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ABSTRACT: The epidermal growth factor receptor (EGFR) is
aberrantly activated in various cancer cells and an important target
for cancer treatment. Deep understanding of EGFR conformational
changes between the active and inactive states is of pharmaceutical
interest. Here we present a strategy combining multiply targeted
molecular dynamics simulations, unbiased molecular dynamics
simulations, and Bayesian clustering to investigate transition pathways
during the activation/inactivation process of EGFR kinase domain.
Two distinct pathways between the active and inactive forms are
designed, explored, and compared. Based on Bayesian clustering and rough two-dimensional free energy surfaces, the energy-
favorable pathway is recognized, though DFG-flip happens in both pathways. In addition, another pathway with different
intermediate states appears in our simulations. Comparison of distinct pathways also indicates that disruption of the Lys745-
Glu762 interaction is critically important in DFG-flip while movement of the A-loop significantly facilitates the conformational
change. Our simulations yield new insights into EGFR conformational transitions. Moreover, our results verify that this approach
is valid and efficient in sampling of protein conformational changes and comparison of distinct pathways.

1. INTRODUCTION

Protein is intrinsically dynamical, and conformational changes
are essential to its functions. Large-scale conformational
rearrangements are involved in signaling transduction, enzyme
catalysis, and protein folding.1 Molecular dynamics (MD)
simulations are a powerful tool to model such motions and
deepen our understanding of the relationship between protein
structure and function.2 Studies of protein conformational
changes and the intermediates that are formed along the
transition pathway provide valuable insights into the process by
which the protein is activated or inactivated. However,
characterization of the transition pathway and intermediates
as well as establishing their role in conformational rearrange-
ments remains a major challenge.
To tackle this problem, a plethora of methods have been

developed to enhance sampling of the conformational change,
which is a rare event. A straightforward approach is to run
ultralong unbiased MD simulations.3 It is, however, still difficult
to obtain adequate sampling of conformational changes which
usually occur on microsecond to millisecond time scales or
beyond, especially for a large biomolecular system. To
overcome this limitation, a variety of biased methods have
been proposed. One approach aims to speed up conformational
transitions by use of elevated temperatures or a biasing
potential such as parallel tempering or replica exchange MD
(REMD),4,5 umbrella sampling,6 metadynamics,7,8 accelerated

MD,9,10 temperature-accelerated MD,11 adaptive biasing
force,12 and so on. REMD and its variants are popular in
sampling rare events while its efficiency has been discussed in
detail.13−17 For a bias potential, a finite number of collective
variables (order parameters) needs to be defined for description
of transitions. Selection of collective variables is not trivial and
has been discussed in depth.18 The other class of rare events
method, path-based sampling, is of greatest relevance to the
present work. These path-building techniques have been
developed to construct a path between two end points,
including milestoning,19 the string method,20 path metady-
namics,21 transition path sampling,22,23 weighted ensemble,24,25

fast marching method,26 nudged elastic band,27,28 targeted MD
(TMD),29 steered MD,30,31 and so on. These approaches have
been applied for exploration of large-scale conformational
changes of biomolecules. One or a few transition pathways can
be reconstructed with any method. However, fundamental
questions still remain to be answered. How can these pathways
be compared? Which one is the most likely transition pathway?
Here we present a strategy combining multiply targeted MD

(MTMD), unbiased MD simulations, and Bayesian clustering
to address these questions. This approach is helpful not only for
exploration of transition pathways and metastable states along
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them but also for comparison of distinct pathways. In our
method, the phase space is first partitioned by a series of
seeding structures, which are generated by MTMD. Then, a
long unbiased MD simulation (200 ns) is initiated on each
seeding structure to achieve local equilibration and explore the
subspace. The ensemble of MD trajectories is analyzed by a
clustering method based on the Bayesian model to determine
metastable states and transitions between them. The strategy of
running multiple MD trajectories for sampling rare events has
been investigated previously.19,25,32,33 The improvements in our
approach are that, (i) with MTMD, we can define transition
pathways from an initial state to a final state via different
intermediate states; (ii) the seeding structures are not necessary
to be in equilibrium; (iii) long unbiased MD simulations are
performed to explore likely transitions between neighboring
seeding structures; (iv) specification of collective variables is
not needed; and (v) Bayesian clustering is carried out to
reconstruct conformational transitions from the ensemble of
MD trajectories. With these features, it is likely to design
different transition pathways between two end points and
compare them. The initial structure, final structure, and
intermediate structures can be obtained from previous
crystallographic studies or MD simulations.
To test this approach, we apply it to the activation/

