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Choroidal neovascularization (CNV) is a common and severe complication in heterogeneous diseases affecting the posterior
segment of the eye, the most frequent being represented by age-related macular degeneration. Although the term may suggest
just a vascular pathological condition, CNV is more properly definable as an aberrant tissue invasion of endothelial and
inflammatory cells, in which both angiogenesis and inflammation are involved. Experimental and clinical evidences show that
vascular endothelial growth factor is a key signal in promoting angiogenesis. However, many other molecules, distinctive of the
inflammatory response, act as neovascular activators in CNV. These include fibroblast growth factor, transforming growth factor,
tumor necrosis factor, interleukins, and complement. This paper reviews the role of inflammatory mediators and angiogenic
factors in the development of CNV, proposing pathogenetic assumptions of mutual interaction. As an extension of this concept,
new therapeutic approaches geared to have an effect on both the vascular and the extravascular components of CNV are discussed.

1. Introduction

Choroidal neovascularization (CNV) represents the growth
of new blood vessels from the choroid into the subretinal
pigment epithelium which, in several patients, reaches the
retina. CNV is a common pathological endpoint in a
heterogeneous variety of chorioretinal diseases [1]. Virtually
any pathologic process that involves the retinal pigment
epithelium (RPE) and damages Bruch’s membrane can be
complicated by CNV. The most frequent cause of CNV is age-
related macular degeneration (AMD) [2].

The clinical classification of AMD-related CNV is carried
out according to the definitions of Treatment of Age-Related
Macular Degeneration with Photodynamic Therapy (TAP)

and Visudyne in Photodynamic Therapy (VIP) studies [3–
6], distinguishing between four subtypes characterized by
different patterns during the fluorescein angiography (FA):

(i) classic CNV: a demarcated area of uniform hyperflu-
orescence with a hypofluorescent margin in FA early
phase, and dye leakage obscuring the boundaries dur-
ing the mid and late phases (Figures 1(a) and 1(b));

(ii) predominantly classic CNV : the classic component
occupying 50% or more of the entire neovascular
lesion (including occult CNV and all the fluore-
scence-blocking constituents) (Figures 2(a) and
2(b));
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Figure 1: Fluorescein angiography of a classic choroidal neo-
vascularization. (a) Early and (b) late angiograms: the lesion is
characterized by a well demarcated area of early fluorescence with
a progressive leakage of the dye to the subretinal space leading to
blurring of the borders in the late phase of the exam.

(iii) minimally classic CNV : the classic component oc-
cupying less than 50% of the neovascular complex
(Figures 3(a) and 3(b));

(iv) occult CNV with no classic component: including
two types: (a) fibrovascular RPE detachment
appearing as stippled hyperfluorescence with ir-
regular RPE elevation (Figures 4(a) and 4(b)); (b) an
undefined area with a late-phase dye leakage from an
undetermined source, not corresponding to classic
CNV and/or fibrovascular RPE detachment in FA
early or mid phases.

Correspondingly, three basic patterns of CNV growth
have been described [7]:

(i) sub-RPE (type 1, clinically definable as occult CNV
with no classic component);

(ii) subretinal (type 2, clinically definable as classic
CNV);

(iii) sub-RPE and subretinal (combined, clinically defin-
able as predominantly classic or minimally classic
CNV).
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Figure 2: Fluorescein angiography of a predominantly classic
choroidal neovascularization. (a) Early and (b) late angiograms:
the lesion has a mixture of angiographic features of the classic and
occult type, with the classic component making up more than 50%
of the entire neovascular complex.

2. Pathogenesis of Choroidal
Neovascularization

In the surgically excised CNV of patients with AMD,
the histopathologic examination indicates the presence
of fragments of Bruch’s membrane, RPE, photoreceptors,
vascular endothelium, fibroblasts, macrophages, circulating
progenitor/stem cells, and extracellular components includ-
ing collagen, fibrin, and basal laminar deposits [8–14].
Hence, a two-component model for CNV has been proposed
to describe CNV: (i) the vascular component of CNV is
composed of vascular endothelial cells (ECs), pericytes and
precursors of EC; (ii) the extravascular component is com-
prised of inflammatory cells (macrophages, lymphocytes,
granulocytes, and foreign body giant cells), glial cells, RPE
cells and fibroblasts [15]. Therefore, CNV is a process with a
pathogenesis involving both inflammation and angiogenesis.
The relevance of each component depends on both the
underlying disease and dynamic stage of CNV development.

