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Beamforming techniques have played a prominent role in source imaging in neuroimaging

and in locating epileptogenic zones. However, existing vector-beamformers are sensitive

to noise on localization of epileptogenic zones. In this study, partial least square (PLS)

was used to aid the minimum variance beamforming approach for source imaging with

magnetoencephalography (MEG) arrays, and verified its effectiveness in simulated data

and epilepsy data. First, PLS was employed to extract the components of the MEG

arrays by maximizing the covariance between a linear combination of the predictors

and the class variable. Noise was then removed by reconstructing the MEG arrays

based on those components. The minimum variance beamforming method was used

to estimate a source model. Simulations with a realistic head model and varying noise

levels indicated that the proposed approach can provide higher spatial accuracy than

other well-known beamforming methods. For real MEG recordings in 10 patients with

temporal lobe epilepsy, the ratios of the number of spikes localized in the surgical excised

region to the total number of spikes using the proposed method were higher than that

of the dipole fitting method. These localization results using the proposed method are

more consistent with the clinical evaluation. The proposed method may provide a new

imaging marker for localization of epileptogenic zones.

Keywords: Magnetoencephalography (MEG), beamforming, partial least squares, source imaging, epileptogenic

zone, imaging-based marker

INTRODUCTION

Accurate diagnosis of epileptogenic zones has long been a focus of neurology, as it determines
whether epilepsy patients can achieve seizure freedom by surgical excision. In recent years,
magnetoencephalography (MEG) has been increasingly trusted by clinical epileptologists for
preoperative examination (Wennberg and Cheyne, 2014; Nissen et al., 2016). This is because MEG
is a non-invasive neuroimaging technique that records brain activity with millisecond temporal
resolution and minor signal deterioration from the skull and scalp (Barnes and Hillebrand, 2003;
Zumer et al., 2007; Baillet, 2017). Postsynaptic current flow within the dendrites of active neurons
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produces a weak magnetic field that can be measured
by superconducting quantum interference devices (SQUIDS)
(Hämäläinen et al., 1993). Because the currents generated by
neurons determine the magnitude of the measured fields, these
measurements can give information about brain activity on a
millisecond time scale. However, the great challenge is to localize
the active neurons on the basis of the measured magnetic field.
Because the locations of epileptogenic zones estimated using
current localization methods are not always accurate, MEG
has not been completely accepted by all clinical epileptologists
(Englot et al., 2015). In general, the number of sensors is far less
than the number of possible current distributions. This inverse
problem is an example of what mathematicians call an ill-posed
problem (Hadamard and Morse, 1953). Finding the optimal
solution of such an underdetermined system of equations often
requires specific constraints. In other words, to accurately localize
the brain sources of magnetic signals, assumptions must be made
about the nature of the neuronal sources.

Many source imaging algorithms for MEG signals have been
proposed (Pascual-Marqui et al., 1994; Mattout et al., 2006;
Grech et al., 2008; Mäkelä et al., 2018), and each optimizing
the solution of the inverse problem under a specific set of
assumptions. One type of inverse solution approach is known
as “beamforming” (Van Veen et al., 1997; Groß et al., 2001;
Sekihara et al., 2002a; Oshino et al., 2007; Zhang and Liu, 2015).
Beamforming techniques play a key role in signal processing and
neuroimaging. These methods make use of spatial filtering, that
is, the MEG signals are decomposed into “beams” based on gain
vectors corresponding to specific source-grid points (Diwakar
et al., 2011). The most widely used beamforming method,
linearly constrained minimum variance (LCMV) beamforming
(also called vector beamforming), produces a reliable spatial
filter when the weights are chosen to minimize the filter
output power subject to a linear constraint. However, the
existing vector beamformers for MEG source imaging are
sensitive to noise, and poor at localizing sources. The main
reason for this problem is that the sensor array geometry
is used directly to estimate the covariance matrix. Recently,
an iterative spatiotemporal signal decomposition method has
been used to modify the vector beamforming technique, and
has been successfully applied to source localization for MEG
signals (Hu et al., 2017). Although the approach has achieved
high spatial accuracy, the correlations of signals from different
brain regions are ignored when the components of the MEG
arrays are extracted. An improvement would be to use partial
least squares (PLS) analysis to make better use of structural
information.

