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Abstract

microRNAs (miRNAs) are (18-22nt long) noncoding short (s)RNAs that suppress gene

expression by targeting the 3’ untranslated region of target mRNAs. This occurs through the

seed sequence located in position 2-7/8 of the miRNA guide strand, once it is loaded into

the RNA induced silencing complex (RISC). G-rich 6mer seed sequences can kill cells by

targeting C-rich 6mer seed matches located in genes that are critical for cell survival. This

results in induction of Death Induced by Survival gene Elimination (DISE), through a mecha-

nism we have called 6mer seed toxicity. miRNAs are often quantified in cells by aligning the

reads from small (sm)RNA sequencing to the genome. However, the analysis of any

smRNA Seq data set for predicted 6mer seed toxicity requires an alternative workflow,

solely based on the exact position 2–7 of any short (s)RNA that can enter the RISC. There-

fore, we developed SPOROS, a semi-automated pipeline that produces multiple useful out-

puts to predict and compare 6mer seed toxicity of cellular sRNAs, regardless of their nature,

between different samples. We provide two examples to illustrate the capabilities of

SPOROS: Example one involves the analysis of RISC-bound sRNAs in a cancer cell line

(either wild-type or two mutant lines unable to produce most miRNAs). Example two is

based on a publicly available smRNA Seq data set from postmortem brains (either from nor-

mal or Alzheimer’s patients). Our methods (found at https://github.com/ebartom/SPOROS

and at Code Ocean: https://doi.org/10.24433/CO.1732496.v1) are designed to be used to

analyze a variety of smRNA Seq data in various normal and disease settings.

Author summary

We recently discovered a kill code embedded in the genome with powerful anti-cancer

activity. It is based on only 6 nucleotides (comprised of A, G, C, or U) that when present

in the sequence of a small double stranded RNA allows it to act like a microRNA

(miRNA). miRNAs are important regulators of many cell functions. The ~2,300 known
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miRNAs in the human genome function through their business end, the seed sequence.

When this seed sequence is 6 nucleotides long (6mer seed) and is comprised of mostly Gs,

then these small RNAs can kill all cancer cells. Hence, this code is found in a number of

miRNAs that have anti-cancer activities. However, the code is not limited to miRNAs and

may also affect normal tissue under certain conditions. We have now developed SPOROS,

a semi-automated bioinformatics pipeline that allows one to analyze any data set of

sequenced small RNAs with a focus on their 6mer seed content and their potential to kill

cells. We present two examples of such an analysis: the first example is a data set we gener-

ated on the expression of all small RNAs in a human colon cancer cell line compared to

matching mutant cell lines that cannot produce most miRNAs; the second example is a

publicly available data set of small RNAs isolated from normal brains and from brains of

patients with Alzheimer’s disease.

This is a PLOS Computational Biology Methods paper.

Introduction

micro(mi)RNAs are short (18-22nt long) noncoding RNAs that negatively regulate gene

expression [1]. They are generated as double stranded (ds)RNA duplexes. Their activity

involves only a very short region of complete complementarity between the ‘seed’, at position

2-7/8 of the guide strand of the miRNA [2,3] and ’seed matches’ predominantly located in the

3’ untranslated region (3’ UTR) of targeted mRNAs [4,5]. This targeting results in gene silenc-

ing [6]. miRNA biogenesis begins in the nucleus with the transcription of a primary miRNA

precursor [7]. The Drosha/DGCR8 microprocessor complex first processes them into pre-

miRNAs [8], which are then exported by Exportin-5 from the nucleus to the cytoplasm [9].

Once in the cytoplasm, Dicer/TRBP processes the pre-miRNAs further [10,11], and these

mature dsRNA duplexes are then loaded onto argonaute (Ago) proteins forming the RNA-

induced silencing complex (RISC) [12]. The active miRNA guide strand incorporates into the

RISC [12], while the inactive passenger strand is degraded [13].

