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Hedgehog signalling promotes germ cell survival in the rat testis
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Abstract

Hedgehog (Hh) signalling has a crucial role in testis development. Sertoli cell-derived desert hedgehog (DHH) guides the formation of

testis cords and differentiation of foetal-type Leydig cells. Dhh mutant mice are infertile due to a block in germ cell differentiation,

hypogonadism and hypoandrogenism. Hh signalling pathway components are also expressed in postnatal testis. In the rat testis the

transcription factor of the Hh pathway, glioma-associated oncogene homologue (GLI1), is expressed by a wide variety of germ cells. This

suggests that Hh signalling is involved in spermatogenesis at many different levels. Our data show that canonical Hh signalling is turned

off in early condensing spermatids that strongly express the negative regulator of the pathway, suppressor of fused (SUFU). Most of the Hh

pathway specific mRNAs display the highest values in stages II–VI of the rat seminiferous epithelial cycle. The key endocrine regulator of

germ cell differentiation, FSH, down-regulates Dhh mRNA levels in vitro. Hh signalling inhibition in vitro leads to massive apoptosis of

germ cells. In prepubertal rat testis imatinib mesylate-induced inhibition of tyrosine kinases impinges on Dhh transcript levels and Hh

signalling. Our data indicate that Hh signalling is part of the paracrine signalling network in the rat testis. It promotes the survival of germ

cells and is suppressed by FSH.

Reproduction (2011) 142 711–721
Introduction

Desert hedgehog (DHH), the testis-specific member of
mammalian hedgehog (Hh) protein family, is one of the
first genes to be expressed in the developing male gonad
(Bitgood et al. 1996). Blocking Hh signalling in the
developing testis genetically or pharmacologically leads
to severe disruption in testicular histology resulting in
spermatogenic defects and infertility (Clark et al. 2000,
Pierucci-Alves et al. 2001, Yao & Capel 2002). In
addition to the disorganised seminiferous epithelium,
disrupted spermatogenesis may partly be due to low
androgen levels since Hh signalling is needed for the
differentiation of foetal Leydig cells (Yao et al. 2002,
Barsoum et al. 2009) and to maintain the expression of
steroidogenic enzymes (Brokken et al. 2009). Regulation
of the Hh pathway in the testis is poorly understood but
recent data suggest that environmental factors can
interfere with it. Fowler et al. (2008) reported that
maternal smoking during pregnancy impinges on DHH
mRNA levels during testis development in utero. Our
previous results demonstrate that the antiandrogen
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flutamide down-regulates the mRNA levels of Hh
pathway genes (Brokken et al. 2009).

The role of Hh signalling in spermatogenesis has
remained unknown until recently. In the mouse, Sertoli
cell-derived DHH binds patched (PTCH) receptor on the
surface of primary spermatocytes relieving smoothened
(SMO) repression and activating glioma-associated
oncogene homologue (GLI) transcription factors
(Bitgood et al. 1996, Carpenter et al. 1998, Taipale
et al. 2002). Gli1 and Ptch1 are among the first genes
whose transcription is triggered in response to the
activation of Hh signalling pathway (Hooper & Scott
1989, Lee et al. 1997). In a recent study, Morales et al.
(2009) confirmed and redefined these findings in another
rodent model, the rat, by showing that DHH is produced
in Sertoli cells, whereas meiotic and post-meiotic cells
stained positively for PTCH1 and SMO. Interestingly,
they also demonstrated that late primary spermatocytes,
secondary spermatocytes, round spermatids and Leydig
cells express PTCH1 in the adult mouse testis. This would
suggest that DHH/PTCH1 signalling takes part in control
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of meiotic divisions and adult-type Leydig cell function.
However, it is also highly contradictory to what has been
shown previously by Carpenter et al. (1998). They
indicated that Ptch2 is the only Hh receptor that is
highly expressed in adult mouse testis. In situ hybrid-
isation revealed that Ptch2 is strongly expressed in
seminiferous tubules, whereas only a weak expression of
Ptch1 can be observed in the interstitium. Besides
meiosis Hh signalling is probably active also in
spermatogonia that express the genes of the pathway
(Szczepny et al. 2006). However, when seminiferous
tubule segments were cultured in hanging drops in the
presence of Hh signalling inhibitor, cyclopamine, no
significant effects on proliferation of spermatogonia or
survival of germ cells were recorded (Szczepny et al.
2009). Interestingly, Hh signalling inhibition was
followed by lower mRNA levels of Scf and Kit (c-Kit)
suggesting that it might secondarily affect survival of
differentiating germ cells (Yoshinaga et al. 1991,
Hakovirta et al. 1999, Yan et al. 2000a, 2000b, 2000c).