inactivation process of the kinase domain of the epidermal
growth factor receptor (EGFR). EGFR, a receptor tyrosine
kinase, has emerged as a target of choice for treatment of
various cancers.34 Crystallographic studies have revealed
different conformational states of EGFR kinase domain
(Supporting Information (SI) Figure S1): the DFG-in active
state (A), the Src-like inactive state (T), and the DFG-out
inactive state (I). For simplicity, we will use A, T, and I in the
following to represent these three forms, respectively. The
major structural changes among them are movement of the
activation loop (A-loop), DFG-flip (conversion between DFG-
in and DFG-out), and displacement of αC helix. In form A, it
adopts DFG-in conformation; the A-loop is in the extended
state; Glu762 located in αC helix forms a salt bridge with
Lys745, which is highly conserved and important for kinase
activity.35 Form I adopts DFG-out conformation, and the A-
loop is also extended while Lys745 and Glu762 (the ion pair)
are separated because of outward rotation of the αC helix.
Form T adopts the DFG-in conformation, and the ion pair are
apart from each other while the A-loop is in the compact mode.
The mechanism that controls the transition from inactive forms
of kinases to active ones as well as intermediate states has
attracted much interest.33,36−43 Based on analysis of Abl crystal
structures and molecular simulations, it was proposed that the
Src-like inactive form (T) functioned as an intermediate in the
activation pathway to facilitate DFG-flip.44 This assumption
was supported by computer simulations of EGFR and other
kinases.37,41,42 However, it is still not clear if DFG-flip can
happen without passing form T. If it is likely, is any
intermediate state involved which has not been determined
experimentally? In addition, the roles of A-loop and αC helix in
this process need to be elucidated. Deep understanding of the
activation/inactivation pathways and intermediate states of
kinases will be helpful for development of high specific
anticancer drugs.
In this work, we design and compare two distinct transition

pathways of EGFR kinase domain to investigate under what
condition DFG-flip can happen. One is the conformational
change between A and I via T, which will be called ATI

pathway in the following. The other one is direct transition
between A and I without any intermediate, which will be called
AI pathway. First, the two pathways are reconstructed using the
strategy mentioned above. Then, in comparison with crystal
structures, several intermediate states are recognized based on
clustering results. Finally, rough two-dimensional (2D) free
energy surfaces are plotted to illustrate transitions between
different conformations. Comparison of two predefined
pathways yields new insights into the conformational transition
of EGFR kinase domain. Moreover, our results verify that this
approach is valid and efficient in sampling of large-scale
conformational changes and determination of the energy-
favorable pathway from available ones.

2. METHODS
2.1. Preparation of EGFR Sructures. Three EGFR

structures were taken from the Protein Data Bank (PDB).
The DFG-in active conformation was obtained from PDB entry
2ITW.45 The Src-like inactive conformation was obtained from
PDB entry 3W32.46 The DFG-out inactive conformation was
obtained from PDB entry 4I20.47 Two mutations in the
structure of 4I20 (L858R and V948R) were changed back to
the wild type within Maestro v9.3. Other atoms except the
protein were removed. Some residues at the terminus were
deleted so that the three structures had the same 284 residues.