We previously discovered a powerful new cell death mechanism (6mer seed toxicity) that is

based on a 6mer seed embedded in miRNAs. Any si-, sh, or miRNA that carries a 6mer seed of

a certain nucleotide composition, can kill cancer cells by targeting the mRNAs of hundreds of

genes that are critical for cell survival [14,15]. An arrayed high-throughput screen of all 4096

possible 6mer seeds in a neutral siRNA backbone with a chemically inactivated passenger

strand in three human and three mouse cell lines revealed that the most toxic seeds were G-

rich followed by seeds rich in Cs [16,17]. A consensus seed among the 100 most toxic seeds for

human cells was identified as GGGGGC and we verified that it is toxic by targeting GCCCCC

seed matches present in the 3’ UTR of numerous survival genes [17].

The number of putative human miRNAs has been estimated to be>2,300 [18]. The most

widely established approach to study the role of miRNAs focuses on only the miRNAs that are

significantly deregulated when comparing two states (e.g., tumor versus normal tissue, or two

developmental stages of an embryo). Hence, most methods to normalize and analyze miRNAs

are aimed at allowing investigators to identify deregulated individual miRNAs or groups of

miRNAs. This makes the depiction of the relevant miRNAs more manageable as there is no

need to visually display hundreds of miRNAs at the same time. However, there are two major

drawbacks to this approach: First, the detected fold change in relative expression of a
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deregulated miRNA does not allow one to conclude that a miRNA is significantly expressed,

and second, miRNAs that belong to different families but function in similar ways in different

tissues or in a disease context in different patients, are hard to identify.

The 6mer seed toxicity concept requires analysis of short (s)RNAs, including miRNAs, in a

different way. Rather than aligning all reads to the genome and finding the ones coding for

miRNA genes, the only relevant information needed of any sRNA that is bound to the RISC

and active in RNA interference (RNAi) function, is the precise knowledge of its 6mer seed

(position 2–7 from the 5’ end). The nature of the sRNA initially is secondary when analyzing

sRNAs that are bound to the RISC, but total small RNA Seq data can also be useful, as long as

the reads are in the range of 18 and 25 nt long. It has become clear that this activity is not only

found in miRNAs, but in any abundant sRNA such as tRNA or ribosomal (r)RNA fragments

that can be loaded into the RISC and exert RNAi [19,20]. We now describe SPOROS (Greek

for seed), a semi-automated pipeline that allows for the analysis of sRNAs by focusing not on

individual miRNAs and their targets, but on the 6mer seed of any sRNA that is loaded into the

RISC. SPOROS generates multiple output files that allow one to assess both composition and

predicted seed toxicity changes in miRNAs in any small (sm)RNA Seq data set. We present

two sample analyses to illustrate the power and utility of the pipeline. The first example is a

smRNA Seq dataset of RISC-bound sRNAs in a wild-type (wt) human cancer cell line and two

mutant cell lines lacking expression of either Drosha or Dicer, resulting in a fundamental

reduction in miRNA expression. The second example is based on a publicly available small

RNA Seq data set derived from postmortem normal and Alzheimer’s disease (AD) patient

brains. The first example starts with raw sequence reads, while the second starts with a count

table of reads by samples; SPOROS can be run either way. The focus in developing SPOROS

was to provide simple and robust analysis tools that can be used without requiring advanced

programming knowledge.

Methods and data sets

Example data sets

The first smRNA Seq data set of RISC-bound sRNAs was generated by performing an Ago pull

down experiment followed by smRNA Seq as described before [16]. In brief, 106 HCT116 wt,

Drosha knock-out (k.o.) or Dicer k.o. cells [21] were subjected to an Ago pull down (in dupli-

cate) using a bead bound GW182 protein [22]. After smRNA library preparation, the samples

were subjected to 50 nt single end smRNA Seq on an Illumina HiSEQ4000 (accession number

GSE182222). In this case, the raw fastq files serve as input for SPOROS. The second smRNA

Seq data set was obtained from GEO (accession number GSE63501) and contains sRNAs (16–

25 nt in length) derived from 7 control and 6 AD brains, and 3 brains from patients with severe

primary age-related tauopathy, termed tangle-predominant dementia (TPD) [23]. It was

reported that AD and TPD brains had a downregulation of the highly conserved brain miRNA

miR-219. In this example, the sample-specific read counts are compiled into a table which is

used as input for SPOROS. While compilation of the table is not part of the SPOROS pipeline,

scripts used for this purpose are made publicly available within both Github and Code Ocean

for maximum transparency.