The aim of this study was to elucidate the role of Hh
signalling in rat spermatogenesis and to compare the
results with the previous findings in the mouse. Our data
suggest that Hh signalling acts at many levels during
spermatogenesis in the rat testis and shows that one of
the physiological functions of Hh signalling is to promote
germ cell survival. Inhibition of receptor tyrosine kinases
(RTKs; such as KIT) in the prepubertal rat down-
modulates Hh signalling in vivo, whereas the steady-
state levels of Dhh mRNA are suppressed by FSH in adult
in vitro demonstrating that testicular Hh signalling is
under endocrine and paracrine control.
(c)
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Figure 1 Age-dependent steady-state levels of Hedgehog pathway
mRNAs in the rat testis. (A and B) Dhh, Ptch1, Gli2 and Gli3 mRNAs are
at their highest level in prepubertal rat testis. Gli1 levels steadily
decrease after birth. Until day 30 Sufu transcript is present at a very low
level. Ptch2 mRNA level does not change within this time window.
(C) Dhh levels show only slight changes when normalised to Sertoli cell
number (Fshr mRNA level). Statistical significances were tested using
ANOVA and they are marked here against the data point of the highest
value. GOI, gene of interest; nZ4, S.E.M.; aP!0.05; bP!0.01;
cP!0.001; letters a, b and c on top of the error bars are in different
colours based on the colour of the line marking the gene.
Results

The transcripts of Hh signalling pathway components
are present in the rat testis at all ages

We isolated total RNA from testes of 1, 5, 10, 20, 30, 40
and 60–90-day-old rats (four animals per age group) and
used it as a template in qRT-PCR to study if the mRNAs of
Hh pathway genes are present in the postnatal rat testis.
Transcripts of all the genes that we studied (Dhh, Ptch1,
Ptch2, Gli1, Gli2, Gli3 and suppressor of fused (Sufu))
were detected at every time point (Fig. 1). Three different
patterns were observed: Dhh, Ptch1, Gli2 and Gli3
mRNA levels increased after birth and showed the
highest values prepubertally and steadily decreased
thereafter (Fig. 1A and B); the steady-state level of Gli1
transcript started to decline steadily after birth (Fig. 1B);
Sufu mRNA was present at a very low level in young rat
testis but its steady-state level increased markedly after
puberty (Fig. 1B). The level of Ptch2 transcript did not
change significantly over time (Fig. 1A). Statistical
significances were tested using one-way ANOVA and
are reported against the data point of the highest value in
Fig. 1. To normalise the Dhh transcript level to Sertoli
Reproduction (2011) 142 711–721 www.reproduction-online.org



Hedgehog signalling promotes germ cell survival 713
cell number, relative mRNA level of FSH receptor (Fshr)
was studied. Fshr is expressed exclusively by Sertoli cells
in the rat testis (Heckert & Griswold 1991). Dhh level
stayed quite constant in the Sertoli cells as the rat grew
older, the only significant difference being between
postnatal days 5 and 30 (Fig. 1C). Sonic hedgehog and
Indian hedgehog transcripts were not present in the rat
testis (data not shown).
Immunohistochemical staining of Hh pathway proteins
in mature rat testis

In accordance with mRNA level findings, the negative
regulator of the pathway, SUFU, was located only in
early condensing spermatids in the rat testis (Fig. 2A
and B). Developmentally we could first locate SUFU in
spermatids of 40-day-old rats (Fig. 2A). In adult, SUFU
protein expression was first observed in step 9 (stage IX)
condensing spermatids. The signal was strongest in steps
10–13 (stages X–XIII) spermatids and became weaker
towards stage I (Fig. 2B). SUFU was no longer expressed
in steps 15–18 (stages I–VI) condensing spermatids.
Interestingly, as shown in Fig. 2C and D (which are
two consecutive sections), the expression of GLI1 in
elongating spermatids was quite the opposite:
cytoplasm of steps 16–18 (stages II–VI) spermatids
stained strongly for GLI1, whereas no signal for GLI1
was observed in steps 9–14 (stages IX–XIV) spermatids.
A B

C D

E F
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These data suggest that Hh signalling is involved in
spermiogenesis, too. In steps 9–14 spermatids (stages
IX–XIV) Hh signalling is turned off by SUFU that
sequesters GLI1 in the cytoplasm (Kogerman et al.
1999). Disappearance of SUFU in steps 15–18 (stages
I–VI) spermatids allows GLI1 to be reactivated in the late
steps of spermiogenesis.

GLI1 expression was observed at three different levels:
spermatogonia, spermatocytes and late elongating
spermatids (Fig. 2D and E). Spermatogonial expression
of GLI1 was observed quite uniformly in all stages,
whereas the staining intensity of GLI1 in stages II–VI
pachytene spermatocytes was stronger than in other
stages. Primary spermatocytes also expressed PTCH1
(Fig. 2F). Zygotene spermatocytes weakly expressed the
protein and immunopositivity increased towards stage
VIII pachytene spermatocytes whereafter PTCH1 was
no longer detectable. The meiotic and post-meiotic cell
type-specific expression pattern of SUFU, GLI1 and
PTCH1 proteins is summarised in Fig. 3.
Steady-state levels of Hh signalling pathway mRNAs are
spermatogenic stage-dependent

Rat spermatogenesis is divided into 14 defined stages,
I–XIV (Leblond & Clermont 1952). We used transillumi-
nation-assisted microdissection method to cut the
seminiferous tubule of five adult rats to segments
Figure 2 Expression of SUFU, GLI1 and PTCH1 in mature rat
testis. (A) SUFU expression (red) is first observed in 40-day-
old rat in elongating spermatids. (B) In the adult rat testis, the
expression starts in step 9 spermatids (stage IX) and stays at a
high level till steps 12–13 spermatids (stages XII and XIII).
Protein expression is down-regulated thereafter and steps
15–19 spermatids cease to express SUFU (red). (C and D)
Two consecutive sections showing that the expression of
SUFU (red) (C) and GLI1 (red) (D) are opposite in elongating
spermatids, i.e. SUFU is expressed in steps 9–13 spermatids,
whereas GLI1 is expressed in steps 16–18 spermatids. (D and
E) GLI1 (red) displays a nuclear expression in spermatogonia
(arrows) and nuclear/cytoplasmic expression in spermato-
cytes (arrowheads) while the cytoplasm of steps 16–18
spermatids stains positively for GLI1 (red). Note that stages
II–VI pachytene spermatocytes stain more strongly than other
primary spermatocytes. (F) Primary spermatocytes stain
positively for PTCH1 (red). Pachytene spermatocytes (arrow-
heads) strongly express the protein whereas a weaker signal is
detected in zygotene spermatocytes (arrows). Inset: negative
control showing unspecific staining in the interstitium. Cell
nuclei are stained in A with DAPI (blue). In B–F DAPI staining
(blue) for the same section (sectors) is included to help
seminiferous epithelial cycle stage recognition. The stages of
the cycle of the seminiferous epithelium are indicated with
Roman numerals. Scale bar 100 mm.