PLS analysis originated in the fields of econometrics and
chemometrics (Wold et al., 1984; Geladi and Kowalski, 1986).
It extracts components in a way that maximizes the covariance
between each component and a “class variable.” In recent
years, this approach has been successfully applied in many
fields, including multivariate statistics (Wold et al., 1984),
analytical chemistry (Wold et al., 2001), face recognition (Baek
and Kim, 2004; Sharma and Jacobs, 2011), and bioinformatics
(Boulesteix and Strimmer, 2006). In pattern recognition, the
PLS method can be used to extract the principle components

with maximum variability and to exploit the class information
(Baek and Kim, 2004; Sharma and Jacobs, 2011). PLS has
better performance in feature extraction and denoising compared
with typical methods, such as principal component analysis
(PCA) and linear discrimination analysis (LDA). The principal
components extracted by PLS are called “intrinsic components”
to indicate that PLS is more representative for biometric
signals. In fact, MEG signals are very similar to these
biometric signals, and are affected by various noises. If the
intrinsic components are found from those MEG signals, these
components should be usable to improve the spatial accuracy
of source imaging. Thus, in this study we used the PLS
method to extract the components of the MEG signals and
reconstruct the data matrix in this study. Although recent
literatures show that the PLS method has been used in functional
neuroimaging (McIntosh and Lobaugh, 2004; Krishnan et al.,
2011; Cheung et al., 2016), for purposes such as describing
the relationship between brain activity and behavior, these PLS
applications are not intended to improve the source imaging
method.

The aim of this study was to propose and investigate a
new source imaging algorithm with specific applicability to
focal epilepsy focus localization. We applied PLS analysis to
aid the vector beamforming technique for better performance
in source imaging with MEG arrays. First, the MEG arrays
were treated as an observation matrix X, combined with
a class matrix Y of dummy variables that code for brain
regions. Second, we employed PLS technique to extract the
components of the MEG arrays by maximizing the covariance
between a linear combination of the predictors and the class
variable. We then reconstructed the sensor arrays based on the
components and loadings, and used the vector beamforming
technique to estimate the source model. The newly proposed
source imaging approach for MEG recordings was first validated
on simulated data, and compared with three other well-
known beamforming methods, linearly constrained minimum
variance (LCMV) (Van Veen et al., 1997), dynamic imaging
of coherent sources (DICS) (Groß et al., 2001), and modified
LCMV with iterative matrix decomposition (mLCMV) (Hu
et al., 2017). Since these methods belong to the beamforming
family, the basic assumption in this study is the same as
assumption underlying the minimum variance beamforming.
We further verify the proposed method in a real dataset that
includes the MEG recordings of 10 patients with temporal lobe
epilepsy.

METHODS

Partial Least Squares Analysis
PLS analysis is a technique for extracting components and
loadings between a set of input variables {xi}

M
i=1 ∈ RN and a set of

response variables
{

yi
}M

i=1
∈ RL. As with principal components

analysis, PLS generates uncorrelated components that are linear
are linear combinations of the original input variables. The
difference is that PLS creates the components by modeling the
relationship between the input and response variables, while
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maintaining most of the information in the input variables. The
objective criterion is to find a weight vector wk such that

wk = arg max
‖w‖=1,‖υ‖=1

Cov2 (Xw, Yv) (1)

subject to the constraint wT
k Cwj = 0

where ‖•‖ denotes the two-norm operator, 1 ≤ j ≤ k, and
Cov (•, •)Cov (•, •) represents the covariance operator, T is the
transpose of a vector or matrix, and C=XTX. Here, X represents
an M × N matrix of input variables and Y is an M × L (M
× L) matrix made up of corresponding response variables. In
general, the column vectors of the data matrices X and Y are
normalized before optimization, that is, the mean value is zero
and the variance is one.

Next, a well-known iterative algorithm (Lewi, 1995; Rosipal
and Trejo, 2001; Hu et al., 2012) is used to optimize formula (1).
A description in pseudo-code is shown in Algorithm 1:

Algorithm 1: Pseudo-code for partial least squares analysis.

