothed back images.73

Treatment

ML models had been put into treatment decision-making pro-

cess, such as surgery level, instrumented vertebra and correc-

tion range. SpineNet automatically generated MRI grading to

predict the surgical level of single-level decompression.74 It

calculated an aggregate score of grading for the following:

central canal stenosis, disc narrowing, disc degeneration, spon-

dylolisthesis, upper/lower endplate morphologic changes, and

upper/lower marrow changes. For adult spinal deformity cor-

rection, an ANN successfully mimicked lead surgeons’ deci-

sion making in selection of the upper instrumented vertebra.75

In another literature, Shen et al76 presented a new classifier to

assist surgeons optimizing surgical plan and therapeutic man-

agement. The method classified adolescent idiopathic scoliosis

(AIS) using a fuzzy clustering algorithm and 3D parameters

describing characteristics of deformity.76 More recently, a

decision tree identified optimal range of spontaneous lumbar

Cobb correction in Lenke 1 AIS.77 Also, a semi-automatic

method had been built to classify scoliosis severity and treat-

ment group with 3D markerless surface topography scans.78

And approaches were proposed to predict curve shape varia-

tion, curve types and progression in AIS.79-81

Recently scholars built models to automatically provide

measurements of implants, placement trajectories, pedicle

screw planning and surgical navigation.82-84 An automated

pedicle detector provided robust quasi-automated pedicle loca-

lization by calculating vertebral axial rotation values in frontal

radiographs of scoliosis with minimal user intervention.85 That

was useful to vertebral rotation estimation and 3D spine recon-

structions. Another intraoperative 3D pedicle screws naviga-

tion system’s accuracy was 86.1%.83 von Atzigen et al

proposed a purely ML marker-less surgical navigation to bend-

ing rod implants.86 This method required significantly less time

than the marker-based benchmark navigation approach needed

to contact with anatomy and achieved better or comparable

accuracy.86 Other pullout strength models had predicted com-

bination of density, insertion depth, and insertion angle for the

chosen range, for understanding pedicle screw pullout and pre-

surgical planning.87,88 Besides, deep learning-based framework

could automatically adjust the C-arm pose to a desired standard

projection from the first X-ray, and localize needle target for

epidural needle placement in ultrasound images.89,90

AI combining with virtual reality simulation provide safer

training and objective assessment of surgical skills, leading to

improved patient care. ANNs will gain insight into the impor-

tance of virtual reality surgical simulators for surgical training.