2.2. TMD and MTMD. The targeted molecular dynamics
(TMD) and multiply targeted molecular dynamics (MTMD)
implemented in the Amber 11 program suite48 were employed
to construct the transition pathways between EGFR active and
inactive states.
TMD adds an additional term to the energy function. It has

the following form:

= × × × −E 0.5 TGTMDFRC NATTGTRMS (RMSD TGTRMSD)2

TGTMDFRC is the force constant for targeted MD.
NATTGTRMS is the number of atoms specified for root
mean square deviation (RMSD) calculation. RMSD is the
current RSMD for the selected atoms. TGTRMSD is the value
of the target RMSD. In contrast, the force constant in MTMD
is changing with step number by a single factor R:

= ×RMTMDFORCE2 MTMDFORCEINCREMENTS

INCREMENTS is the number of times the target value
changes.
The protein was modeled using Amber ff03 force field.49 All

three structures were subjected to energy minimization first
using the steepest descent algorithm in 1000 steps and then the
conjugate gradient algorithm in 10000 steps. For TMD
simulations, the starting structure is 2ITW (A) and the target
structure is 3W32 (T). Three TMD simulations ran for 0.5 ns
with different force constants (1, 0.1, and 0.01 kcal/(mol·Å2)).
For MTMD, each simulation ran for 1 ns. For the I-T-A
transition, form I (4I20) was used as the starting structure;
form T (3W32) was first set as the target structure. The force
constant was applied to all heavy atoms and varied from 0.0001
to 2.0 kcal/(mol·Å2) in 0.5 ns as the simulation steps increased
to drive the conformational changes to form T. Then, form A
(2ITW) was set as the target structure. The force constant was
reset to 0.0001 kcal/(mol·Å2) and increased to 2.0 kcal/(mol·
Å2) in continuous 0.5 ns to drive the further transition to form
A (2ITW). The same setting was also applied in the simulations
of A-T-I and I-A-I. The TMD and MTMD simulations were
performed in the implicit solvent model of generalized Born50
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using the SANDER module. Snapshot structures were extracted
from produced trajectories at a time interval of 1 ps.
2.3. K-Means Clustering. To generate an ensemble of

representative structures from each MTMD trajectory,
clustering was performed on backbone RMSDs of protein
and the activation loop. Form A (2ITW) was used as the
reference structure. Snapshot structures from each MTMD
trajectory were superposed onto the reference structure using
backbone atoms to remove overall rotation and translation.
Then RMSD values were calculated with respect to the
reference structure as the distance metrics. Three MTMD
trajectories were divided into six transition trajectories each
lasting for 0.5 ns. For each transition, 500 snapshot structures
were extracted and classified with the K-means method
implemented in the statistical software R v3.0. For ATI
pathway, four transition trajectories were included and each of
them was clustered into 11 classes. For AI pathway, two
transition trajectories were included and each of them was
clustered into 9 classes. From each class, the structure closest to
the centroid was chosen as the representative structure for
following MD simulations.
2.4. Molecular Dynamics. All MD simulations were

carried out with Amber 11.48 The equations of motion were
solved with the leapfrog integration algorithm with a time step
of 2 fs. The lengths of all bonds involving hydrogen atoms were
kept constrained with the SHAKE algorithm.51 The particle
mesh Ewald (PME) method was applied for treating long-range
electrostatic interactions.52 Periodic boundary condition was
used in all simulations. A random seed was generated based on
the current date and time for every run to assign initial
velocities.
The protein was modeled using the Amber ff03 force field.49

For each seeding structure, it was explicitly solvated in a
rectangular box of TIP3P53 water molecules with a minimal
distance of 10 Å from the protein to the box edges. Two
chloride ions were added to neutralize uncompensated charges.
After the whole system was set up, a series of energy
minimizations and equilibrations were performed. First, the
water molecules, hydrogen atoms, and ions were subjected to
3000 steps of steepest descent minimization followed by 12000
steps of conjugate gradient minimization while other heavy
atoms were constrained with the harmonic force of 2 kcal·
mol−1·Å−2. Next, the whole system was energy minimized with
10000 steps of L-BFGS algorithm without any harmonic
restraint. Then, coupled to a Langevin thermostat, the system
was heated from 10 K up to 300 K by increments of 100 K in
20 ps and continued to run for 40 ps at 300 K at constant
volume. Finally, the system was equilibrated for 200 ps in NPT
ensemble with the Langevin thermostat and isotropic position
scaling, at 300 K and 1 bar. The production run for each
seeding structure was carried out for 200 ns in NVT ensemble
with the Langevin thermostat at 300 K using the parallel
CUDA version of PMEMD on 2 GPUs.54,55 The trajectories
were sampled at a time interval of 10 ps. Distribution of
simulation temperatures is shown in the Supporting Informa-
tion. All simulations were performed on our Linux cluster with
2 GPUs and 12 CPUs on each node. The analysis of trajectories
was performed using PTRAJ.56