The natural history of CNV may be schematically divided
in three stages: in the initiation stage, EC are derived
from the chriocapillaris proliferate and migrate towards the
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Figure 3: Fluorescein angiography of a minimally classic choroidal
neovascularization. (a) Early and (b) late angiograms: the lesion has
a mixture of the angiographic features of the classic and occult type,
with the classic component making up less than 50% of the entire
neovascular complex.

retina through the Bruch’s membrane; subsequently, during
the active stage, the neovascular complex grows up to a
certain size; finally, for reasons not yet well-known, the
CNV becomes fibrotic and forms a disciform scar in the
involutional stage [7].

2.1. Initiation Stage

2.1.1. Vascular Endothelial Growth Factor. In the initiation
stage of the neovascular lesion, it is now well established
that vascular endothelial growth factor (VEGF) plays a key
role as inciting stimulus involved in CNV development.
VEGF production has a number of potential sources,
counting EC, pericytes, glial cells, Müller cells, ganglion cells,
photoreceptors, and RPE [16–20]. Particularly, RPE secretes
VEGF in a polarized manner, with higher basal secretion
towards Bruch’s membrane than apical secretion towards
in situ photoreceptors [21]. VEGF-A, commonly named
simply VEGF, is the prototype member of a gene family, also
including placenta growth factor (PlGF), VEGF-B, VEGF-
C, VEGF-D, and orf-virus-encoded VEGF-E [22, 23]. The
increased VEGF production is mainly determined by hypoxic
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Figure 4: Fluorescein angiography of an occult choroidal neovas-
cularization. (a) Early and (b) late angiograms: the lesion appears
within 1-2 minutes from the start of the exams and persists during
the late phase; it is characterized by areas of irregular elevation of the
retinal pigment epithelium that present stippled hyperfluorescence.

stimuli, and VEGF per se triggers the growth of vascular EC
derived from arteries, veins, and lymphatics. VEGF is also a
survival factor for endothelium; it enhances microvascular
permeability and promotes monocyte chemotaxis [24].

Alternative exon splicing results in the generation of four
main VEGF isoforms, named VEGF-121, VEGF-165, VEGF-
189, and VEGF-206 basing on the number of amino acids
after the signal sequence of slicing [24]. The smaller isoforms
(VEGF-121 and VEGF-165) are freely diffusible whereas
the larger ones (VEGF-189 and VEGF-206) are bound to
heparin-containing proteoglycans on the cell surface or
basement membrane [25]. These longer molecules can be
released, after a plasmin-related proteolytic cleavage, as dif-
fusible bioactive fragments [25, 26]. VEGF-165 can be prote-
olyzed by various matrix metalloproteinases (MMPs), espe-
cially the MMP-3, generating VEGF-113 which seems to be
very similar to the plasmin-generated VEGF fragments [27].

Hitherto, three VEGF-receptors (VEGFRs) have been
identified: (i) VEGFR-1 was firstly identified more than
fifteen years ago, but its function is still debated [24, 28];
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(ii) VEGFR-2 is considered the major mediator of the
mitogenic, angiogenic and propermeability effects of VEGF
[24]; (iii) VEGFR-3 is identical to neuropilin-1, implicated
in axon guidance as a receptor for collapsin/semaphorin
molecules, and it appears to enhance the effectiveness of the
signal transduction mediated by VEGFR-2 [24].