Reproduction (2011) 142 711–721



15

1

P P P P P P P P P P P P Di m20m

2 3 4 5 6 7 8 9 10 11 12 13

Z PZLLLPIPIBBInInIn

I II III IV V VI VII VIII IX X XI XII XIII XIV
In

14

16 16 17 17 18 19 19

GLI1=green

SUFU=red
PTCH1=blue

Figure 3 Schematic illustration of the SUFU, GLI1 and PTCH1 protein
expression in the meiotic and post-meiotic cells of the rat seminiferous
epithelial cycle. GLI1 expression is first observed in preleptotene
spermatocytes and the strongest immunostaining is observed in stages
II–VI pachytene spermatocytes. Thereafter, the expression is down-
regulated but it reappears in steps 15–18 spermatids. PTCH1
expression ranges from zygotene to stage VIII pachytene spermatocytes.
SUFU localises specifically to steps 9–14 spermatids. Solid lines mark
the cell types with the strongest signal in immunohistochemical
staining, whereas the dotted lines show the cell types where the
protein is expressed at a lower level. The specific cell associations in
the vertical columns represent specific stages (Roman numerals) of the
rat seminiferous epithelial cycle. Arabic numerals refer to different steps
of post-meiotic germ cell differentiation. In, intermediate spermatogo-
nia; B, type B spermatogonia; Pl, preleptotene spermatocytes; L,
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representing four pooled stages (II–VI, VII and VIII, IX–XII
and XIII–I) of the rat seminiferous epithelial cycle.
qRT-PCR analysis showed that the Dhh and Gli1 mRNA
levels were at their highest in stages II–VI (Fig. 4A and B).
The steady-state levels of Ptch1 mRNA were significantly
higher in stages II–VIII than in stages IX–I (Fig. 4C). The
mRNA level of Ptch2 was significantly lower in stages
XIII–I compared with stages IX–XII (Fig. 4D). Sufu
transcript was present at a very low level in stages II–VI
and XIII–I, and markedly more in stages VII–XII (Fig. 4E).
Statistical significances were tested using ANOVA.
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Figure 4 Steady-state levels of Hedgehog pathway mRNAs in rat
seminiferous epithelial cycle. (A) Dhh and (B) Gli1 levels are high in
stages II–VI compared with other stages. (C) The lowest mRNA level for
Ptch1 and (D) Ptch2 is recorded in stages XIII–I. (E) Transcript levels of
Sufu are high in stages VII–XII. nZ5, S.E.M.; *P!0.05; **P!0.01;
***P!0.001 compared with stages of the highest value. §P!0.05;
§§P!0.01 compared with stages of the second highest value.
GLI1 is developmentally expressed in spermatogonia,
meiotic and post-meiotic germ cells

Hh signalling is most active in prepubertal rat testis
according to mRNA transcript levels. Thus, we examined
the localisation of GLI1 expression in PFA-fixed
testicular tissue sections in 5, 10, 20, 30 and 40-day-
old rats (Fig. 5A and C–F). Nuclear localisation of GLI1
was observed already in spermatogonia of 5-day-old rats
(Fig. 5A) that also expressed PTCH1 (Fig. 5B). At 10, 20,
30 and 40 days of age (Fig. 5C–F) GLI1 localised to basal
spermatogonia and in the more adluminally situated
meiotic germ cells. In addition, cytoplasms of elongating
spermatids stained positively for GLI1 in 40-day-old rats
(Fig. 5F). Interestingly, all the cells that we encountered
while being in the M phase of the cell cycle were
strongly immunopositive for GLI1 (data not shown)
suggesting that at least some of the GLI1-expressing cells
are mitotically active.
Reproduction (2011) 142 711–721
Recombinant human FSH down-regulates the steady-
state levels of Dhh mRNA in vitro

FSH is a major regulator of germ cell differentiation and
spermatogenesis. Therefore, we decided to study
whether FSH affects Dhh mRNA levels in vitro. To
analyse whether FSH effect on Dhh level is stage-specific
and dose-dependent, we cultured segments from three
distinct stages with five different concentrations of
recombinant human FSH. Three individual experiments
were done and within each experiment the same
treatment was applied on three parallel samples. We
have previously shown that FSH elevates the steady-state
levels of Scf mRNA (Yan et al. 1999), which served as a
positive control. FSH up-regulated Scf levels in a dose-
dependent manner (Fig. 6A). The highest Scf mRNA
levels were detected in stages II–VI, which were also
stimulated both at 8 and 30 h.