The SPOROS pipeline

The goal of the SPOROS pipeline is to display and analyze abundance of sRNAs according to

their predicted 6mer seed toxicity (Fig 1). It can be accessed at https://github.com/ebartom/

SPOROS and as an executable Code Ocean capsule at https://doi.org/10.24433/CO.1732496.v1.

At its heart, SPOROS is a Perl-based decision tree. Given a few essential arguments (location
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and type of the input data, organism, experimental parameters if relevant), SPOROS will gener-

ate a commented shell script listing each step in the pipeline. This script can be run on the com-

mand line to carry out the pipeline in its entirety, and all of the scripts and necessary

dependencies have been set up within the Code Ocean capsule for ease of use. The code and

resource files can also be downloaded from Github or Code Ocean and installed within any

Unix system. The two examples are both from human samples, but support for mouse samples

is also fully implemented. Any smRNA Seq data set (either total or bound to the RISC) can be

used, either starting from raw fastq files, or from a table of read counts. While the 6mer seed

toxicity concept is based mostly on the activity of miRNAs, it can be applied to any sRNA that

enters the RISC as a guide, and hence the relevant activity of an sRNA is determined by its posi-

tion 2–7 (the 6mer seed). This allows one to display all sRNAs in a graph as a function of only

the predicted toxicity of its 6mer seed. While the 3’ end of the RNAs is not that relevant for

their activity, for this analysis to succeed the knowledge of the exact 5’ start is critical. Conse-

quently, the first step of the analysis is to de-multiplex the samples and remove any Unique

Molecular Identifier (UMI) and adapter sequences. Trim_galore is used to identify and remove

standard Illumina adapters. 5’ adapter sequences are removed first, followed by the removal of

the 3’ adapters which in the case of our libraries is the substring TCCGACGATC. The adapter

and primary sequences are based on our library prep for Ago pulldown libraries. When analyz-

ing RISC bound sRNAs all reads>6 nts in length are being analyzed. The vast majority of these

reads will be in the range of 18–25 nt and we did not find any RISC bound miRNA derived

reads shorter than 18nt. When analyzing total smRNA Seq data, all reads that are longer than

25 or shorter than 18 nt are removed, as shorter and longer reads have a reduced chance of

entering the RISC. Once any extraneous sequences are removed, a table of all unique reads

observed in all samples, and their counts in each sample is generated. To reduce the files size at

Fig 1. SPOROS workflow developed to analyze seed toxicity of smRNA Seq data. From left to right: smRNA seq data, either total or RISC-bound, are

trimmed and cleaned and then compiled into a counts table. Rare reads are removed (fewer counts than the number of samples) and the remaining

reads are BLASTed against all mature miRNAs or RNA world data sets of all small RNAs (either human or mouse). Reads that hit artificial sequences in

the RNA world datasets are again removed. The remaining raw counts table can be normalized to 1 million reads per sample or column or used for

differential expression analysis. RawCounts, normCounts, or differential tables are annotated with 6mer seed, 6mer seed viability, miRNA, RNA world

to generate Output A tables. At this point the miRNA content (%) can be determined. Reads of this Output A file are collapsed according to 6mer seed

and RNA type resulting in Output B. At this point all short RNAs can be analyzed (sRNA) or just the miRNA fraction. Output B is fed into four scripts

generating four output files: C: A Seed Tox graph that depicts all miRNAs as peaks according to their seed viability; D: Average predicted 6mer seed

toxicity of all reads in a samples depicted as box and whisker plot; E: Weblogo plot showing the average seed composition in positions 1–6 of the 6mer

seed in each sample; F: The result of a multinomial mixed model odds ratio analysis allowing to compare both different 6mer seeds as well as differences

in each position of different seeds. The hierarchy of folders and subfolders generated by SPOROS is shown in a grey box.

https://doi.org/10.1371/journal.pcbi.1010022.g001
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this point and remove most reads that are likely the result of sequencing errors, all reads with a

normCount of less than n (n being the number of samples in an analysis) are deleted. An inter-

mediary table containing all reads is also generated, and if the user prefers not to use such a

threshold, this table can be used as input for SPOROS. In general, if demultiplexing and adapter

sequences vary significantly, or if the desire is to keep all reads, no matter how rare, SPOROS

can be started from a counts table.