Experimental and clinical evidences indicate the central
role of VEGF in CNV occurrence. In fact, VEGF is present
in surgically excised CNV [16, 17, 29–31], and vitreous
levels of VEGF were significantly higher in patients with
neovascular AMD compared with healthy controls [32, 33].
The VEGF overexpression in mice’s RPE is sufficient to cause
the development of CNV [34, 35], and, in animal models,
VEGF blocking treatments are able to cure the laser-induced
CNV [36, 37]. Finally, intravitreal injections of VEGF elicit
proliferation of choroidal EC in nonhuman primates [38].
In physiologic and pathophysiologic conditions, the upregu-
lation of proangiogenic cytokine expression, such as VEGF, is
involved in the response to tissue hypoxia that it is mediated
by the family of transcription regulators, named hypoxia
inducible factors (HIFs). It is therefore plausible that hypoxia
represents a major stimulus for the submacular wound
healing, and, within this context, CNV is other than one
element of this process which, in turn, leads to HIF synthesis;
HIF are the key signals for hyperproduction of VEGF with
subsequent aberrant growth of the neovascular component
of submacular tissue repair. In fact, the presence of HIF-
1alpha and HIF-2alpha has been recently discovered in active
CNV specimens [39]. In the ocular tissues, VEGF acts as both
a specific EC mitogen and promoter of vascular permeability.
However, in addition to angiogenesis, vasculogenesis appears
to be implicated in CNV development, indeed: (i) VEGF is a
chemoattractant for EC precursors, inducing their mobiliza-
tion and promoting their differentiation [40]; (ii) chemokine
stromal cell-derived factor 1-alpha and its receptor CXCR4,
both involved in the recruitment of EC precursors, have been
detected inside CNV [41]. VEGF induces CNV enlargement
also by stimulating EC expression of MMPs, which degrade
the extracellular matrix and facilitate neovascular tissue
invasion [42]. Lastly, VEGF represents a potent chemotactic
signal for macrophages [43, 44].

2.1.2. Macrophages and Other Cytokines. Macrophages are
other important players in the process of CNV development.
In experimental model of CNV, macrophages depletion
diminishes both size and severity of the neovascular lesion
[45]. Leukocytes are recruited in CNV not only by VEGF
but also by vascular adhesion protein-1, an EC adhesion
molecule [46]. It is unknown whether either macrophages
actively cause breaks in Bruch’s membrane (via production of
collagenase/elastase), or they are introduced into the ill area
after the CNV breaks of Bruch’s membrane [8]. The arriving
of macrophages elicits the production of tumor necrosis
factor-α (TNF-α) which, in particular, stimulates the synthe-
sis of type-8 interleukin (IL), monocyte colonization protein,
and RPE-secreted VEGF [11]. This autocrine/paracrine loop
is completed with the recruitment of further macrophages
by type-1 monocyte colonization protein [47]. At the level
of RPE cells, integrins α3 and α5 are expressed, mediating

the migration of vascular ECs or macrophages in the early
stage of CNV development [48]. As well, IL-2, IL-6, and IL-
10 might participate to CNV expansion, but their exact roles
have not been deeply investigated yet [49–51].

2.1.3. Angiogenic and Antiangiogenic Agents. Several angio-
genic/antiangiogenic molecules, different from VEGFs, are
implicated in CNV development [52].

(i) Insulin-like growth factor is a mediator of anabolic
and mitogenic actions of the growth hormone;
inside AMD-related CNV present are mRNAs of this
factor and of its receptor [53]; in vivo, both VEGF
expression and CNV activity are downregulated by
a specific receptorial inhibitor (picropodophyllin)
[54].

(ii) Nitric oxide is a signaling molecule with pleiotropic
effects, and it is a well-known mediator of vascu-
lar dilatation and permeability [55]; experimental
findings indicate that nitric oxide is an important
CNV stimulator, and that its reduction, obtained
in pharmacologic or genetic manner, represents a
potential therapeutic strategy for CNV [56].

(iii) Angiostatin is a plasminogen fragment firstly rec-
ognized as endogenous angiogenic inhibitor [57];
subretinal injection of recombinant adenoassociated
virus vector expressing mouse angiostatin is able to
suppress experimental CNV in a rat model [58].

(iv) Endostatin, another endogenous inhibitor of angio-
genesis, is generated by the cleavage of a collagen
XVIII fragment [59]; in mice, intravenous adminis-
tration of adenoviral vectors containing an expres-
sion construct for endostatin results in prevention of
laser-induced CNV [60].

(v) Pigment epithelium-derived factor (PEDF) is a
potent antiangiogenic and neuroprotective protein,
normally produced by RPE [61]; in pigs and mice, the
periocular injection of an adenoviral vector encoding
PEDF inhibits CNV development [62, 63].