There were no significant changes in the steady-state
levels of Dhh mRNA at 8 h after the beginning of FSH
exposure. However, at 30 h the Dhh levels were down-
regulated in all three pooled stages but most remarkably
in stages VII and VIII (Fig. 6B). A similar phenomenon
was observed in Gdnf levels that were down-modulated
specifically in stages II–VI but not in the other stages
(Fig. 6C).
www.reproduction-online.org
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Figure 5 Developmental expression of GLI1 (red) in
rat spermatogonia, spermatocytes and elongating
spermatids. (A) Spermatogonia (arrows) of 5-day-
old rats are immunopositive for GLI1 (red) and for
(B) PTCH1 (red; arrows). Spermatogonia (arrows)
and spermatocytes (arrowheads) of (C) 10, (D) 20,
(E) 30 and (F) 40-day-old rats stain positively for
GLI1 (red). (F) Adluminally located elongating
spermatids of 40-day-old rats also express GLI1
(red). Inset: negative control. Cell nuclei are
stained with DAPI (blue). Insets with smaller
magnification represent the same tissue sections
with DAPI staining (blue). Scale bar: (A and B)
25 mm, (C–F) 50 mm.
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Inhibition of Hh signalling in vitro increases apoptotic
cell death of germ cells

After seeing the highest levels of Hh pathway mRNAs in
stages II–VI we decided to treat 4 mm long stages II–VI
segments with cyclopamine, a specific inhibitor of the
Hh pathway, in vitro for 8 and 16 h. Four rats were used
for this experiment. Squash preparations were made
from tubule segments for immunocytochemistry to
evaluate the number of cleaved caspase-3-positive
apoptotic cells in specimens. Cyclopamine increased
the number of apoptotic germ cells in both time points
and the difference in the number of cleaved caspase-3-
positive cells at 16 h was statistically significant (Fig. 7).
Imatinib mesylate dramatically represses the mRNA
levels of Dhh, Ptch1 and Gli1 in prepubertal rat testis

To pursue further the interplay of SCF/KIT, platelet-
derived growth factor (PDGF) and Hh signalling we
decided to study whether imatinib mesylate-induced
inhibition of tyrosine kinases affects the mRNA levels of
Hh pathway components in vivo. Imatinib mesylate
treatment had a dramatic impact on the steady-state
levels of Dhh (Fig. 8A), Ptch1 and Gli1 mRNAs (Fig. 8B).
Already 24 h after single treatment with the lower dose
www.reproduction-online.org
(50 mg/kg) the relative transcript level of Dhh had
decreased significantly. Down-modulation of Hh signal-
ling due to diminished ligand production lead to
decreased mRNA levels of Hh target genes Gli1 and
Ptch1 72 h after the initial exposure.
Discussion

We have elucidated the role of Hh signalling and its
regulation in adult rat testis. We show here that Hh
signalling promotes germ cell survival and Dhh belongs
to a group of genes that are regulated by FSH in Sertoli
cells in the rat testis. Imatinib-induced inhibition of RTKs
interferes with Hh signalling, and immunohistochemical
staining of Hh pathway components suggest that Hh
signalling is activated in mitotic, meiotic and late post-
meiotic germ cells and suppressed in early post-meiotic
cells. Our data about the age-dependent relative
abundance of Hh pathway mRNAs and localisation
of PTCH1 and GLI1 in meiotic cells strengthen the idea
that Hh signalling is needed in meiosis. This kind of
conclusion was originally drawn by the findings of
Bitgood et al. (1996) and Kroft et al. (2001).
Homozygous Dhh mutation on a 129/Sv inbred back-
ground and overexpression of human GLI1 in mouse
Reproduction (2011) 142 711–721
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testis, respectively, leads to a halt in spermatogenesis at
pachytene spermatocyte stage. These data suggest that
Hh signalling needs to be down-modulated before
entry into meiotic divisions. Indeed, we can see a
down-regulation of Hh pathway target genes, Ptch1 and
Reproduction (2011) 142 711–721
Gli1, mRNA levels in stages IX–XIV of the rat
seminiferous epithelial cycle just before the meiotic
divisions. The prepubertal peak in Dhh, Ptch1, Gli2 and
Gli3 mRNA levels co-occurs with the appearance of
the first spermatocytes (Clermont & Perey 1957, Malkov
et al. 1998). The steady decrease in Gli1 level after birth
suggests that Hh signalling is active in the rat testis even
before the onset of spermatogenesis and, indeed, it has
been shown to drive steroidogenesis in foetal-type
Leydig cells (Barsoum et al. 2009, Brokken et al. 2009).

SUFU localises exclusively in early elongating
spermatids but not in other germ cell types that suggests
that canonical Hh signalling is shutdown in these cells.
The relative transcript level of Sufu stays very low until
day 30 and increases sharply thereafter supporting its
function as a negative regulator of the Hh pathway in
early condensing spermatids. According to our immuno-
fluorescent labelling, GLI1 transcription factor is still
present in the cytoplasm of late condensing spermatids.
However, the existence of a functional Hh receptor in
condensing spermatids is not yet known. Recently, more
evidence on non-canonical mechanisms of GLI tran-
scription factor activation has emerged and many
signalling pathways have been shown to converge on
activation of GLI transcription factors (Riobo et al. 2006,
Lauth & Toftgård 2007). Thus, it is possible that GLI1 is
activated during late spermiogenesis by Hh-independent
mechanism.