At this point, all of the reads corresponding to rows in the count table are annotated using

BLAST. More specifically, a BLAST search is performed against a list of small RNAs (data sets

for human and mouse were obtained from Dr. Thomas Tuschl, and can be found in the Code

Ocean capsule: https://doi.org/10.24433/CO.1732496.v1). We allowed a 95% identity for the

search. To further refine the read list, any read that contains the following words in this Blast

assignment is removed: "Tuschl", "artifical", "marker", "adapter", "artificial". Reads are also

annotated with miRNA information by blasting each read against a curated list of either

human or mouse mature miRNAs (lists are in S1 and S2 Tables). For this analysis, we set the

stringency so that only hits with at least 18 nt of complete identity between the queried read

and the mature miRNA are counted.

At this step, we have a table of raw read counts in each sample, which will become Output

A. Reads originating from artificial sequences have been removed, as have rare reads. This

table can be left as raw read counts, normalized to 1 million reads per column, or normalized

and having differentially expressed reads identified with EdgeR. In each case, for ease of down-

stream processing, SPOROS extracts the 6mer seed from each read, and annotates each table

row with the 6mer Seed, predicted 6mer seed toxicity, miRNA hit (if any) and RNA world hit

(if any). The predicted 6mer seed toxicity is the % viability determined by transfecting three

human and three mouse cell lines with siRNAs carrying all of the 4096 possible 6mer seeds

([16,17], 6merdb.org). By default, the average seed viabilities of the three human and three

mouse cell lines are added. An option at this stage is to analyze all sRNAs/miRNAs in the data

sets or only the ones significantly deregulated (<0.05 adjusted p-value, or just p-value)

between conditions. We will show an example for each case (Figs 2 and 3). SPOROS automati-

cally generates subfolders ("totalCounts" and "differential"). The differential analysis between

two groups is performed by taking the significantly differentially expressed reads and calculat-

ing the delta read count (absolute normalized counts) for each row between two groups.

Group1 is usually the control and Group2 the perturbed sample. Another layer of subfolders is

generated allowing for the analysis of all sRNAs or only miRNAs ("sRNA" and "miRNA"). The

hierarchy of subfolders generated is shown in the grey box in Fig 1. SPOROS then produces

output files that can be used to create display figures (Fig 1 and Table 1).

In addition to these analyses, to analyze seed composition data, we developed a novel

framework using multinomial mixed effects regression models [24]. A similar assumption that

nucleotides follow a multinomial distribution at a given position has been used to test similar-

ity between DNA sequences [25] and a multinomial logistic regression model without a ran-

dom effect has been used for the analysis of codon frequencies [26].

Our multinomial mixed effects approach allows one to compare differences in sequence

patterns between groups and positions and provides a statistical framework for both testing

and estimation of such differences. Unlike analyses which compare counts between groups,

here each sRNA seed represents the unit of analysis, and nucleotides are compared between

positions and samples. Using terminology from the generalized linear mixed effects models lit-

erature [24,27] each observed read can be thought of as a "subject", represented by its seed, and

the nucleotides in each position can be thought of as 6 potentially correlated measurements

within a “subject”. Correlation between positions could occur, for example, if certain patterns

are likely. An example would be the enrichment of Gs versus other nucleotides towards the 5’
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end of the 6mer seed as reported [17]. The outcome variable in the model is the nucleotide in

each position of each seed. We assume that at each position nucleotides follow a multinomial

distribution with 4 possible outcomes (A, C, G, U), and, as in logistic regression, we must set

one of the levels as the reference (we set A as the reference because A-rich 6mer seeds were the

least toxic [16]). Group (e.g., genotype or experimental condition), position and their interac-

tion are included as the "fixed effect" predictors, and the seed itself (i.e., the seed id) is included

as the “random effect”. We note that a unique id is assigned to the seed within each read, rather

than to each unique 6mer sequence, thus accounting for seed abundance by including a dis-

tinct “subject” for each observed sRNA read. For example, if two distinct sRNA’s with the

same 6mer seed occur 50 and 100 times each, respectively, the model will include 150