Mirchi et al performed ANNs to distinguish safety metrics in a

virtual reality-simulated anterior cervical discectomy

scenario.91 An ML tool assessed surgical expertise in a virtual

reality spine procedure, and potentially apply to ensuring sur-

geons’ technical competency in future.92 Additionally, identi-

fying patterns of surgical practice will be an important step to

understand surgical processes. Researchers built a framework

to automatically identify practical patterns for discriminating

different experience surgeon from surgery recordings.93

In rehabilitation of SCI patients, ML framework could sup-

port researchers and clinicians for selection of epidural stimu-

lation parameters.94 During electrically evoked contractions,

SVM increased safety by adapting the functional electrical

stimulation parameters in motor complete SCI individuals.95

Another three-steps ML model provided monitor of tenodesis

grasp based on egocentric video at home, that implied remote

cSCI therapeutic guidance.96

Prognosis

Clinical outcomes. Preoperative prediction for clinical outcomes

could enhance informed patient consent, reduce drug consump-

tion, promote recovery and personalize shared decision-mak-

ing.97,98 ML algorithms indicated that lower preoperative

PROMIS scores, fewer comorbidities, and certain sociodemo-

graphic factors increased the likelihood of achieving minimal

clinically important difference (MCID), which helps surgeons

to determine the appropriateness and timing of surgery.99 Algo-

rithms had been explored for analyzing of multiple data(patient

demographics, clinical presentation, DTI maps) to determine

the prognosis in CM.100, 101 A few models were designed for

predicting outcome like, VAS, ODI, mJOA, and invasiveness

score based on preoperative factors in lumbar disc herniation

(LDH) or LBP patients.14, 102-105 Similarly, ML meaningful

predicted survival outcomes of spinopelvic chondrosarcoma,

ependymoma, malignant peripheral nerve sheath tumor and

spinal metastases patients.106-110 In spinal metastatic disease,

SORG algorithms had been externally validated for survival

prediction.111, 112

Complications. Adverse events (AEs) following spine surgery

negatively impact patients, surgeons, and the health care sys-

tem. Therefore, it is critical to build predictive models for

investigating factors associating with AEs and develop risk

stratification strategies.113 Researchers presented a set of pre-

dictive models for postoperative AEs. They accounted for

patient-, diagnosis-, and procedure-related factors which could

contribute to timely intervene, patient-counseling, accurate risk

adjustment, and quality metrics. Algorithms accurately pre-

dicted the risk of proximal junctional kyphosis and spinopelvic

compensation for long level fusion surgery.114 115 ANN and LR

models achieved better performance than the ASA classifica-

tion for predicting complications of ACDF.116 ML were more

accurate than ASA scores for complications risk factor analy-

sis.117 118 Also, Natural language processing (NLP) algorithms

automatically detected incidental durotomies, intraoperative

vascular injury, and postoperative wound infection in lumbar

surgery.119-121 As a result, ML algorithms could provide
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prediction of AEs, improve risk stratification and help guide

the surgical decision-making process in spine surgery.122

Hospitalization and Cost

Hospital readmission and prolonged length of stay (LOS) will

bear a great burden to the healthcare system. ML improved

understanding of predicting readmission after spinal sur-

gery.123, 124 Risk features includes returning to operating room,

septic shock and superficial surgical site infection.123 A RF

model suggested demographic features may contribute more

readmission risk than perioperative variables.125 Similarly,

models recommended that non-electively admitting and stay-

ing in ICU need additional attention to avoid unanticipated

prolonged LOS following spine surgery126

Likewise, ML was employed to predict the medical costs

of spinal fusion, and inform hospital strategy to increase the

financial management efficiency.127, 128 Agglomerative hier-

archical clustering was applied to identity factors associated

with higher 2-year post-surgical costs, containing greater uti-

lization of antidepressants, opioids, and behavioral health

services.129

Discussion

Although ML models has got fine outcome currently, there is

still more effort need to make for ML development in the

practical spine work. Several limits hinder the application of

ML. First, single kind data and small size sample cannot well

represent complex disease. Then traditional models may have

similarly or even better predictive ability than deep learning in

the low order of magnitude data. But deep learning has super-

iority in processing big data and figuring out complex relation-

ships between variables.130 More advanced algorithms should

be leaded in this field. Finally, we discuss the outlook and

challenge of ML.