(vi) CCR3 (also known as CD193) is a chemokine recep-
tor best known for its role in promoting eosinophil
and mast cell trafficking; it is specifically expressed
in CNV endothelial cells in humans with AMD
[64]. CCR3 targeting reduces CNV in a mouse
model through a direct antivascular effect which
does not appear to involve modulation of cellular
inflammation [64].

2.2. Active Stage. In the course of the natural history of CNV,
active stage is characterized by the progressive enlargement
of neovascular complex. This neovascular enlargement is
mainly related to the presence of many inflammatory cells,
synergistically acting with aberrant cytokines produced via
autocrine/paracrine mechanisms. Vascular endothelium and
macrophages produce MMPs which, in turn, degrade extra-
cellular matrix allowing CNV infiltration through Bruch’s
membrane [8]. Several MMPs were detected in the vitreous
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of AMD patients and in surgically excised subfoveal CNV
[65, 66]. Particularly, peculiar MMPs seem to play a key
role in CNV growth; in fact: (i) MMP-2/MMP-9 deficient
mice have more difficulty in developing laser-induced CNV
[67, 68]; (ii) overexpression of tissue inhibitor for MMP-3
(TIMP-3) in RPE cells reduces the activity of experimental
CNV [69]. At the same time, macrophages express tissue
factor, a protein involved in fibrinogenesis, which is able to
generate a fibrin scaffold for the growing of CNV [8]. During
active stage, also angiopoietins and their receptors (Tie-1,
Tie-2) play a role in angiogenic process. Histological exami-
nation of AMD-related CNV showed that angiopoietin-1 and
-2 and Tie-2 were present [70]. Angiopoietins are essential
for maturity and integrity of vessels: angiopoietin-1 appears
crucial for this structural stabilization in normal vascular
system whereas the dramatic upregulation of angiopoietin-
2, in presence of VEGF, is a prerequisite for vascular
remodeling and/or normal angiogenesis [71]. Moreover,
at this stage, RPE produces a basic fibroblast growth
factor (FGF-2), a heparin-binding peptide, that stimulates
pathologic angiogenesis. However, FGF-2 expression alone is
neither necessary nor sufficient for CNV development [71,
72]. Transforming growth factor-beta (TGF-β) is another
important factor secreted by RPE during active CNV phase
[73]; since it is a potent inducer of extracellular matrix
synthesis, reliably it limits the extent of neovascular complex,
starting that process then resulting in progressive CNV
fibrosis [8]. Recent experimental evidences suggest a role also
for hepatocyte growth factor (HGF), a mitogen for hepatic
and renal cells that may be involved in CNV progression [74];
whether this is a result of its dedifferentiating effect on RPE
cells is currently unclear.

Activation of complement, specifically the formation
of membrane attack complex (MAC), is essential for the
development of laser-induced CNV in mice [75] under-
lining, once again, the importance of inflammation in the
pathogenesis of the neovascular complex. MAC can mediate
the release of several factors from various nucleated cells,
such as VEGF, FGF-2, and platelet-derived growth factor
(PDGF), with consequent amplification of the angiogenic
processes [75]. Gene variants of the complement compo-
nents have been evaluated as risk factors for AMD among
different ethnic clusters [76–101]. Hitherto, one of the most
investigated single nucleotide polymorphism (SNP) has
been the rs1061170, which causes a Tyr402His amino acid
substitution in complement factor H (CFH). Independent
studies have documented that the allele 402His is related
to increased incidence and/or severity of AMD in several
populations [76–100, 102]. The frequency of 402His allele
varies greatly between populations and, notionally, it may
contribute to the observed variability in the incidence of
AMD among different ethnic groups [103]. Finally, also
elevated plasma levels of C3a complement compound in
patients with AMD-related CNV have recently suggested the
presence of an association between systemic complement
activation and this pathologic occurrence [104].

In the course of initiation stage, the neovascularization
is highly dependent on VEGF but, afterward, it undergoes a
process of maturation which makes it less dependent on this

growth factor. In fact, once the new vessels are formed, ECs
start to secrete other factors to recruit mural cells (pericytes)
that promote vessel stabilization, endothelium differentia-
tion, and growth arrest. The most important of these factors
is PDGF-B which works through its receptors expressed by
pericytes [105–107]. In animal models of CNV, inhibition of
both VEGF-A and PDGF-B signaling appeared more effec-
tive for vessel regression than blocking VEGF-A alone [108].