Fig 2. The RISC in HCT116 Dicer and Drosha k.o. cells is enriched in sRNAs with toxic 6mer seeds compared to wt cells. (A) Principal component

analysis (PCA) plot illustrating the differences in RISC composition of Dicer and Drosha k.o. cells compared to HCT116 wt cells, and the reproducibility

of technical and biological replicates. The x-axis represents dimension 1 (dim1) and explains 55.3% of the variance, while the y-axis represents dimension

2 (dim2) and explains 32.7% of the variance. Each cell type was analyzed as two biological replicates. Each spot represents a single replicate sample from

each cell type. Green- HCT116 wt, blue- Drosha k.o. and red- Dicer k.o. (B) Pie charts showing RISC composition of HCT116 wt, Dicer and Drosha k.o.

cells. Abundance of miRNAs is shown in blue and all other sRNAs in red. (C) RISC-bound sRNA Seed Tox graphs of HCT116 wt, Dicer k.o., and Drosha

k.o. cells. When a peak is labeled with multiple miRNAs (blue), the most abundant one is listed first. RNAs are only labeled if they account for 1000 reads

or more. miRNAs are labeled in blue, other sRNAs in red. (D) Average predicted 6mer seed toxicity of all RISC-bound sRNAs enriched in cells in C. p

values were calculated using a Wilcoxon rank test. (E) Seed composition of all RISC-bound sRNAs enriched in cells in C. (F) Positional changes in the

6mer seed composition between genotypes. Filled circles at each position represent the odds ratio (OR) estimates comparing the odds of observing G, C

and U vs. A between genotypes, based on the multinomial mixed effects model. A was set as the reference because A-rich 6mer seeds were the least toxic

[16]. The outer circle corresponds to the largest observed OR for each pairwise genotype comparison (e.g., Dicer k.o. vs. wt), with bold black circles

denoting statistical significance based on p-values adjusted using Tukey’s method. OR<1 estimates are represented with blue circles with area OR� = 1/

OR, indicating that A is more likely in this position. Circle area is scaled to be proportional to the OR.

https://doi.org/10.1371/journal.pcbi.1010022.g002
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Fig 3. sRNAs enriched in AD brains contain more toxic seeds than in control brains. (A) Pie charts showing

composition of sRNAs differentially expressed in normal and AD patient brains. (B) Seed Tox plots of sRNAs

differentially expressed in brain samples in A. When a peak is labeled with multiple miRNAs (blue), the most abundant

one is listed first. RNAs are only labeled if they account for 1000 reads or more. miRNAs are labeled in blue, other

sRNAs in red. (C) Average predicted 6mer seed toxicity of all differentially regulated sRNAs in brain samples in A. p-

value was calculated using a Wilcoxon rank test. (D) Seed composition of all RISC-bound differentially regulated

sRNAs in brain samples in A. (E) Positional changes in the 6mer seed composition in reads significantly up- and
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“subjects” to represent this. Including the seed random effect in the model allows us to account

for the potential within-seed correlation between positions. The estimated model provides

tests of whether there are group or position differences, as well as the odds ratios (ORs) com-

paring the odds of observing G, C or U vs. A between groups at each position.

These models can be fitted using PROC GLIMMIX in SAS statistical software [28] but must

be done outside of Code Ocean which does not currently support SAS.

Outputs A-E can be generated for either total reads (as in Fig 2) or only for those reads that

are enriched in one set of samples relative to another (as in Fig 3). In the case of a differential

analysis, SPOROS users create a comparisons table setting up one set of samples (denoted with

1) as Group1 and another set of samples (denoted with -1) as Group2. Samples irrelevant to a

particular pairwise comparison are denoted in the comma separated table with a 0 (more detail

down-regulated in AD/TPD patients compared to normal controls. Filled circles at each position represent the odds

ratio (OR) estimates comparing the odds of observing G, C and U vs. A between groups (“Up” vs. “Down”), based on

the multinomial mixed effects model. A was set as the reference because A-rich 6mer seeds were the least toxic [16].

The outer circle corresponds to the largest observed OR for each pairwise group comparison with bold black circles

denoting statistical significance based on p-values adjusted using Tukey’s method. OR<1 estimates are represented

with blue circles with area OR� = 1/OR, indicating that A is more likely in this position. Circle area is scaled to be

proportional to the OR.

https://doi.org/10.1371/journal.pcbi.1010022.g003

Table 1. Main output files of SPOROS.