The question which Hh receptor mediates activation
of the pathway in other germ cell types deserves further
attention. As mentioned in the Introduction, there are
conflicting data about the role of both PTCH1 and
PTCH2 in the testis. Their expression pattern both age-
and stage-wise was quite different: Ptch1 shared the
pattern of most other Hh pathway genes, whereas Ptch2
mRNA levels did not change much in different ages
or different stages of the rat seminiferous epithelial
cycle. In addition, we observed a relatively high mRNA
level of Ptch1 in mouse seminiferous tubule segments
(J-A Mäkelä, V Saario & J Toppari 2011, unpublished
observation) which indicates that Ptch1 transcription is
not confined to the interstitium in the mouse testis either
www.reproduction-online.org



1.2

A

B

1.0

0.8

0.6

0.4

D
hh

/r
ef

er
en

ce
 g

en
es

G
O

I/r
ef

er
en

ce
 g

en
es

0.2

0.0

1.6 Ptch1Gli1

1.2

1.0

1.4

0.8

0.6

0.4
** *

*

* *

0.2

0.0

P
N

D
 6

 c
on

tr
ol

P
N

D
 7

 c
on

tr
ol

24
 h

 5
0 

m
g/

kg

24
 h

 1
50

 m
g/

kg

48
 h

 5
0 

m
g/

kg

48
 h

 1
50

 m
g/

kg

P
N

D
 8

 c
on

tr
ol

72
 h

 5
0 

m
g/

kg

72
 h

 1
50

 m
g/

kg

72
 h

 5
0 

m
g/

kg
 x

3

72
 h

 1
50

 m
g/

kg
 x

3

P
N

D
 8

 c
on

tr
ol

72
 h

 5
0 

m
g/

kg

72
 h

 1
50

 m
g/

kg

P
N

D
 8

 c
on

tr
ol

72
 h

 5
0 

m
g/

kg

72
 h

 1
50

 m
g/

kg

72
 h

 5
0 

m
g/

kg
 x

3

72
 h

 1
50

 m
g/

kg
 x

3

72
 h

 5
0 

m
g/

kg
 x

3

72
 h

 1
50

 m
g/

kg
 x

3

**
** ** **

***

*** *** ***

Figure 8 Imatinib mesylate-induced inhibition of tyrosine kinases
impinges on Hedgehog signalling in prepubertal rat testis in vivo.
(A) Imatinib treatment leads to down-regulated level of Dhh mRNA.
(B) In response to reduced ligand production, a drop in Gli1 and Ptch1
mRNA levels is observed 72 h after the initial exposure. GOI, gene of
interest; PND, postnatal day; nZ4, S.E.M.; *P!0.05; **P!0.01;
***P!0.001.
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(Carpenter et al. 1998). Morales et al. (2009) indicated
that PTCH1 is expressed in late meiotic cells and post-
meiotic cells of the mouse and rat testis. Our immuno-
histochemical staining showed that already early
primary spermatocytes expressed PTCH1 but the signal
from post-meiotic cells was weak and indistinguishable
from the background. Taken together, these data suggest
that PTCH1 may have a more important role in
spermatogenesis than PTCH2.

Introduction of a Hh signalling inhibitor raises the
number of cleaved caspase-3-positive germ cells mark-
edly indicating that Hh signalling promotes germ cell
www.reproduction-online.org
survival. Since GLI1 and transcripts of Ptch2, Smo, Gli1,
Gli2 and Gli3 (Szczepny et al. 2006) are expressed
in spermatogonia and cyclopamine has been shown to
impinge on Gli1 mRNA levels in vitro (Szczepny et al.
2009) these data suggest that Hh signalling is involved in
the maintenance of spermatogonial cell population,
such as GDNF (Meng et al. 2000). Intriguingly, both
Gdnf and Dhh were down-regulated by FSH in vitro. In
contrast, FSH elevated the mRNA levels of Scf, which is
important for germ cell survival (Hakovirta et al. 1999,
Yan et al. 2000b, 2000c). Intricate interaction between
different growth and differentiation factors is needed to
secure proper renewal of spermatogonial stem cells and
differentiation of an appropriate number of spermatogo-
nia further. Contradictory results have been presented
about Gdnf regulation in the mouse testis (Tadokoro
et al. 2002). Hh signalling can be one of the targets of
environmental influence on testicular development as
suggested by the effects of maternal smoking on the
foetal testis (Fowler et al. 2008) and the impact of
antiandrogen flutamide on rat foetal testis (Brokken et al.
2009). The effect of FSH on Sertoli cells is stimulatory
and the number of FSH-induced transcripts is two- to six-
fold higher than FSH-suppressed transcripts (McLean
et al. 2002). The fact that FSH acts differentially on the
steady-state levels of Dhh and Scf mRNAs which are at
their highest in stages II–VI of the rat seminiferous
epithelial cycle and seem to share an anti-apoptotic
function during spermatogenesis is intriguing. Despite
having a seemingly similar effect on germ cells they
might regulate different aspects of spermatogenesis and
FSH is one of the factors that modulates this process.