1. Data

The clinical dataset is typical multimodal heterogeneous

data including, clinical indicators, images, genetic data and

biomarkers. Doctors need to cautiously offer a proposal in

view of individual difference and various comorbidity. How-

ever, studies mainly based on one kind data like pharmaceu-

tical, clinical or imaging data.74, 102, 131 For instance,

predication from pharmaceutical data couldn’t achieve clin-

ical causes of risk factors without complete clinical, sympto-

matic and imaging data.131 In another article for postoperative

endpoints, predictive tool did not consider features such as

quality of life and objective functional impairment, anxiety

and depression, severity of stenosis, comorbidities, or neuro-

logical deficits.97 In a word, based on single kind of data

models was hard to be fully convinced by decision makers,

and provide substantial assistance. It is essential that combin-

ing multimodal heterogeneous data to improve value of out-

come. In the future, deep learning will establish a connection

of radiomics, proteomics, and metabolomics.132 Another

common issue is small size of sample, which is expediently

obtained to medical staff. With many variables, department

level data may lead to overfitting and poor performance. Mul-

ticenter data is crucial to ML performance. Also, single center

analysis needs external validation from multiple institutions

to guard against institutional biases.133

2. Transfer learning:

In medical domain, lacking huge training data is a prominent

problem. Main cause are expensively professional preproces-

sing tasks and privacy protection. Fortunately, we can build a

model using annotated data that similar with target data, and

then employ transfer learning methods. Transfer learning is

that applying models learned from old field, in a new field

through similarities of data, tasks, or models.134 The meaning-

ful approach can utilize existing large image datasets to per-

form image analysis and obtain even faster convergence and

higher accuracy than training from scratch.135, 136 This process

identifies and integrates one or more types of domain knowl-

edge relating to the designated task for improving deep learn-

ing models performance.137 Recently, transfer learning was

employed in deep learning tasks, as pathology image analysis

and COVID-19 screening.138, 139

Unsupervised domain adaptation (UDA) is a type of trans-

fer learning with restrictive conditions. It is necessary that

source domain and target domain have same label space, fea-

ture space, and conditional probability distribution. With

labels only from the source domain, UDA could promote

neural networks performance on target domain. That

especially suits for medical field, as quite labor-intensive

annotating and commonly lack of annotated datasets.137 The

effectiveness of UDA had been proved in chest X-ray

segmentation.140

In addition, treating issues as many single tasks (diagnosis

or prognosis) will ignore the correlation information of

tasks. Multi-task learning (MTL), another domain of

transfer learning, is a suitable solution to this problem. The

approach is learning multiple related tasks together and

sharing information, they learned. Main goal of MTL is to

improve generalization ability by using specific domain’s

information in multiple related tasks training.141 Extra

information can enhance performance of the current task,

such as generalization accuracy, learning speed, and compre-

hensibility. Pan et al presented a multi-task disease progres-

sion model based on hierarchical attention mechanism,

that focus on different features and medical records.142 In

the future, it is significant that a comprehensive deep

learning model simultaneously work out spine diagnosis and

prognosis tasks.

For privacy protection, the federated transfer learning

(FTL) is a method that different participants first respectively

train models on their own data. Then encrypt models and

data for avoiding disclosure of participants’ privacy. On this

basis, these models are joint trained to get the final optimal

model, which will be returned to each participant.143 The
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FTL framework could improve original ML algorithms,

that has been verified on public datasets, such as NUS-

WIDE and Default-Credit datasets.144 Also, privacy-

preserving FTL had been proposed to extract common

discriminative information from multi-subject EEG data for

EEG classification.145

3. Disease progression models:

Spinal degenerative diseases, main component of spinal dis-

eases, are typical chronic diseases. Models were necessary to

gather data at different time points from time series database,

obtain pattern of disease progression and make accurate pre-

diction, in order to timely intervention and avoiding progres-

sion or deterioration of diseases. Disease progression models

(DPMs) is employed to characterize the course of disease pro-

gression from longitudinal health records, for early detection

and precision care at the appropriate time.146 DPMs had been

applied in progression of Alzheimer’s disease (AD), and breast

cancer lung metastasis.147-149 For instance, Hidden Markov

models (HMMs) could infer discrete latent states and transi-

tions between inferred states from time-varying multivariate

data.146 Kwon et al used HMMs and its variants to discover

disease states and make inferences of health states for chronic

patients.146 For doctors understanding patient status and pro-

gression patterns, they developed DPVis incorporating HMMs

to seamlessly integrates HMMs’ parameters and outcomes into

interpretable and interactive visualizations.146 Oxtoby et al

used 2 generative data-driven DPMs to extract patterns of

observable biomarker changes in dominantly-inherited

AD.149 Their models reveal probabilistic sequences of biomar-

ker abnormality and estimates of biomarker trajectories

through a non-parametric differential equation model from a

cross-section of short-term longitudinal data.

4. Incremental learning:

AI has a main criticism of catastrophic forgetting, that is when

moving from 1 task to another, models perform well on the new

task, but underfit the old one. It is due to original data memory

is overwritten by new one. We hope models get ability of

gradually sustained accumulating knowledge like human.

Incremental learning is constantly learning knowledge from

new data and preserving most of previous knowledge.150 The

learning could avoid historical data occupying storage space.

On the other hand, it makes full use of previous results, and

thus significantly saves time for new training. This learning is

mainly applied for big data, especial suitable to medical field.

Common methods of incremental learning including feature

extraction, fine-tuning, joint training, and knowledge distilla-

tion.151 Recently incremental learning has been widely

employed in domains, such as muscle activity and kinematics,

nonconvulsive epileptic seizure, atrial fibrillation, and segmen-

tation anatomical structures.152-155

5. Outlook and challenge:

In the past 2 decades, ML field had been driven by huge devel-

opment of computing power. Currently, the photonic quantum

computer, Jiuzhang, is faster than using the state-of-the-art

simulation strategy and supercomputers by a factor of *1014

on boson sampling task.156 Although, it cannot be used for

other calculation, and still far from practical application at

present. Someday in the future, quantum computer will pro-

duce computing forces beyond classical computers, process big

data with less time and energy dissipation, and extend the scope

of ML.