2.3. Involutional Stage. Whilst there is considerable over-
lapping between the phases of CNV progress, at certain
time the balance of these pathologic events shifts towards
antiangiogenic and antiproteolytic activities, resulting in
the involutional stage of CNV [8]. Indeed, it is quite
frequent to find different developmental stages within the
same neovascular complex, mostly characterized as either
cellular or fibrotic regions [14]. At this stage, the most
important players are TGF-β and TIMP-3, produced by RPE,
which are able to markedly influence both the secretion of
extracellular matrix and the tissue remodeling. Concurrently,
angiogenesis continues until a state of normoxia or hyperoxia
exists, thereby switching off VEGF synthesis. The outcomes
of these processes are the maturation of established vessels
and the occurrence of scar tissue. The origin of vascular
elements contributing to the subretinal fibrosis is not yet
clear, but it is known that RPE cells themselves, directed
by TNF-α, TGF-β, and other growth factors, dedifferentiate
and proliferate showing, together with choroidal fibroblasts,
a wound repair pattern [109].

3. Therapeutic Approaches for
Choroidal Neovascularization

The wider knowledge of the mechanisms involved in the
pathogenesis and development of CNV has led, in the last few
years, to a remarkable increase of the possible pharmacolog-
ical strategies toward this severe macular lesion (Table 1).

3.1. Therapies Directed against the Vascular Component of
Choroidal Neovascularization. In view of the fact that VEGF
plays a key role in the pathogenesis of CNV, targeting VEGF
has soon appeared as an effective strategy to treat CNV
[110]. Antivascular endothelial growth factor (anti-VEGF)
drugs not only can arrest choroidal angiogenesis, but they
also reduce vascular hyperpermeability which, in patients
with CNV, is often the main cause of visual acuity (VA)
deterioration.

Pegaptanib sodium and ranibizumab were the first
intraocular anti-VEGF treatments evaluated in large, ran-
domized, controlled clinical trials for the treatment of
neovascular AMD. Both have been administered locally by
repeated intravitreal injections.

Pegaptanib sodium is a pegylated oligonucleotide
aptamer that selectively binds to and inactivates just the
VEGF-165, the most abundant isoform of VEGF. In the
VISION trial—a phase III double-masked, sham-controlled,
dose-ranging study including all lesion subtypes and
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Table 1: Therapeutic approaches for choroidal neovascularization.

Therapies directed against the vascular component of choroidal neovascularization.

Agent Class Molecular target

Pegaptanib sodium aptamer VEGF-165

Ranibizumab monoclonal antibody fragment all VEGF isoforms

Bevacizumab full-length monoclonal antibody all VEGF isoforms

VEGF-trap decoy receptor all VEGF isoforms and PlGF

Pazopanib tyrosine kinase inhibitors VEGFR-1, VEGFR-2, VEGFR-3, PDGFR-a/β, and c-kit

TG100801

TG101095

Vatalanib

AL39324

Bevasiranib siRNA VEGF mRNA

E10030 aptamer PDGF

Combretastat in A4 phosphate vascular VE-cadherin, beta-catenin/AKT

Therapies directed against the extra-vascular component of choroidal neovascularization

Agent Class Molecular target

Anecortave acetate corticosteroid uPA, stromelysin (MMP-3)

JSM6427 integrins antagonist α5β1 integrin

sirolimus immunosuppressant mTORC1

infliximab Monoclonal antibody TNF α

VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor; PlGF, placenta growth factor; PDGFR, platelet-derived growth
factor receptor; PDGF, platelet-derived growth factor; uPA, urokinase plasminogen activator; MMP, matrix metalloproteinase; mTORC1, mammalian target
of rapamycin complex 1.

dimensional categories—pegaptanib sodium prevented
moderate vision loss (the primary endpoint, which was
defined as loss of <15 letters of vision) in 70% of the treated
patients compared with 55% for the control group at one
year. On average, patients in the pegaptanib sodium group
lost 8 letters at one year, compared with a loss of 15 letters in
the sham injection group. The proportion of patients who
experienced a moderate gain in vision (defined as a change
of ≥15 letters at one year from baseline) was small in both
groups −6% in the pegaptanib sodium group versus 2% in
the sham-injection group [111]. In two years, 59% of eyes
treated with pegaptanib lost less than 15 letters compared
with 45% of sham-treated eyes [112].