We have previously reported that 3-day treatment of
prepubertal male rats with imatinib on postnatal days
5–7 delayed the formation of germ-line stem cell pool,
induced germ cell apoptosis, reduced proliferation of
type A spermatogonia and peritubular myoid cells, and
resulted in decreased testis weight due to disruption of
longitudinal growth of the seminiferous tubules (Nurmio
et al. 2007). Imatinib mesylate is a specific inhibitor of
ABL, KIT, PDGFR and ARG tyrosine kinases (Druker et al.
1996, Nishimura et al. 2003) some of which have been
proven to be activated by Sertoli cell-derived growth
factors in the testis. In this study, imatinib mesylate
strongly down-regulated Dhh mRNA levels in prepu-
bertal rat testis. This can be explained by an imatinib
mesylate-induced disturbance in the mechanism that
normally sustain Dhh expression and demonstrates that
the paracrine milieu affects the activity of Hh signalling in
the rat testis. Imatinib-induced apoptosis might also
contribute to the changes in Dhh, Ptch1 and Gli1 mRNA
levels. However, since the incidence of apoptosis was not
affected in a uniform way (Nurmio et al. 2007) after
imatinib treatment but Dhh levels were, apoptosis
cannot explain the changes alone. Interestingly,
Szczepny et al. (2009) showed recently that inhibition
of Hh signalling impinges on Scf and Kit mRNA levels
Reproduction (2011) 142 711–721
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in cultured mouse seminiferous tubules. Taken together,
these data suggest that the testicular paracrine signalling
network works interdependently and might collapse if
even individual signalling pathways are disrupted.

In summary, we show here that Hh signalling is active
in mitotic, meiotic and late post-meiotic cells of the rat
seminiferous epithelium. Hh signalling is inhibited in
early condensing spermatids. The steady-state levels of
Hh pathway mRNAs are at their highest in stages II–VI of
the rat seminiferous epithelial cycle. FSH and inhibition
of RTK-dependent paracrine signalling pathways sup-
press Hh signalling by down-regulating ligand pro-
duction in vitro and in vivo. In addition, Hh signalling
has a physiological role in spermatogenesis in promoting
germ cell survival.
Materials and Methods

Animals, treatment and sample collection

Male Sprague–Dawley rats at the ages of 1, 5, 10, 20, 30,
40 days and 2–4 months were housed at the Animal Centre of
Turku University (Turku, Finland) in an environment controlled
for light (12 h light:12 h darkness), temperature (21G3 8C) and
air humidity (55G15%) with free access to food (CRM diet;
Special Diet Services, Witham, Essex, UK) and water. Turku
University Committee on the Ethics of Animal Experimentation
approved all animal experiments.

Five-day-old rats were treated with imatinib mesylate
(STI571, Glivec; 50 or 150 mg/kg; Novartis Pharma AG)
dissolved in water and injected (injection volume 150 ml)
intracavitally into the stomach as described previously (Nurmio
et al. 2007) either once on fifth day of postnatal life or once
every day on postnatal days 5–7. Control animals were injected
in the same manner with water alone. The rats were killed by
cervical dislocation under CO2 anaesthesia at 24 (nZ4), 48
(nZ4) or 72 (nZ4) h after treatment or at specific ages
mentioned above.
Transillumination-assisted microdissection and culture
of seminiferous tubules

The testes were decapsulated on a Petri dish containing
DMEM/Ham’s Nutrient Mixture F-12 (1:1 DMEM/F12; Gibco
BRL) supplemented with 0.1% (w/v) BSA, penicillin–strepto-
mycin (50 U and 50 mg/ml, respectively; Gibco 15140) and
gentamicin sulphate (50 mg/ml; Biowhittaker; Lonza, Walk-
ersville, MD, USA). Using transillumination-assisted micro-
dissection method (Parvinen & Vanha-Perttula 1972, Toppari &
Parvinen 1985) 3–5 mm long segments of pooled stages II–VI,
VII and VIII, IX–XII and XIII–I were dissected from five rats and
used to study the stage-specific expression of Hh pathway
genes. To study the endocrine regulation of gene expression in
vitro six 2 mm long segments of stages II–VI, VII and VIII and
IX–I from three rats were cultured in 1 ml DMEM/F12 medium
supplemented with 0.1% (w/v) BSA, penicillin–streptomycin
(50 U and 50 mg/ml, respectively; Gibco 15140), gentamicin
sulphate (50 mg/ml; Biowhittaker; Lonza) and 1-methyl
3-isobutyl xanthine (0.2 mmol/l; Aldrich Chemie, Steinheim,
Reproduction (2011) 142 711–721
Germany) in the presence of recombinant human FSH
(Gonal F, Serono). Doses of 1, 10, 25, 50 and 200 ng/ml of
rhFSH were used to study responsiveness of Dhh, Scf and
Gdnf mRNA expression. Within individual experiments
each dose was applied on three parallel samples. After 8 and
30 h incubation (34 8C, 5% CO2, humidified atmosphere) the
cultured segments of rat seminiferous tubules were collected
and snap-frozen in liquid nitrogen.
RNA isolation and cDNA synthesis

Total RNA from freshly collected or cultured segments of rat
seminiferous tubules was isolated using Trisure reagent (Bio-
line, London, UK) according to the manufacturer’s instructions.
Testicular tissue samples were homogenised with a disperser
(UltraTurrax; IKA Werke GmbH & Co. KG, Staufen, Germany)
in 600 ml RLT buffer (from the Qiagen RNeasy Mini Kit; Qiagen)
supplemented with 6 ml b-mercaptoethanol. Thereafter, total
RNA was extracted using Qiagen RNeasy Mini Kit according to
the manufacturer’s instructions. After isolation, RNA concen-
tration was measured using NanoDrop device (ND-1000;
NanoDrop Technologies, Wilmington, DE, USA). RNA quality
was assessed visually by confirmation of intact 28S and 18S
ribosomal bands following agarose gel electrophoresis and
ethidium bromide staining. Before cDNA synthesis traces of
contaminating genomic DNA were removed by treating
samples with DNase I (Invitrogen). cDNA was synthesised
using DyNAmo SYBR Green 2-step qRT-PCR Kit (Finnzymes,
Espoo, Finland); 500 ng of template RNA was reverse
transcribed in a 20 ml reaction with oligo(dT) primers. DNase
I-treated samples were split to two and one half was used for
cDNA synthesis while the other served as a template in RT
reaction.
Real-time PCR