2.5. Clustering Based on Bayesian Model. Bayesian
clustering is an unsupervised method that seeks a maximum
posterior probability classification by an expectation-max-
imization (EM) algorithm. The advantage is that there is no
need to specify the cutoff radius or the number of clusters in

advance. The optimal solution is determined by calculating the
maximum posterior parameter values and the most probable
classification.57 It has been compared with other clustering
algorithms.58 In the present work Bayesian clustering was
performed with AutoClass C v3.3.659 in the dihedral angle
space. The structure of the EGFR kinase domain was described
by 282 pairs of backbone dihedral angles. The structures for
Bayesian clustering were sampled from unbiased MD
trajectories. For ATI pathway, snapshot structures were
extracted at a time interval of 0.4 ns from each trajectory and
a total of 23500 structures was obtained. For AI pathway,
snapshot structures were taken at an interval of 0.2 ns from
each trajectory and a total of 20000 structures was obtained.
The clustering process started with a serial of seed numbers
which gave an initial guess of the number of clusters. Then a
random classification was generated and refined until a local
maximum was found. This process was repeated 1000 times,
and the top two classifications with the highest probability were
output. The 2D free energy surfaces based on these sampled
structures were plotted (Supporting Information).

2.6. Free Energy Surface. The calculation of free energy is
given by

= −W r W k T P r( ) ln ( )0 B

where W0 is the depth of the free energy surfaces (FES), P is
the probability distribution, kB is the Boltzmann constant, and
T is the temperature. All sampled structures from unbiased MD
simulations are employed for 2D FES calculations and 1D
convergence analysis. For 2D FESs, the 2D distribution
function P(r) is computed by the histogram analysis method
HIST2D implemented in the package of GPLOTS with a bin
area of 0.3 Å × 0.3 Å. One-dimensional free energy surfaces are
presented in the Supporting Information, which are calculated
over the three metrics (A-loop RMSD, DFG RMSD, and ion-
pair distance) at an interval of 40 ns of simulation time. The 1D
distribution function is calculated by the histogram analysis
method implemented in R v3.0 with a bin width of 0.1 Å.

3. RESULTS
3.1. Generation of Seeding Structures. Compared to

other approaches,60 TMD is a valid tool for construction of a
transition pathway, which does not require the specification of
collective variables. In the standard TMD method there are two
inefficient features. One is that a weak constraint may hold back
the trajectory from reaching the target. The other one is the so-
called “large-scale-first”,61 which means that large-scale motions
occur before small-scale ones. Thus, the order of events in
conformational transition is associated with the direction in
which the simulation is performed.
To avoid these questions, we employ MTMD, a TMD

variant, to generate the transition pathway for sampling of
seeding structures. Compared with TMD, MTMD allows not
only multiple reference structures being used but also a
constraint evolving in time. The MTMD simulations were
performed with the force constant varying from very weak
(0.0001 kcal/(mol·Å2)) to weak (2.0 kcal/(mol·Å2)) to
guarantee that the final structure would be within heavy-atom
RMSD 1.0 Å of the target structure and large-scale motions
would not happen at the beginning. We also ran MTMD
simulations in both activation and inactivation directions to
neutralize the possible bias in one-direction simulations. Three
MTMD trajectories are presented in Figure 1. Two of them are
for ATI pathway: one is from state I to A via T and the other
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one is from A to I via T. The third trajectory is for AI pathway:
from state I to A and then back to I. In the MTMD simulations
the starting structure is gradually changed into the target
structure. And DFG-flip occurs after 0.4 ns in each transition
(SI Figure S2). In contrast, three TMD trajectories with
different constraints are also shown in Figure 1. In TMD
simulations major conformational changes are done in a short
time. This simple comparison indicates that MTMD produces a
trajectory of conformational changes more smooth and
consecutive than TMD does. Detailed comparison of MTMD
and TMD is beyond the scope of this work and will be left for
future studies.
The sampled structures from MTMD simulations were