Ranibizumab is a recombinant, humanized antibody
fragment that binds to and potently neutralizes the biological
activities of all known human VEGF isoforms, as well
as the proteolytic cleavage product VEGF-110. In a large
randomized, multicentre, sham-controlled phase III study
(MARINA trial) that included only patients with minimally
classic or occult CNVs, at the 12-month visit, 95% of
ranibizumab-treated eyes maintained stable vision (within
15 letters) compared with 62% of sham-treated eyes. An
improvement of VA by ≥15 letters was found in 34% of
eyes treated as compared with 5% of the sham-injection
group. After 24 months, 90% of eyes in the ranibizumab
group versus 53% in the control group demonstrated stable
vision. A mean improvement of 7 letters was documented
at 12 and 24 months of follow up in the ranibizumab arms.
Improved vision by ≥15 letters occurred in 33% of eyes
treated with ranibizumab, and 42% of patients in this group

obtained a final VA of 20/40 or better [113]. The ANCHOR
study was designed as a prospective, randomized phase III
trial including patients with predominantly classic CNV
secondary to AMD. Repeated injections of ranibizumab were
compared with an arbitrary treatment with photodynamic
therapy. In one year, 96% of ranibizumab-treated eyes lost
less than 15 letters versus 64% of photodynamic-treated
eyes. An improvement ≥15 letters was found in 40% of
eyes injected with ranibizumab compared with 6% in the
other treatment group. A vision gain of ≥30 letters was
achieved in 12% of ranibizumab-treated patients. Mean VA
demonstrated an improvement of 11 letters in one year and a
final VA of 20/40 or better was found in 39% of ranibizumab-
treated patients [114]. Consistent with results obtained at
the 12-month check, at the 24th month of follow up the VA
benefit due to ranibizumab was statistically significant and
clinically meaningful [115].

Bevacizumab is a full-length recombinant, humanized
antibody binding to all VEGF isoforms. The drug was
originally developed to target pathologic angiogenesis in
tumors and was approved by the FDA for the treatment
of metastatic colorectal cancer. It is widely used as off-
label drug for the treatment of various ocular neovascular
diseases, including CNV, because numerous clinical studies
have documented the ability of this compound to reduce
angiogenesis and vascular hyperpermeability rapidly follow-
ing its intravitreal repeated administrations [116–126]. Both
favorable efficacy and safety profiles and lower costs are the
major arguments to consider for an off-label use of this drug
[116–131].
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Several other molecules targeting VEGF and its signaling
pathway are in various stages of clinical development for the
treatment of CNV [132].

VEGF-Trap is a fusion protein that combines ligand-
binding elements taken from the extracellular domains of
VEGFR-1 and VEGFR- 2 fused to the Fc portion of IgG [132].
Unlike pegaptanib, ranibizumab, and bevacizumab, which all
act through inhibition of VEGF-A, VEGF-Trap is designed
to inhibit all members of the VEGF family: VEGF-A, -B,
-C, -D, PlGF-1 and -2. The CLEAR-IT 2 study (phase II,
randomized, controlled, clinical trial) has demonstrated that
VEGF-Trap is able to significantly decrease retinal edema and
CNV size in patients with neovascular AMD [133].

Another method of blocking the effects of VEGF is
through inhibition of the downstream tyrosine kinase cas-
cade activated by the VEGF binding to its receptors. Tyrosine
kinase inhibitors, interacting with VEGF receptors currently
in early stages of clinical development, include the two
topical pazopanib formulations (TG100801 and TG101095),
the oral formulation vatalanib (formerly PTK/ZK), and the
intravitreal formulation AL39324 [132].

The levels of VEGF in the ocular tissues may be reduced
also acting on its gene expression via small interfering
RNA (siRNA). Therapeutic approach with siRNA works by
downregulating the production of certain proteins as a result
of degradation of specific mRNA. Bevasiranib (formerly
Cand5) is an siRNA targeting mRNA of VEGF: it is currently
tested in a phase III clinical trial (COBALT study) for
the treatment of neovascular AMD. Since bevasiranib just
blocks the VEGF production, the amount of VEGF already
present in the eye at the time of administration precludes
an immediate impact of the drug on CNV. For this reason,
bevasiranib is evaluated as a combination therapy together
with an agent that binds VEGF (ranibizumab) with the aim
of reducing the dosage of the latter [134].