Inputs: Data matrices X ∈ RM×N , Y ∈ RM×L

Process:
1. Normalize the matrices X and Y

2. For i= 1, . . . , K
Randomly initialize the loading vector u
Normalize u to length 1: u = u

‖u‖ , û = 2u

while
∥

∥û− u
∥

∥ > epsilon
û = u

Calculate the weight vector w : w = XTu

Calculate the component vector t : t = Xw

Normalize t to length 1: t = t
‖t‖

Calculate a temporary vector v: v = YTt

Calculate a new loading vector u: u = Yv

Normalize u to length 1: u = u
‖u‖

end
Extract the i-th component ti and loading vector ui
Deflate the X, Y matrices:

X = X − tit
T
i X, Y = Y − tit

T
i Y

end
3. Obtain the component matrix T = [t1, . . . , tK] and

the loading matrix U = [u1, . . . , uK]
4. Reconstruct the data matrix X̂ = TUT

Outputs: the component matrix T, loading matrix U ,
reconstructed data matrix X̂

Note that the variable K in Algorithm 1 is determined by
the two-norm of the residual matrix of the data matrix X, that
is, as long as the norm value is greater than a threshold, the
program continues to cycle. In addition to being used for data
reconstruction, PLS analysis can also be used effectively for
dimensionality reduction, recognition, and regression (Rosipal
and Trejo, 2001; Baek and Kim, 2004; Hu et al., 2012).

In feature extraction and pattern classification, PLS is a
supervised learning method, and each row in the Y matrix is a
class label for each sample. PLS is then used to extract the intrinsic

components T and loadings U by using Algorithm 1, and the
data matrix X̂ is reconstructed using these intrinsic components
and loadings. The new data matrix X̂ is a relatively clean matrix
after denoising. This procedure can be considered to improve
the spatial accuracy of source imaging. The Y matrix is very
important and will be described in Section Source Imaging via
Partial Least Squares.

Minimum Variance Beamforming
Beamforming, also called spatial filtering, plays an important
role in localizing sources of brain activity from surface
recordings. The weights of the spatial filter are usually obtained
by minimizing the filter output power (i.e., minimizing the
variance). LCMV beamforming optimizes the objective function
subject to a linear constraint, and therefore is a type of
vector beamforming. The principle of using minimum variance
beamforming to solve inverse problems will now be illustrated
in detail. For an input variable set X =

[

x(1), x(2), . . . , x(N)
]

,
derived from the MEG sensors, the inverse solution model is
given as:

X = LD+ ε (2)

where x(i) represents an M × 1 vector of the MEG recordings
at the i-th time point (i = 1 · · ·N), M is the number of MEG
sensors, L is theM× J (lead-field) gain matrix, J is the number of
unknown dipole moment parameters, D denotes a J × N dipole
moment matrix for a given time series, N is the number of time
points, and ε represents the M × N noise matrix. We design a
spatial filterW (r0) for the narrowband volume element centered
on location r0, using the following formula:

y = WT (r0) x (3)

where W (r0) is an M × 3 matrix, x represents the input vector
of the filter, and y is the output vector. Generally, an ideal
narrowband spatial filter needs to satisfy

WT (r0) L (r) =

{

I, r = r0
0, r 6= r0

(4)

where r is the location of a grid point inside the brain, L(r) is
the M × 3 (lead-field) gain matrix, and I is the unit matrix. The
objective function to be optimized is then posed mathematically
as

min
W(r0)

tr
(

WT (r0)C (x)W (r0)
)

subject to WT (r0) L (r0) = I

(5)

where tr (•) denotes the trace of a matrix, and C (x) is the
covariance matrix of random variables based on the row vectors
of the data matrix X. A second-order statistic for the sample is
used to estimate the population covariance, as illustrated in the
study by (Van Veen et al., 1997). The effect of the constraint here
is to allow the activity at position r0 to be passed with unit gain,
while inhibiting contributions from all other sources.
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An algorithm that minimizes interference (MinInf) is used
to optimize the objective function, yielding the optimal solution
(Groß and Ioannides, 1999)

WT (r0) =
[

LT (r0)C
−1 (x) L (r0)

]−1
LT (r0)C

−1 (x) (6)

where (•)−1 denotes the inverse operator. The formula (6) is
substituted into the spatial filter, and the variance of the filter
output is estimated to be:

V̂ar (r0) = tr

{

[

LT (r0)C
−1 (x) L (r0)

]−1
}

(7)

The estimated variance is the value of the objective function (5)
at its minimum, or it can represent the strength of the activity at
grid point r0. Therefore, if the MEG data matrix X is known, we
can calculate the strength of the activity at all grid points in the
brain. The position corresponding to the maximum strength is
assumed to be the source location.