Output File name starts

with

Description

A A_normCounts Contains all normalized data (each sample normalized to 1 million reads) with seeds, seed toxicities, miRNA, and RNA world

information added. A file with raw counts ("A_rawCounts") is also generated for comparison.

B B_collapsed Generated by adding up and collapsing all rows that contain the same 6mer seed and either the same name in the miRNA or the RNA

world blast columns. Counts are added up for each seed and miRNA combination. An intermediary file (file name starts with

“Int_seedKeyed”) is also created, with each seed listed only once, even if it originates from multiple sRNAs. Depending on the species,

subsequent steps will be done either with human or with the mouse seed viability data. Of note, in the analysis we use viability as a

measure of predicted 6mer seed toxicity. Thus, seeds with a low viability percentage are considered more toxic and the ones with a high

viability percentage are considered less toxic.

C C_binned Generated by aggregating all rows according to the predicted 6mer seed toxicity in 1% rounded steps (creating 1% sized bins). Counts

are added up for all seeds that have toxicity within each 1% bin. These files contain a row for each bin even if the count is 0, allowing

for easy plotting of the data. We use Excel to generate the graphs of read counts vs. viability bin, with line smoothing turned on. The

resulting plot, the Seed Tox graph, allows one to display abundance of all miRNAs solely based on their predicted 6mer seed toxicity.

The peaks in the Seed Tox graph can then be manually labeled with the most prominent miRNAs that fall within that particular

viability range. This information can be obtained from Output file B. Most peaks will contain multiple miRNAs and we usually label

the ones whose abundance is above a certain threshold (e.g., 1000 reads). We chose to generate this Seed Tox graph over a density plot

(S1 Fig) because it allows to compare the actual read numbers in each peak between samples and different analyses.

D D_toxAnalysis These files are created from Output B to display the average seed viability in each analyzed group ("avg") or in individual samples

("rep1, rep2. . ."). The file expands each row according to the number of reads in that row after a normalization to 1000 rows (this

normalization, i.e., dividing by 1000, prevents files from getting too large and thus increasing computational complexity of the

downstream statistical analysis). The data column can be used in any standard statistics program to create a plot. We usually

summarize the distributions using a boxplot and SPOROS creates a basic boxplot of all the defined average files. A nonparametric rank

test can be performed to compare viability between groups. We currently use StatPlus (v.7.5) and the Wilcoxon ranksum test if there

are two groups, or the Kruskal-Wallis test if there are more than 2 groups.

E E_seedAnalysis These files are also created from Output B in a similar way as Output D, except instead of expanding each row according to toxicity, the

row is expanded according to the 6mer seed. SPOROS uses this output file to generate a custom Weblogo (http://weblogo.

threeplusone.com/) to display nucleotide frequencies in each of the 6 seed positions. The Weblogo is generated as a high resolution png

file.

F F_seedExpand These files are used in the statistical analysis comparing 6mer seed composition between different samples. It is generated from output

E by further expanding the rows so that each nucleotide is in a different row for each seed, and rows are additionally indexed by

position 1. . .6, thus representing each seed with 6 rows. As in Output D, seed counts are divided by 1000, and seeds with counts <1000

are omitted from this analysis. For example, if a particular seed occurs 5000 times in a sample, the rescaled seed count will be 5, and

these seeds will be represented by 5×6 = 30 rows. In total, Output F contains 6N rows, where N is the total scaled seed count per

sample.

https://doi.org/10.1371/journal.pcbi.1010022.t001
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is included with the SPOROS documentation on Github and in Code Ocean). The R package

EdgeR [29] is used to identify reads differentially expressed within each pairwise comparison.

Output A file names contain “diff” (adjusted p-value < 0.05 and logFC > 0.585 or < -0.585).

These differentially regulated reads are used for Output C-E, see Fig 3B–3D. All final SPOROS

output files that were used to generate Figs 2 and 3 are in S1 and S2 Datasets. They are also

available within the Code Ocean capsule and can be recreated there from input data on

demand.