A major limitation of the anti-VEGF therapy is the
difficulty to maintain the neovessels regression. This phe-
nomenon is ascribed to the progressive maturation of CNV
which then becomes less dependent on VEGF. As mentioned
above, PDGF plays a key role in this process of maturation
through the recruitment of pericytes [105, 106]. E10030 is
an anti-PDGF aptamer that strips the pericytes from the
neovascular tissue rendering it highly sensitive to an anti-
VEGF attack. In a phase I clinical study evaluating E10030
in association with an anti-VEGF drug for the treatment of
AMD-related CNV, 85% of patients exhibited neovascular
regression [135]. This effect is further supported by the
fact that, in ocular angiogenesis models, the pharmacologic
inhibition of PDGF binding to its receptor (PDGFR-β)
plus an anti-VEGF agent result in the regression of the
neovascularization [136].

Beyond the inhibition of angiogenesis there is a new
approach in the vascular targeting strategies: the so-called
vascular disabling treatment. Vascular disabling agents
(VDAs) target endothelial cells of the already established
neovascular tissue leaving other blood vessels relatively
unscathed. Zybrestat (combretastatin A4 phosphate, CA-4-
P) is poised to become the first therapeutic product in this
novel class of drug candidates. Zybrestat has a dual mode of

action, targeting both VE-cadherin, a junction protein that
is important for endothelial cell survival, and the associated
beta-catenin/AKT signaling pathway [137]. In experimental
models, CA-4-P was able to suppress the development of
VEGF-induced retinal neovascularization and to promote
CNV regression, showing potential for both prevention and
treatment of ocular neovessels [138].

3.2. Therapies Directed against the Extravascular Component
of Choroidal Neovascularization. The development of CNV
is a complex process in which both angiogenesis and
inflammation take part. As previously covered, VEGF apart,
many cytokines and inflammatory cells are involved in CNV
pathogenesis and, thus, they represent a potential target for
therapy.

Anecortave acetate is a modified steroid derivative with-
out glucocorticoid activity. It inhibits protease synthesis,
which is necessary for cell migration through nonvas-
cularized extracellular matrix in response to angiogenic
stimulation. Juxtascleral depot of anecortave acetate at 6-
month intervals was statistically superior to vehicle in a
monotherapy trial at both 12 and 24 months for maintenance
of vision and inhibition of CNV growth in patients with
AMD; moreover, in a comparative trial, it was comparable
to photodynamic therapy with verteporfin for maintaining
vision over a 24-month period [139]. However, additional
data about efficacy/safety profile have been requested for the
clinical approval of this drug.

Integrins are cell adhesion receptors involved in the
linkage to extracellular matrix and to adjacent cells. Integrins
antagonists have effectively inhibited CNV progression in
animal models, suggesting that these molecules may be
beneficial in the treatment of CNV [140, 141]. Single
intravitreal injections of JSM6427, a highly potent and
specific small antagonist of α5β1 integrin, were well tolerated
in patients with neovascular AMD and showed evidences of
biological activity in phase I clinical study [142].

Whilst it has been demonstrated that MMPs are the
key enzymes involved in the degradation of the extra-
cellular matrix and have been shown to contribute to
the growth of CNV, the strategies developed to inhibit
CNV by overexpression of tissue inhibitors of MMP-3
have been somewhat disappointing [143]. The glycoprotein
thrombospondin-1 suppresses angiogenesis by acting as
both an activator of transforming growth factor-β, and a
negative regulator of MMP-9 activation, and an activator of
apoptotic pathways [52]. Recently a peptide derived from
type 1 thrombospondin repeat-containing protein WISP-1
(wispostatin-1) has been shown to have inhibitory effect in
vitro as well as in vivo in ocular neovascularization [144].