Source Imaging via Partial Least Squares
The source imaging process includes four parts: head model
construction, forward solution, inverse solution, and source
display. The aim of this paper is to improve the localization
accuracy by optimizing the inverse solution with minimum
variance beamforming and PLS analysis.With the selection of the
input variables X and the response variables Y , the PLS analysis
generates multiple variants in different application scenarios.
Recent studies (Sekihara et al., 2002b; Brookes et al., 2007;
Hu et al., 2017) ignore the correlations between different brain
regions when reconstructing the input matrix X in the MEG
source imaging. Since PLS is a supervised learning, the first step
in using this method is to divide all samples into multiple classes.
In the present study, each channel is considered as a sample
for the input matrix X. All MEG sensors are then classified to
integrate the PLS method into brain source imaging. Figure 1
shows the layout of all the MEG sensors, which are divided
into eight brain regions: frontal lobes (left and right), temporal
lobes (left and right), parietal lobes (left and right) and occipital
lobes (left and right). This classification of brain regions refers to
the standard brain regions provided by Elekta Neuromag MEG.
Thus, the full set of samples is divided into eight classes according
to the distribution of brain regions of the sensors. The Y matrix
is then generated according to these classes.

The MEG recordings were acquired inside a magnetically
shielded room, with 306 channels in total, using a helmet-shaped
whole-head system (VectorView, Elekta Neuromag Oy, Finland)
comprising 102 locations in triplets. The system included
one magnetometer and two orthogonal planar gradiometers.
To compute the forward solution, we used a realistically-
shaped single-shell approximation for constructing a volume
conduction model based on the implementation from Nolte
(2003). The anatomical MRI scans of the second patient in
Section Experimental Results in Epilepsy Data were used to
produce a realistic head shape in all simulated data.

Next, we consider a set of N-dimensional samples XM×N ,
where M represents the total number of MEG channels (306),
andN represents the width of the time series (600). The Y matrix

represents the labels for supervised learning. The Y matrix in
this study directly refers to the definition of the Y matrix in the
existing PLS methods that are used for dimensionality reduction
and feature extraction (Baek and Kim, 2004; Sharma and Jacobs,
2011). For the PLS analysis, according to the input matrix X, we
define anM × C class membership matrix Y to be

Y =











1n1 0n1 · · · 0n1
0n2 1n2 · · · 0n2
...

0nC

...
0nC

. . .

· · ·

...
1nC











(8)

where ni is the number of samples in the i-th class (i.e., the
number of sensors in the i-th brain region), C is the number of
classes (i.e., 8), 1ni denotes an ni×1 vector of all ones, 0ni denotes

an ni × 1 vector of all zeros, and M =
∑C

i=1 ni. A “1” in the Y
matrix means that the sensor belongs to the corresponding class,
while “0” means that the sensor does not belongs to this class.

In the inverse solution, under the condition that the MEG
sensor array X and the corresponding class matrix Y are known,
the component matrix T and the loading matrix U are extracted
using Algorithm 1, and the sensor array is reconstructed,
denoted as X̂. The reconstructed sensor array is applied to
estimate the covariance matrix in formula (5), and the optimal
solutions of formula (6) and (7) are obtained by optimizing
the objective function (5). Using formula (7), we calculate the
maximum strength and the location in the brain, which is the
sought-for source. Finally, the computed source can be displayed
in an individual MRI scan using an established individual head
model. To clearly convey the MEG source imaging procedure,
the steps are summarized in the algorithm flow chart shown in
Figure 2. In the following section, we verify the feasibility of the
algorithm using two different simulation sources. Three primary
toolboxes, Matlab R2014a (The MathWorks Inc., Natick, MA,
USA), SPM8 (Litvak et al., 2011), and FieldTrip (Oostenveld
et al., 2011), are used jointly for the MEG data analysis.
All source imaging algorithms are implemented based on the
ft_sourceanalysis function in the FieldTrip toolkit. All parameters
are optimized based on this toolkit, and the parameters of the
pLCMV andmLCMVmethods are the same as that of the LCMV
method.