Results and discussion

Example #1: analysis of RISC-bound sRNAs (all sRNAs)

For the first example we chose to analyze RISC-bound sRNAs isolated from wt HCT116 cells

and cells deficient for either Drosha or Dicer (Fig 2). These two k.o. cells cannot produce

canonical miRNAs or only at strongly reduced levels [21]. As previously described

[16,22,30,31], we used a GW182 peptide coupled to GST to pull down all four Ago proteins

which are critical for RISC formation and function [32]. A principal component analysis

(PCA) shows all three genotypes cluster independently with biological replicates for each

genotype tightly grouped together (Fig 2A). (PCA script in S1 Text). Wild-type cells contained

>96% RISC-bound miRNAs and this amount was reduced to ~23% in the Dicer k.o. cells and

further reduced to ~13% in Drosha k.o. cells (Fig 2B).

When comparing the three genotypes using the Seed Tox graph, it became apparent that in

both Dicer and Drosha k.o. cells, most miRNAs in the RISC were replaced by other sRNAs,

most notably tRNA fragments (Fig 2C). This likely occurred because in contrast to normal

cells [33,34], tumor cells maintain expression of Argonaute proteins in the absence of miRNAs

[14].

The change in RISC composition in the two mutant cells resulted in a reduction in average

seed viability of all reads (Fig 2D). This was most prominent for the Drosha k.o. cells which

have the lowest amount of miRNAs, suggesting that endogenous miRNAs which carry mostly

nontoxic seeds [30] likely protect cells from potentially toxic endogenous sRNAs entering the

RISC. These sRNAs (e.g., tRNA or rRNA fragments) often contain C-rich sequences, which is

likely the reason why the average 6mer seed composition in the RISC shifted towards C-rich-

ness in the mutant cells with sequences being somewhat more G-rich in the Drosha k.o. cell

lines (Fig 2E). Together, these trends likely account for the more strongly reduced seed viabil-

ity (Fig 2D) in these cells.

Multinomial mixed effects models revealed that differences between the three genotypes

differ by position (p<0.0001, interaction term) (see https://github.com/ebartom/SPOROS and

S3 Dataset). Model-based odds ratio (OR) estimates comparing G, C and U vs. A between

genotypes are graphically summarized in Fig 2F, and the majority are statistically significant

(dark black outer circles). For example, relative to A, C is more likely to occur in almost all

positions of the seed in Dicer k.o. cells than in wt (OR = 5.9 to 28.4 in all positions represented

by large orange circles, except position 5 where OR = 0.22 which is represented by a blue circle;

p<0.0001 at all positions). Similarly, relative to A, G is significantly more likely to occur in

Dicer k.o. than in wt in positions 2–6 (red circles), but the differences between genotypes are

smaller (OR = 1.9 to 4.5; p<0.0001 at all positions).

We previously showed that these Drosha k.o. cells grow slower than their wt counterparts

and knocking down Ago2 corrected the reduced growth rate [31], suggesting that endogenous

sRNAs with toxic seeds that entered the RISC were causing a growth reduction. Importantly it

demonstrated the relevance of including non-canonical sRNAs in the predicted 6mer seed tox-

icity analysis. Non-canonical sRNAs in the RISC also exert RNAi activity.
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Example #2: analysis of total cellular smRNAs (differentially expressed

sRNAs)

The data set of the second example on sRNAs from AD and TPD brains [23]. The SPOROS

analysis shows that sRNAs that are significantly enriched in either control or AD brains have a

profound shift from mostly miRNAs to mainly tRNA fragments (Fig 3A), a phenomenon

quite similar to that observed in the HCT116 Drosha k.o. cells in which miRNA biogenesis is

impaired. To determine how this shift influences the predicted 6mer seed toxicity, we used

SPOROS to do a differential analysis of the read counts made available in GEO (GSE63501),

starting from a table of counts, and running a differential analysis. The Seed Tox graph based

on Output B revealed a shift from mostly nontoxic miRNAs in control brains to sRNAs with

more toxic seeds in AD patients. Consistent with the published data, the most profoundly

downregulated miRNA in the AD/TPD brains is miR-219 [23]. However, most changes are

seen in tRNA fragments many of which carry toxic seeds (Fig 3B). This shift to seeds with

lower viability also became apparent in the average predicted 6mer seed toxicity analysis of all

reads (Fig 3C) and this was mostly due to a significant increase in Gs towards the 5’ end of the