Primer pairs were designed to be located to different exonic
sequences using freely online available Primer 3 software
(http://frodo.wi.mit.edu/) and gene sequences available at
NCBI and Ensembl databases (Table 1). PCR amplification
was performed by MJ Research Chromo4 thermocycler (Bio-
Rad Laboratories, Inc.) and the DyNAmo SYBR Green 2-step
qRT-PCR Kit (Finnzymes) according to the manufacturer’s
instructions. PCRs for detection of the endogenous control
genes, glyceraldehyde-3-phosphate dehydrogenase (Gapdh),
hypoxanthine phosphoribosyltransferase 1 (Hprt1) and S26
ribosomal protein (S26), were run for each cDNA template.
Quantitative real-time PCR was performed under the following
conditions: 95 8C for 15 min followed by 40 cycles of 94 8C for
10 s, 54–64 8C (depending on the primer pair; see Table 1) for
30 s, and 72 8C for 30 s. Melting curve analysis was carried out
immediately following amplification by increasing the
temperature in 0.5 8C increments starting at 72 8C for 45 cycles
of 1 s each. The specificity of PCR was verified both by the
presence of a single melting temperature and by detection of a
single band of the expected size on agarose gel. Relative gene
expression data was quantified using the 2KDDCT method (Livak
& Schmittgen 2001).
www.reproduction-online.org
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Table 1 Primer design, annealing temperatures and PCR product lengths of the studied rat mRNAs.

Gene Accession number Annealing temperature (8C) Primers Product length (bp)

Dhh AF148226 64 5 0-GACCTCGTCCCCAACTACAA-3 0 159
5 0-AACCTTCAGTCACGCGTAGG-30

Ptch1 NM_053566 58 5 0-GGCTGAGAGCGAAGTTTCAA-30 271
5 0-GCCTCTGTGGTCAGGACATT-3 0

Ptch2 NM_01108975 63 5 0-CCAGGAACCTCTGGATTTCA-3 0 207
5 0-GATGCGAAGGTTCTCTCCAG-3 0

Gli1 XM_345832 63 5 0-GGTTATGGGTCTGCCAGAGA-3 0 159
5 0-GCTGGGTGAGGTACGGATTA-30

Gli2 NM_001107169 60 5 0-TACGAGACCAACTGCCACTG-30 235
5 0-CCTTTGAGCAGCCTTCAAAC-30

Gli3 XM_225411 59 5 0-TTCTGAACCCTGTCCAGGTC-30 207
5 0-TCTTTGTCCCCTTCCTCCTT-3 0

Sufu NM_001024899 60 5 0-GGTCCCTGGCTGATAACTGA-30 224
5 0-GTCTTTGCCAGACAGCCTTC-3 0

Ihh NM_053384 60 5 0-GACCGCGACCGAAATAAGTA-30 182
5 0-ACGCTCCCCAGTTTCTAGGT-3 0

Shh NM_017221 60 5 0-GGAACTCACCCCCAATTACA-3 0 151
5 0-TCACTCGAAGCTTCACTCCA-30

Fshr NM_199237 56 5 0-CCTCTGGGCCAGTCATTTTA-30 213
5 0-GTTCAGAGATTTGCCGCTTC-3 0

Scf NM_021843 61 5 0-CAAAACTGGTGGCGAATCTT-3 0 218
NM_021844 5 0-GCCACGAGGTCATCCACTAT-3 0

Gdnf NM_019139 61 5 0-CGGACGGGACTCTAAGATGA-3 0 205
5 0-CGTCATCAAACTGGTCAGGA-30

Gapdh NM_017008 55 5 0-AGACAGCCGCATCTTCTTGT-3 0 207
5 0-CTTGCCGTGGGTAGAGTCAT-3 0

Hprt1 NM_012583 54 5 0-AAGCTTGCTGGTGAAAAGGA-30 185
5 0-CCGCTGTCTTTTAGGCTTTG-3 0

S26 XM_001066146 57 5 0-AAGGAGAAACAACGGTCGTG-3 0 300
5 0-GCAGGTCTGAATCGTGGTG-30

Dhh, desert hedgehog; Ptch, patched; Gli1, glioma-associated oncogene homologue; Sufu, suppressor of fused; Ihh, Indian hedgehog; Shh, sonic
hedgehog; Fshr, FSH receptor; Gdnf, glial cell line-derived neurotrophic factor; Scf, stem cell factor; Gapdh, glyceraldehyde-3-phosphate
dehydrogenase; Hprt1, hypoxanthine phosphoribosyltransferase 1; S26, S26 ribosomal protein.
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Squash preparations

Segments (4 mm long) of stages II–VI of the rat seminiferous
epithelial cycle from four rats were incubated 8 and 16 h in the

medium and conditions mentioned above in the presence of
100 mmol/l cyclopamine (LC Laboratories, Woburn, MA, USA)

or vehicle only. After the incubation the segments were
transferred to a Petri dish and cut to 2 mm of length under a

stereomicroscope by taking w1 mm off from both ends. Squash
preparations were made as described by Toppari et al. (1985).
Briefly, the segments were taken in 15 ml PBS (pH 7.4) onto a

microscope slide. The tubule segments were carefully
squashed between microscope slides and cover slips and the

formation of a cellular monolayer was monitored by phase
contrast microscopy. Then the squash preparations were snap-

frozen in liquid nitrogen and the cover slips were removed. The
slides were incubated in ice-cold 96% (v/v) ethanol for 3 min

and allowed to air-dry overnight.
Immunohistochemical staining of Hh pathway
components

Rat testes were fixed in 4% (v/v) paraformaldehyde at C4 8C
overnight. The fixed samples were dehydrated by using graded
ethanol solutions and stored in 70% (v/v) ethanol at C4 8C.