RESULTS

Simulated Data Generation
In view of a simulation source with explicit ground truth, we
first performed experiments on simulated MEG data as follows.
Source imaging is often used to find the source of event-related
fields within the brain based on a task, and to locate epileptic
foci. The waveforms of event-related fields and epileptiform
waves are often very close to the sinc function, which is an
aperiodic attenuation signal. The mathematical expression of the
sinc function is described as:

S (t) =
sin (π (t + τ))

π (t + τ)
(9)

where τ is the translation width of the function. To show
that the proposed localization algorithm can also be applied
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FIGURE 1 | Layout of the sensor elements. The helmet-shaped sensor array is flattened into a plane, and the 306 sensor channels are divided into eight brain

regions: frontal lobes (left and right), temporal lobes (left and right), parietal lobes (left and right), and occipital lobes (left and right).

with contaminated signals, Gaussian noise was added to the
time-course of the real signal. The simulated data was then
generated by a sinc function plus the Gaussian noise. The noise
intensity was divided into 12 levels, from weak to strong, to
allow observation of the robustness of the proposed localization
method. The signal-to-noise ratio (SNR) was used to quantify
different noise levels, as defined in the following formula:

SNRdB = 10 log10

(

PA

PB

)

= 10 log10

(

‖A‖2F

‖B‖2F

)

(10)

where PA denotes the power of the synthetic sensor signals A, PB
is the power of the background noise, and ‖•‖F represents the
Frobenius norm of a matrix or vector. For each level of noise,
100 Gaussian noise samples were generated randomly. The mean
of these SNR values are shown in Figure 3. These SNR values
decrease from a maximum of 6.990 to a minimum of 0.043 with
the changes in the noise level.

In this study, the time duration of all the simulated MEG
data is 600ms, and the sampling rate is 1,000Hz. The planar
gradiometers were used to localize the sources. The source space
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FIGURE 2 | The flow chart of source imaging consists of four parts. Head model construction, forward solution, inverse solution, and source display, in which the

inverse solution is modified by PLS analysis and minimum variance beamforming.

FIGURE 3 | The mean signal-to-noise ratio of the simulation is given for 12

different noise levels. Fifty noise samples were generated at each level; the

x-axis represents the noise level and the y-axis represents the mean value.

was based on a subject’s realistic head shape, which was modeled
as a single shell based on a magnetic resonance imaging scan.
For a realistic head model, the brain space was partitioned into

a three-dimensional grid with millimeter resolution, including
3,704 points in total. Each point could be regarded as a source
location. The MEG sensor arrays were implemented through the
ft_dipolesimulation function in the Fieldtrip toolbox, based on
the previously described synthetic signals for the location.

Experimental Results in Simulated Data
In this section, we first verify the source imaging algorithm
through the experiments based on simulated data, generated by
a sinc function plus Gaussian noise. The proposed method is
compared with three well-known beamformingmethods: linearly
constrained minimum variance (LCMV) (Van Veen et al., 1997),
dynamic imaging of coherent sources (DICS) (Groß et al.,
2001), and modified LCMV with iterative matrix decomposition
(mLCMV) (Hu et al., 2017). Because the new method combines
PLS with beamforming, pLCMV is regarded as an acronym of
the new method. Spatial accuracy is used to evaluate the results
of source imaging, with the evaluation index defined as:

Location error =
√

∥

∥γ − γ̂
∥

∥

2
(11)

where ‖•‖2 represents the two-norm operator, γ is the spatial
location of the real source, and γ̂ is the spatial location of the
source estimated by the localization algorithm. A smaller location
error corresponds to a higher spatial accuracy.