clustered using K-means method based on backbone RMSDs of
both EGFR kinase domain and A-loop, considering that A-loop
displays the highest flexibility in crystal structures. The
structure closest to the centroid in one cluster was selected
as the representative structure. For ATI pathway, 44 snapshot
structures were chosen and 47 seeding structures (plus 3 crystal
structures) were prepared for MD simulations. For AI pathway,
18 snapshot structures were selected and 20 seeding structures
(plus 2 crystal structures) were prepared for MD simulations.
3.2. MD Simulations. The structural fluctuation from the

ensemble of MD trajectories in two distinct pathways is
characterized by four metrics: backbone RMSD of EGFR kinase
domain (backbone RMSD), backbone RMSD of the A-loop
(residues 854−878, A-loop RMSD), heavy-atom RMSD of the
DFG motif (residues 855−857, DFG RMSD), and distance
between the center of mass of Lys745 and Glu762 (the ion-pair
distance). Backbone RMSD describes the overall conforma-
tional changes of the EGFR kinase domain; A-loop RMSD
evaluates the movement of the A-loop between the extended
state and the compact mode; DFG RMSD indicates the
conformation of the DFG motif (DFG-in or DFG-out); the
ion-pair distance (Lys745-Glu762) reflects displacement of αC

helix. As a reference, the ion-pair distance and RMSD values of
three crystal structures with respect to the crystal structure of
2ITW (form A) are listed in Table 1. Distribution of the

measurements sampled from MD trajectories is displayed in
Figure 2, in which the four metrics have different features of
distribution in two pathways, suggesting that sampling is
affected by predefined pathways. As expected, the A-loop
RMSD varies more widely in ATI pathway than in AI pathway,
though the overall structure (backbone RMSD) does not
change much in both pathways. The DFG RMSD and ion-pair
distance fluctuate in the same range with distinct character-
ization of distribution in two pathways, suggesting the influence
of designed pathways on their movements.

3.3. Identification of Intermediate States. Bayes
theorem was already used in biophysics studies.62−64 Clustering
based on the Bayesian model was previously employed for
analysis of MD trajectories.65 An analysis of clustering
simulation data indicated that the clustering results to some
extent depended on the number of available sampled
structures.66 Considering their results and computation time,
we extracted 23500 structures for ATI pathway (500 structures
from each MD trajectory) and 20000 structures for AI pathway
(1000 structures from each MD trajectory) for Bayesian
clustering. The clustering was performed in the dihedral angle
space. The EGFR structure was described by 282 pairs of
backbone dihedral angles. For ATI pathway, 23500 structures
were grouped into 94 classes (class 0−93) in the optimal
classification. For AI pathway, 85 classes (class 0−84) were
obtained in the optimal resolution.
The four metrics aforementioned are employed for

comparison of sampled structures to the crystal structures
(for the full data of the top 20 populated classes, see SI Tables
S1 and S2). By them, we not only quantify the overall
agreement of structures in classes with crystal structures but
also identify intermediate structures classified by Bayesian
clustering, which has not been reported yet. For ATI pathway,
structures in classes 0, 2, and 11 have very good agreement with
all structural properties of forms T, I, and A, respectively, with
average RMSD values below 3.0 Å and similar ion-pair
distances (for selected data, see Table 2; for full data, see SI
Table S1). Except the known structures, conformations in some
other classes are unique in that they do not correspond to any
crystal structure. For example, structures in class 7 exhibit
backbone and A-loop RMSDs as well as an ion-pair distance
close to form T, but adopt the DFG-out conformation. Similar
properties are also found in classes 9 and 16. For AI pathway
(for selected data, see Table 2; for full data, see SI Table S2),
structures in class 0 have good agreement with the structural
properties of form I. Structures in class 3 exhibit properties
similar to form A, typically with a good agreement to the DFG-
in conformation, backbone RMSD, and ion-pair distance as well
as a better correspondence to the A-loop RMSD. Similarly,