After paraffin embedding 5 mm thick sections were cut and
mounted onto poly-lysine-coated slides. Following rehydration
www.reproduction-online.org
the slides were washed once in PBS and twice in PBSC0.2%
(v/v) Triton X-100 for 5 min each. Antigen retrieval was
performed by microwaving (300 W) the slides for 15 min in
sodium citrate buffer (10 mmol/l, pH 6.0). After washing for
5 min in PBSC0.2% (v/v) Triton X-100 two times, autofluor-
escence was quenched by treating the slides with 100 mM
NHCl4 for 3 min. Following washes twice with PBSC0.2%
(v/v) Triton X-100 and once with PBS, blocking solution (20%
(v/v) normal goat serum or 20% (v/v) BSA in PBSC0.2% (v/v)
Triton X-100 for sections that are later incubated with goat or
donkey secondary antibodies, respectively) was applied to
each section and incubated 1 h at RT. After blocking, sections
were incubated overnight at C4 8C in the presence of an
aliquot of 100 ml primary antibody (diluted 1:50 in PBSC0.2%
(v/v) Triton X-100C1.5% (v/v) NGS or BSA; see above).
Primary antibodies used were: goat polyclonal anti-PTCH1
(sc-6149; Santa Cruz Biotechnology, Inc., Santa Cruz, CA,
USA), rabbit polyclonal anti-GLI1 (sc-20687, Santa Cruz
Biotechnology, Inc.) and goat polyclonal anti-SUFU (sc-
10933, Santa Cruz Biotechnology, Inc.). Primary antibody
incubation was omitted in negative controls.

Secondary antibodies used were Texas Red-conjugated
donkey anti-goat (sc-2783, Santa Cruz Biotechnology, Inc.)
and Alexa Fluor 594-conjugated anti-rabbit antibody (A11037,
Invitrogen). After 1 h secondary antibody incubation the
slides were washed three times with PBS and mounted
with UltraCruz mounting medium (sc-24941, Santa Cruz
Reproduction (2011) 142 711–721
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Biotechnology, Inc.). Images were captured using a Leica
DFC320 camera (Leica, Wetzlar, Germany) installed on a
DMRBE microscope from the same manufacturer. Four
histological sections from at least three different animals were
included in all IHC analyses.
Immunocytochemical staining of cleaved caspase-3 on
the squash preparations

Air-dried squash preparations were stored at K80 8C and fixed
in 4% (v/v) paraformaldehyde for 10 min. After fixation they
were washed twice with Tris-buffered saline (TBS, pH 7.55) for
5 min and antibody penetration was improved by incubating
the slides 10 min in TBSC0.2% (v/v) Triton X-100. From this
step on cleaved caspase-3 staining was performed by
Novocastra Novolink Polymer Detection Systems (Leica
Microsystems, Inc., Bannockburn, IL, USA) according to the
manufacturer’s instructions. Cleaved caspase-3 primary
antibody was purchased from Cell Signalling Technology
(Asp175, Beverly, MA, USA) and used at a dilution of 1:200.
Statistical analysis

The results were analysed for statistically significant differences
using ANOVA, followed by Tukey’s test for multiple compari-
sons of independent groups of samples. Student’s t-test was
used for pairwise comparison. The P values !0.05 were
considered statistically significant.
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Parvinen M & Toppari J 1999 Function of stem cell factor as a survival
factor of spermatogonia and localization of messenger ribonucleic acid
in the rat seminiferous epithelium. Endocrinology 140 1492–1498.
(doi:10.1210/en.140.3.1492)

Heckert LL & Griswold MD 1991 Expression of follicle-stimulating
hormone receptor mRNA in rat testes and Sertoli cells. Molecular
Endocrinology 5 670–677. (doi:10.1210/mend-5-5-670)

Hooper JE & Scott MP 1989 The Drosophila patched gene encodes a
putative membrane protein required for segmental patterning. Cell 59
751–765. (doi:10.1016/0092-8674(89)90021-4)

Kogerman P, Grimm T, Kogerman L, Krause D, Unden AB, Sandstedt B,
Toftgard R & Zaphiropoulos PG 1999 Mammalian suppressor-of-fused
modulates nuclear-cytoplasmic shuttling of Gli-1. Nature Cell Biology 1
312–319. (doi:10.1038/13031)

Kroft TL, Patterson J, Won Yoon J, Doglio L, Walterhouse DO,
Iannaccone PM & Goldberg E 2001 GLI1 localization in the germinal
epithelial cells alternates between cytoplasm and nucleus: upregulation
in transgenic mice blocks spermatogenesis in pachytene. Biology of
Reproduction 65 1663–1671. (doi:10.1095/biolreprod65.6.1663)
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