We chose six sources to construct the simulations. The spatial
locations of the six sources were represented in the Neuromag
coordinate system as {(−29, 11, 38), (67, 11, 30), (59, 43, 70), (59,
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FIGURE 4 | For a simulated data generated by an aperiodic signal (sinc) plus the Gaussian noise, the spatial accuracy of the proposed approach (pLCMV) was

compared with that of the other three approaches (DICS, LCMV, mLCMV). The x-axis of each plot represents the noise level, and the y-axis represents the location

error. Each plot shows a comparison of the localization results of the four approaches based on simulated data generated for six different locations of the brain. The

six locations were the left mesial temporal lobe (A), right lateral temporal lobe (B), right frontal lobe (C), right occipital lobe (D), right parietal lobe (E), and right mesial

temporal lobe (F). Plots (A) and (F) represent deep sources; the rest represent shallow sources.

−53, 54), (67, −29, 86), (35, 11, 38)} mm. The six locations were
in the left mesial temporal lobe, right lateral temporal lobe, right
frontal lobe, right occipital lobe, right parietal lobe, and right
mesial temporal lobe. The first and last were deep sources, the rest
were shallow sources. Figure 4 shows that the localization results
using the proposed method (pLCMV) were obviously better than
those obtained from the other three methods (LCMV, DICS, and
mLCMV). The spatial accuracies on the localization results using
the four methods became lower as SNR value became smaller.
The spatial accuracies of the three alternative methods (LCMV,
mLCMV, DICS) were very similar with the increase of noise.
Thus, the proposed method had the highest spatial accuracy, and
that the spatial accuracy was affected little by the noise level.

Although the six locations covered the major regions of the
brain, these locations cannot represent all possible grid points in
the brain. To obtain more representative results, 309 locations
were selected from the 3,704 points of the grid, by starting
from the first point and using a step length of 12. As in the
previous set of experiments, the real signal (a sinc signal) and
Gaussian noise were used to generate 309 simulations for these

309 locations. For these simulations, the location errors of the
four localization methods (LCMV, DICS, mLCMV, pLCMV)
were calculated. Figure 5 shows the mean value and standard
deviation of the spatial accuracy of source localization for the 309
simulations generated using the sinc function. The localization
results for the mLCMV method were better than those for DCIS
and LCMV, and the difference in source localization between
LCMV and DICS was not obvious. Also, the spatial accuracies
on the localization results using the four methods became lower
as SNR value became smaller, and the proposed method had the
highest spatial accuracy.

Experimental Results in Epilepsy Data
By adding a Gaussian noise to the source signal, the experimental
results show that the proposed method was effective and had the
highest spatial accuracy in simulated MEG data. However, an
actual MEG signal is often disturbed by noise of many complex
origins, such as breathing, heart beats, eye movements, small
movements of the facial muscles and so on. In the following
experiments, we further verify the proposed method in a real
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FIGURE 5 | Comparison of the spatial accuracy of the four methods. The

x-axis of each plot represents the noise level, and the y-axis represents the

mean value ± standard deviation of the location error, based on 309

simulations. Each simulation was generated by a sinc function and Gaussian

noise.

MEG dataset with focal temporal lobe epilepsy (TLE). A total
of 10 patients with medically refractory TLE were obtained
retrospectively. All clinical characteristics of the patients are
described in Table 1. These patients were diagnosed as focal
unilateral TLE by a comprehensive preoperative assessment,
including seizure history and semiology, neurological
examination, 3-Tesla magnetic resonance imaging (MRI), scalp
electroencephalography, invasive electroencephalography. All
patients were from Xuanwu hospital in Beijing and underwent
anterior temporal lobectomy including hippocampus (Schaller
and Cabrilo, 2016). The results of at least 1 year follow-up
indicated that these patients achieved seizure free status (Engel
class IA). Written informed consent was obtained from each
participant. The study was performed under a protocol approved
by the medical ethics committee of Xuanwu Hospital of Capital
Medical University.

MRI indicates magnetic resonance imaging; M, male; F,
female; LT, left temporal; RT, right temporal; LHS, left
hippocampal sclerosis; RHS, right hippocampal sclerosis; HRH,
hyper T2 in right hippocampus; HLC, hyper T2 in left
temporal cortex; ARH, atrophy in right hippocampus; BHS,
bilateral hippocampal sclerosis; FCD, focal cortical dysplasia; HS,
hippocampal sclerosis.