6mer seed of the sRNA in the AD brains (Fig 3D). This was confirmed by model-based OR

estimates (see https://github.com/ebartom/SPOROS and S4 Dataset) comparing G, C and U

vs. A between groups of seeds that are significantly enriched in the AD/TPD brains (“Up”

group) or enriched in normal brains (“Down” group) which are graphically summarized in

Fig 3E. The majority of comparisons are statistically significant (dark black outer circles). Rela-

tive to A, G is strikingly more likely to occur in positions 2 and 3 of seeds in the “Up” vs.

“Down” groups (OR = 175.7 and 490.7; p<0.0001). Similarly, relative to A, C is significantly

more likely to occur in “Up” vs. “Down” group in positions 2–4 (OR = 20.2 to 294.5;

p<0.0001). This analysis suggests that in AD brains the repertoire of sRNAs available to poten-

tially function through RNAi are predicted to be more toxic.

The human genome contains a large number of predicted miRNAs [18]. They have been

shown to regulate almost all biological processes and to be deregulated in countless disease

states [35]. The state-of-the-art method to analyze miRNAs is by RNA Seq. Almost all RNA

Seq data are analyzed with the goal of identifying differentially expressed genes after aligning

reads to a genome and employing appropriate normalization to account for transcript length

(reads / fragments per kilobase gene model) or variation between data sets. These types of anal-

yses, while standard, have major shortcomings and all methods to normalize these large data

sets to identify and study individual miRNAs have shortcomings [36]. The analysis of pre-

dicted 6mer seed toxicity does not focus on individual miRNAs or canonical miRNA families

but treats all sRNAs solely based on their position 2–7. This allows for the ranking of all

sRNAs into blocks from highly toxic to nontoxic sRNAs and often it is the balance between

the sum of toxic versus nontoxic sRNAs bound to the RISC that determines the responses of

cells [30]. The analyses in the two examples presented (cancer and AD), were chosen to dem-

onstrate the power and the potential of the SPOROS pipeline to predict 6mer seed toxicity. In

example #1, the data support the view that most miRNAs carry nontoxic seeds and are in part

protecting cells from loading of endogenous sRNAs, which by nature are more G/C rich and

hence when entering the RISC, exert toxicity. In the AD example #2, the data suggest that in

AD brains, equilibrium shifts away from nontoxic miRNAs to more toxic sRNAs, such as

tRNA fragments. While this result needs to be validated by performing Ago pull-down experi-

ments with AD patient brains, it is intriguing that a recent study in another neurodegenerative

disease, Huntington’s disease (HD), reported that sRNAs isolated from HD brains were toxic

when injected into mouse brains [37]. This was shown in part to be due to an increase in

tRNAs in the disease brains when compared to normal control brains. An analysis of predicted
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6mer seed toxicity could become important not only in the context of cancer but also in other

diseases (recently reviewed in [15]). The methods we have developed to predict 6mer seed tox-

icity will allow for further study of the role of DISE in multiple disease situations.

Supporting information

S1 Fig. Displaying predicted 6mer seed toxicity in a density plot. RISC-bound sRNA pre-

dicted 6mer seed toxicity data of HCT116 wt, Dicer k.o., and Drosha k.o. cells displayed as

density plots. The same source data were used to generate Fig 2C.

(TIF)

S1 Table. Data on human mature miRNAs used in the BLAST search. Data are from miR-

Base supplemented with adapter and artificial sequences to ensure that these are appropriately

flagged. This file also contains four HIV-1 encoded miRNAs.

(PDF)

S2 Table. Data on mouse mature miRNAs used in the BLAST search. Data are from miR-

Base supplemented with adapter and artificial sequences to ensure that these are appropriately

flagged.

(PDF)

S1 Text. Script used to generate Fig 2A.

(PDF)

S1 Dataset. Final SPOROS output files Fig 2.

(ZIP)

S2 Dataset. Final SPOROS output files Fig 3.

(ZIP)

S3 Dataset. Code for Fig 2.

(ZIP)

S4 Dataset. Code for Fig 3.

(ZIP)
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