Several other drugs, already in use for several inflamma-
tory disorders, are currently under investigation as potential
treatments for CNV. They include cyclooxygenase inhibitors,
sirolimus, and infliximab [145–149]; in particular, for
these latter two, the preliminary data seem to be more
interesting. Sirolimus, also known as rapamycin, acts on
the protein kinase mammalian target of rapamycin, which
regulates cell growth and metabolism. In addition to its anti-
inflammatory, antifibrotic, and antiproliferative activities,
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sirolimus inhibits also angiogenesis by decreasing VEGF
and transforming growth factor-β1 and by downregulating
hypoxia-inducible factor-1α [132]. Systemic rapamycin is
able to inhibit retinal and choroidal neovascularizations in
mice [146]. A phase II clinical study is ongoing to assess
the safety and efficacy of intravitreal ranibizumab plus
subconjunctival sirolimus versus intravitreal ranibizumab
plus placebo in patients with treatment-naive subfoveal CNV
secondary to AMD [147]. Infliximab is a chimeric human
IgG1 with a mouse Fv variable fragment of high TNF-
α affinity and neutralizing capacity. In vivo, intravenous
infliximab has been indicated in the treatment of rheumato-
logic, gastrointestinal, and dermatologic diseases, and recent
studies have described its efficacy in the treatment of chronic
ocular inflammation. Preclinical trials have demonstrated a
reduction in CNV size in mice intravitreally treated with
infliximab. However, there seems to be a dose-response
relationship in which low doses of anti-TNF-α decrease
angiogenesis while high doses increase it [148, 149].

4. Conclusions and Perspectives

The pathogenesis of CNV represents a highly complex
process where not only angiogenesis but also inflammation
plays an important role. Nowadays, the most frequent
utilized treatment for the different typologies of subfoveal
CNV is based on the pharmacological block of VEGF, which
can be combined with the selective laser photothrombosis
of the lesion (photodynamic therapy with verteporfin) [6].
However, neither therapy is ideal; in fact, verteporfin proto-
col is not usually associated with a functional improvement,
and intravitreal drugs acting against VEGF are estimated
to substantially improve vision in less than a third of
patients, with one-sixth of treated subjects still progressing
to legal blindness. Furthermore, in an elderly population,
often already at risk for cerebrovascular accidents, there are
concerns about possible systemic thromboembolic compli-
cations with repeated high dosages of anti-VEGF compounds
[150]. Numerous intravitreal injections over many years
may be also relatively contraindicated in some patients,
such as diabetics, in who the underlying disease may favor
infections and slow down the healing of the wound. In the
last few years, following extensive immuno-histochemical
and molecular biologic characterization of CNV, several
innovative pharmacological treatments have come to notice.
Although many of them are still in the early phase of
development, it is likely that in the next future they will break
new therapeutic ground in the treatment of CNV. Similar
to cancer therapy, where a combination of agents have
been found to be more effective than monotherapy, many
retina specialists are starting to believe that a combination
of two or more curative approaches will result in a better
visual outcome than that of a single therapy for CNV.
By targeting different mechanisms with individual agents,
it should be possible to not only enhance efficacy, but
also minimize unwanted collateral effects by using lower
concentrations of each drug than those which would be
used in monotherapy. In view of this new scenario, the
relationships among pharmacogenetic predictors and diverse

treatments towards CNV have been recently investigated
considering the different responsiveness of subfoveal CNV
to either photodynamic therapy with verteporfin [151–158]
or intravitreal anti-VEGF agents [159, 160]. At present, it is
very difficult to draw any unequivocal conclusion regarding
the therapeutic influence towards CNV of those common
immunologic gene polymorphisms, such as CFH Y402H
and LOC387715/ARMS2 A69S, described as determinants of
both phenotype and/or severity of AMD [76–101] and of the
efficacy of very dissimilar CNV treatments [156–160], even
if not in all published studies [161]. Unfortunately, there is
no study in which has been verified the possible correlation
between the allelic variants in complement cascade genes and
the curative impact on CNV of immunotherapies, employed
in single or combined modality, against the extravascular
component of the lesion. Future investigations are warranted
to outline these and other pharmacogenetic aspects about
the possible treatments of subfoveal CNVs, stratifying the
enrolled patients also on the basis of their different genotypic
backgrounds for a remarkable optimization of each anti-
CNV therapeutic strategy.
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