The epileptic spikes were visually marked by two experienced
clinical epileptologists in the MEG signals. The MEG data with a
spike was localized using the proposed method and the dipole
fitting. The dipole fitting method here is performed using the
software provided by the MEG and is widely recognized in
clinical epilepsy localization. One spike in this study yields a
localization result. The localization results of all epilepsy patients

TABLE 1 | Clinical characteristics of the patients.

Patient

no.

Age

(years)

Seizure

duration

(years)

MRI Spike

number

Preoperative

assessment

Pathology

1 16–20 8 HLC 45 LT FCD

2 16–20 9 RHS 37 RT FCD, HS

3 20–25 17 LHS 23 LT FCD, HS

4 26–30 5 LHS 18 LT FCD, HS

5 26–30 14 Normal 42 RT FCD

6 20–25 14 HRH 38 RT FCD, HS

7 30–35 11 Normal 46 RT FCD

8 20–25 20 LHS 32 LT FCD, HS

9 30–35 17 ARH 27 RT FCD

10 36–40 16 Normal 25 RT FCD

were checked by the clinical epileptologists. We counted the
number of those spikes in the resection region for source
localization results. Figure 6 shows a comparison of localization
results obtained for patients with TLE using the proposedmethod
(pLCMV) with those obtained using the dipole fitting, LCMV,
DICS, and mLCMVmethods. The ratios of the number of spikes
counted in the resection region to the total number of spikes
in each patient are shown in Figure 6. The localization results
of most spikes should appear in the surgical resection region
based on preoperative assessments, pathological findings, and
postoperative follow-up results. Figure 6 shows that the dipole
fitting method is not always effective for finding epileptogenic
zones, especially in the 6th and 10th patients. The ratios of
the number of spikes localized in the surgical excised region
to the total number of spikes using the proposed method were
highest compared with those ratios of that using the other four
methods: dipole fitting, LCMV, DICS, and mLCMV. The analysis
of variance (ANOVA) was used to further compare the mean
difference of the five groups of localization results. Figure 7
shows significance test of mean difference of the five groups using
ANOVA. The localization results for the mLCMV method were
better than those for dipole fitting, DCIS, and LCMV, and the
difference in source localization between dipole fitting and DICS
was not obvious. The localization results using the proposed
method in these patients are more consistent with the clinical
evaluation. The proposed method may provide a new imaging
marker for localization of epileptogenic zones.

DISCUSSION AND CONCLUSIONS

MEG is a non-invasive type of preoperative examination and
therefore plays an indispensable role in the localization of
epileptogenic foci in epilepsy patients. Because the locations
of epileptogenic zones estimated using the current localization
methods are not always accurate, MEG examination results
are sometimes questioned by clinical epileptologists (Englot
et al., 2015). A number of source imaging algorithms for MEG
recordings have been proposed and successfully applied for
several purposes, such as localization of epileptic foci (Bast et al.,
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FIGURE 6 | Comparison of localization results obtained for patients with TLE using the proposed method (pLCMV) to those obtained using dipole fitting, LCMV, DICS,

and mLCMV methods. The x-axis represents the patient number, and the y-axes represent the ratios of the number of spikes localized in the surgical resected region

to the total number of spikes.

FIGURE 7 | Significance test of mean difference of the five groups of

localization results using analysis of variance (ANOVA). The x-axis represents

the five groups, and the y-axes represent the ratios of the number of spikes

localized in the surgical resected region to the total number of spikes.

2004; Sutherling et al., 2008; Englot et al., 2015). In this work,
PLS analysis was used in combination with minimum variance

beamforming to reconstruct sensor arrays and locate sources.