Figure 1. Time evolution of heavy-atom RMSD in MTMD and TMD
simulations. Three MTMD simulations are the conformational
transition from state I to A via T (I-T-A), the transition from state
A to I via T (A-T-I), and the transition between states I and A (I-A-I),
respectively. Conformational transition from state A to T is also
simulated by TMD with different force constants (1.0, 0.1, and 0.01
kcal/(mol·Å2)). Three crystal structures, 2ITW, 3W32, and 4I20 are
the DFG-in active form (A), Src-like inactive form (T), and DFG-out
inactive form (I), respectively. The RMSD values are calculated with
respect to the target structure (2ITW, 3W32, or 4I20).

Table 1. Comparison of Three EGFR Crystal Structuresa

RMSD (Å)

crystal structure backbone A-loop DFG distance of ion pair (Å)

2ITW (A) 0 0 0 8.7
3W32 (T) 4.4 10.5 3.7 14.4
4I20 (I) 3.3 2.9 6.7 12.4

aThe crystal structure of 2ITW (A) is used as the reference structure
for RMSD calculations.
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some conformations distinguished from the crystal structures
are available. Structures in class 1 have similar backbone RMSD
and A-loop RMSD to form I while DFG RMSD and the
distance of the ion pair are close to form T. Structures in class 9
adopt the DFG-out conformation, and RMSDs of the backbone
and A-loop are closer to form I than to form A while the ion
pair is likely to be in contact, which makes them look like the
Imatinib-induced Abl structure.67 Although this structure has
been solved for some kinases, it has not been observed in
EGFR structures experimentally determined. The representa-
tive structures selected from mentioned classes are shown in SI
Figure S3.
Further examination of fluctuation of the structural proper-

ties shows that EGFR undergoes conformational transitions in

some classes, though it is pretty stable in most of the classes
(for the top 20 populated classes, see SI Figure S4). For
example, in class 1 of ATI pathway the conformational change
between DFG-out and DFG-in is clearly observable (Figure
3A). It is coupled with movement of the A-loop and alteration
of the ion-pair distance. Similarly, structures in class 13 of AI
pathway also exhibit conformational change of the DFG motif
while the A-loop does not move far away from the extended

Figure 2. Distribution of RMSDs and ion-pair distance: (A) Data from 47 MD trajectories in ATI pathway; (B) data from 20 MD trajectories in AI
pathway. The DFG-in active conformation (2ITW) is used as the reference structure. A snapshot structure is first superposed onto the reference
structure using backbone atoms. Then RMSD values of backbone, A-loop, and DFG are calculated. The density is computed by the histogram
analysis implemented in R v3.0 with a bin width of 0.1 Å.

Table 2. Structural Properties of Representative Classes
from Bayesian Clustering and Their Comparisons to the
Reference Crystal Structure

av RMSD (Å)

class
no.

ref
structure backbone A-loop DFG

av distance
of ion pair

(Å)

ATI pathway 0 3W32
(T)

2.1 2.7 1.6 15.5

2 4I20 (I) 2.6 2.1 1.5 15.0
7 2ITW

(A)
5.4 11.2 6.6 12.9

11 2ITW
(A)

2.4 2.8 1.9 8.5

14 2ITW
(A)

4.4 4.0 3.9 13.6

31 2ITW
(A)

4.2 5.6 6.0 13.9

AI pathway 0 4I20 (I) 2.6 2.2 1.5 16.0
1 2ITW

(A)
3.4 3.2 4.4 15.9

3 2ITW
(A)

2.3 3.3 1.8 8.4

7 2ITW
(A)

3.9 3.9 6.9 11.9

9 2ITW
(A)