Although achievement of universal health coverage (UHC)

was policy priority and ultimate goal for both countries and

global institutions, estimated by current projections about

3.1 billion people will still lacking UHC effective coverage

in 2023.157 Several determinants hindered UHC progress, like

wealth inequality, race, gender, caste discrimination, air pollu-

tion, lack of water and sanitation facilities.158 There are a large

number of disadvantaged groups hard to achieve good-quality

healthcare and afford the corresponding cost. In the COVID-19

pandemic era, the global economy is entering a major crisis.

COVID-19 pandemic decreases limited medical resources and

capacity of government financial support. Meanwhile, home

quarantine leads to tremendous sicken people cannot getting

treatment for common disease. Patients and accompanying

members pay more time and expenditure on virus screening

in questing outpatient service. In this special period, illness,

losing job and financial hardship are making matters worse

especially for impoverished people. That lead to poor members

even harder getting good-quality healthcare than at ordinary

times. ML may be powerful approaches to enhance poor peo-

ples’ healthcare, save government medical financial support,

and promote the UHC progress. A study introduced clinical

decision support system (CDSS) support self-referral for

patients with LBP and further referral by healthcare profession-

als, that has the potential to decrease the current long waiting

lines in healthcare.159 Popularization of ML will be a solution

for poor people achieving daily healthcare and confronting

major health event. If they could use an app to get a preliminary

screening of disease, they will get the correct registration of

outpatient and even the initial diagnosis at first time. These

mobile applications could save time, avoid wrong registration,

decrease risk of delaying disease, and relieve pressure of lim-

ited medical resources. Indeed, they could be totally free to

poor members, which will make significant impact on UHC.

With lowest cost, disadvantaged groups could achieve medical

service approaching expert level. In someday, patients could

achieve meaningful advice from ML, including what disease

may have, where to get medical service, and which suitable

expert to perform the operation. These models may remove

disequilibrium of medical resources. They could provide con-

tribution to rational allocation of government medical expen-

ditures, reducing the risk of dissemination disease, saving

insurance expenses of countries and companies.
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As improvement of external performance and interpretabil-

ity, CNNs are anticipated to help radiologists maximize the

value of extracted image, achieve diagnostic excellence,

enhance interrater reliability, and improve workflow for more

timely recommendations.41 ML could also assist surgeons to

decide preoperative patient-specific planning and implant, for

enhancing patient healthcare.160 The computer assisted naviga-

tion systems will be an essential tool to reduce adverse event,

save operative time, and surmount the technical barrier. ML

tools could bring the state-of-the-art technology to the remote

region. An ideal single platform should affords central control

over functions, like data pre-processing, data governance, reg-

ulatory requirements, and operational interaction with existing

electronic health record systems.16 ML has the capacity to

primarily generate structured data from raw electronic health

records, thus it could have a strong impact on hospital analy-

tics, epidemiological studies, and systematic reviews.161

Although AI had tremendous development in healthcare,

only few applications had been actually implemented evaluated

at the frontlines of clinical practice.162 The rigorous and com-

prehensive evaluation of clinical AI needs to be improved by

more robust randomized controlled trials in the future.162 There

were several challenges need to overcome in the further prac-

tical application of ML. Black box is that, most AI technologies

operate largely by an opaque logic, which are hardly under-

standable to users. This ethical challenge limits marketing

approval of AI in medicine. For instance, who is responsible

for misdiagnosis among doctors, system and AI manufacture-

rs.163The local interpretable model-agnostic explanations is a

mean to improve the interpretability of model.164 Another

important hurdle is that the lack of standardized regulations

related to the application of AI in medicine.165 Besides, reward

hacking means that machines find ways to achieve outcomes

that circumvent rules or cheat the system.166

Conclusions

ML had achieved excellent performance and hold immense

potential in spine. ML could help clinical staff to improve

medical level, enhance work efficiency, and reduce adverse

events. However more randomized controlled trials and

improvement of interpretability are essential to clinicians

accepting models’ assistance in real work.
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