4.0 4.1 6.2 9.7

Figure 3. Evolution of structural properties in the class from Bayesian
clustering: (A) Class 1 in ATI pathway; (B) class 13 in AI pathway.
Four metrics are displayed: backbone RMSD, A-loop RMSD, DFG
RMSD, and distance of the ion pair (Lys-Glu). The RMSD values are
calculated with respect to the crystal structure of 2ITW (form A).
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state (Figure 3B). These kinds of changes in adopted structural
properties occur more frequently in less-populated classes than
in populated ones, suggesting transitions between intermediate
states.
3.4. Two-Dimensional Free Energy Surfaces. To

visualize the transition pathways and intermediate states, we
tried to project the dihedral angles space into a two-
dimensional FES. The principle component analysis was
carried out, but the first two eigenvalues could only account
for 13% of the variability of the data, which made them not a
good choice. Then we turned to the metrics mentioned
previously. Three metrics (DFG RMSD, A-loop RMSD, and
distance of the ion pair) were employed for plotting of rough
2D FESs to investigate the relationship between DFG-flip and
movement of the A-loop as well as displacement of the αC helix
(Figure 4).
Energy wells on FESs are compared to the classes from

Bayesian clustering. For ATI pathway, three populated
ensembles labeled as T, I, and A (Figure 4A,B) correspond
to classes 0, 2, and 11 (Table 2 and SI Figure S3), displaying
similar features with the crystal structures. IS1, IS2, and IS3
(Figure 4A) denote three intermediate states, corresponding to
classes 7, 31, and 14 (Table 2), respectively. States A, T, and
IS3 adopt the DFG-in conformation while I, IS1, and IS2 adopt
the DFG-out conformation. For AI pathway, energy basins
labeled as I and A (Figure 4C,D) correspond to classes 0 and 3,

having properties similar to those of the crystal structures. IS4,
IS5, and IS6 denote three different forms (Figure 4D),
corresponding to classes 1, 9, and 7, respectively (Table 2).
States I, IS5, and IS6 adopt the DFG-out conformation while A
and IS4 adopt the DFG-in conformation.
From FESs, the transition between EGFR active and inactive

forms is apparently visible. In ATI pathway, DFG-flip occurs
with little energy cost (Figure 4A,B). In contrast, DFG-flip
happens less frequently in AI pathway, which is clearer in
Figure 4D than in Figure 4C. Our results suggest that ATI
pathway is more energetically favorable than AI pathway,
though DFG-flip can happen in both pathways. Previous
studies suggest that displacement of the αC helix38,44 or A-loop
movement41 is the major energy barrier mediating the
transition. Here, we further examine the role of A-loop and
αC helix in DFG-flip. In both B and D of Figure 4, DFG-flip
occurs when the ion pair is broken apart. When the ion pair is
in contact, no transition of the DFG motif is observed, possibly
because of sterical hindrance. This suggests that DFG-flip is
coupled with disruption of the ion pair. On the other hand, in
Figure 4C the A-loop fluctuates around the extended state,
while, in Figure 4A, the A-loop floats away from the extended
state and reaches the compact mode. DFG-flip happens more
frequently in Figure 4A than in Figure 4C, suggesting that the
transition is strongly influenced by movement of the A-loop.
Thus, our results yield a view that breaking the ion pair is

Figure 4. 2D free energy surfaces for activation/inactivation of EGFR kinase domain. FESs for ATI pathway are shown in A and B; FESs for AI
pathway are shown in C and D. Three metrics are employed for FES plotting: DFG RMSD, A-loop RMSD, and distance of the ion pair. The RMSD
values are calculated with the crystal structure of 2ITW (form A) as the reference. Energy basins corresponding to forms A, T, and I are denoted.
Intermediate states are labeled with prefix IS.
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critically important for DFG-flip and movement of A-loop
significantly facilitates the conformational change. This may
explain why ATI pathway is more energetically preferred than
AI pathway.
Interestingly, except the predefined pathway (A-T-I), another

transition pathway appears between form A and I (A-IS3-IS2-I
in Figure 4A). In this pathway, the A-loop just moves slightly
away from the extended state. We deduce that disruption of the
ion pair plus a small movement of A-loop provides enough
space for DFG-flip. If this is the case, considering that the A-
loop displays high flexibility in kinase crystal structures and
distinct A-loop conformations of EGFR have been recog-
nized,42 it is very likely that there exist multiple transition
pathways between the active and inactive forms as well as
various intermediate states.
In addition, we notice that state IS5 appears in AI pathway

(Figure 4D) but is not sampled in ATI pathway (Figure 4B).
Examination of clustering results also shows that none of the
classes in ATI pathway has structural properties similar to those
of IS5. This may suggest that some conformation is not
preferred for unbound EGFR. In ATI pathway, the inactive
forms (T and I) and the conversion between them are
energetically favorable (Figure 4B), and sampling is trapped in
the energy wells. This agrees with a previous report that the
isolated EGFR kinase domain in monomeric form has low
catalytic activity.68 In AI pathway, however, transition of the
DFG motif is impeded because of constraint of the A-loop
(Figure 4D), which may make state IS5 energetically favorable.
Our results are consistent with the observation that the
Imatinib-induced Abl structure (corresponding to IS5 in Figure
4D and class 9 in SI Figure S3B) is rarely found in unbound
kinases but appears in kinase−ligand complexes. Possibly
because this form is not energetically preferred and becomes
stable under certain conditions such as ligand binding or
constraint of the A-loop.
Previously, conformational transitions of Src and Abl have

been investigated with biased MD simulations and the free
energy may be overestimated.40 Compared to their data, the
free energy calculated in this work may be underestimated.
Interestingly, our results are close to the free energy computed
for conformational changes of wide type and mutant EGFRs
recently reported.43 The difference in estimated free energy
may result from distinct kinases, simulation methods or choice
of order parameters. To improve performance of our approach,
more seeding structures may be needed. But it is still a
challenge to select appropriate order parameters.
3.5. Cracking of αC Helix. Studies have demonstrated that

local protein unfolding (cracking) is common in conforma-
tional changes, and αC helix is disordered in EGFR
conformations.69−72 Based on previous reports, displacement
of αC helix may be caused by outward rotation or local
unfolding. Outward rotation of αC helix among kinase crystal
structures has been discussed in detail.35,44 Here we further
examine variability of secondary structure of αC helix by
calculating the time when residues of αC helix are in the helix
status (SI Figure S5). In all MD trajectories three residues
(residue nos. 764−766) are highly stable and keep in the helix
status. In contrast, other residues to varying extent undergo the
order−disorder transitions. As indicated in the previous section,
disruption of the ion pair induced by displacement of the αC
helix is necessary for DFG-flip. Our results suggest that partial
unfolding of he αC helix may accompany the transition

between EGFR active and inactive forms and facilitate DFG-
flip.

4. CONCLUSION

We present a strategy combining MD simulations and Bayesian
clustering to investigate conformational transitions between
EGFR active and inactive forms. Compared to previous reports,
our results verify that this approach is valid and efficient in
sampling rare events. Moreover, with this approach, distinct
transition pathways can be compared and the energy-favorable
one can be distinguished. It is usually difficult to observe the
conformational changes using constant-temperature simula-
tions even on microsecond time scales. Running multiple MD
simulations initiated on different conformational states may
effectively cross the energy barrier and overcome the
conformational sampling problem. With the help of a high
parallel computing platform, this strategy is easily implemented.
Bayesian clustering is then employed to recognize intermediate
states and transitions along the pathway from the ensemble of
MD trajectories. Although it is still a challenge to project the
transition pathway from a high-dimensional space to a two-
dimensional space, selection of appropriate order parameters is
helpful for investigating the effect of local fluctuations on global
conformational changes.
Since the catalytic domain is highly conserved in all kinases

and the three forms of EGFR (A, T, and I) have also been
found in other distantly related kinases, the conformational
changes between them may be a general mechanism of kinases
activation and inactivation.35 On the other hand, it is believed
that each inactive conformation of kinase has some special
features which distinguish it from other states. And kinase
inactive forms have been the targets for development of high
specific anticancer drugs in the pharmaceutical industry.
Therefore, determination of unreported inactive conformations
and transitions between them provides new targets for cancer
treatment.
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