As is widely known, beamforming techniques play an important

role in source imaging. LCMV is a typical representative
of time domain beamforming, and DICS is a representative
of frequency domain beamforming. These two methods have
achieved effective localization results and have been successfully

applied inmany fields (Hoogenboom et al., 2006; Van Essen et al.,
2013). The most recent literature shows that a modified LCMV

(mLCMV) source imaging algorithm has been proposed, and

has achieved good spatial accuracy in deep source imaging (Hu
et al., 2017). Therefore, to test the effectiveness of the proposed
algorithm (pLCMV), we compared it to LCMV, DICS, and
mLCMV. The single-shell approximation technique was used

as a forward method to construct a volume conduction model

in this study. A proper head volume conductor in the forward
method is helpful to improve the spatial accuracy of source

imaging. Many improved forward models have been proposed
for accurate source analysis and connectivity measures (Vorwerk
et al., 2014; Neugebauer et al., 2017). Taking into account the
cerebrospinal fluid and distinguishing between gray and white

matter are effective in head volume conductor modeling. The
improved forwardmodels should be combined with the proposed
method in future study, andmay significantly improve the spatial
accuracy of source imaging.

In conclusion, we designed a new method that combines
partial least squares analysis of MEG arrays with minimum
variance beamforming to localize brain activity in simulated
data and epilepsy data. Compared to that obtained using DICS,
LCMV, and mLCMV, the spatial accuracy obtained using the
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proposed method (pLCMV) was highest, and the location error
fluctuated little with increases in noise. For simulations generated
using a sinc function plus Gaussian noise, the proposed method
had the highest spatial accuracy. The spatial accuracies on the
localization results using the four methods became lower as SNR
value became smaller. We further verified the proposed method
in a real dataset that includes the MEG recordings of 10 patients
with TLE. The localization results using the proposed method
are more consistent with the clinical evaluation. The proposed
method may provide a new imaging marker for localization of
epileptogenic zones.

We do not hypothesize that the sources should be localized in
only one brain area, because the proposed method is to search for
the epileptogenic zones or the sources from the whole brain. This
study focuses on the discussion of single source localization based
on simulated data and real dataset. The position corresponding
to the maximum strength is assumed to be the source location. If
we choose the top 5 or 10% maximum strength, we may be able
to solve the situation of multiple source spikes or activation. The
application background of this study is to solve the problem of
MEG localization of the epileptogenic zone in epilepsy surgery
candidates. Usually, a large proportion of those patients (epilepsy
surgery candidates) have single source (Englot et al., 2015; Nissen
et al., 2016). At present, most epileptic experts believe that only
one source is localized from a spike withMEG recordings (Englot
et al., 2015). In addition, multiple sources can also be localized
by single source localization for epileptic patients with multiple
lesions. Therefore, the proposed method does not highlight the
assumption of single source localization in this study. We will
continue to study the multiple sources localization in future
research.

Limitations
In order to implement the PLS method, the array of sensors was
divided into eight classes according to the standard brain regions

provided by Elekta Neuromag MEG in this study. The Y matrix
is then generated according to these classes. In fact, it is not
necessary to divide all sensors into 8 classes. It is possible that 4,
12, or even 16 classes could be used to localize the sources using
the PLS method. In future work, we can examine the effect of
different class numbers on the spatial accuracy of source imaging.
Since adjacent sensors may be divided into two different classes,
thismay be a challenge for PLSmethod to extract the components
of MEG data. In future work, the proposed method should be
verified in more types of epilepsy, such as frontal lobe epilepsy,
insular epilepsy, and occipital lobe epilepsy. We also hope that
the effective performance of the new method can be verified in
more realistic scenarios, such as locating brain tumor lesions and
locating functional areas.
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[MEG] PLS: a pipeline for MEG data analysis and partial least squares statistics.

Neuroimage 124, 181–193. doi: 10.1016/j.neuroimage.2015.08.045

Diwakar, M., Huang, M. X., Srinivasan, R., Harrington, D. L., Robb,

A., Angeles, A., et al. (2011). Dual-core beamformer for obtaining

highly correlated neuronal networks in MEG. Neuroimage 54, 253–263.

doi: 10.1016/j.neuroimage.2010.07.023

Englot, D. J., Nagarajan, S. S., Imber, B. S., Raygor, K. P., Honma, S. M., Mizuiri, D.,

et al. (2015). Epileptogenic zone localization using magnetoencephalography

predicts seizure freedom in epilepsy surgery. Epilepsia 56, 949–958.

doi: 10.1111/epi.13002

Geladi, P., and Kowalski, B.R. (1986). Partial least-squares regression: a tutorial.

Anal. Chim. Acta 185, 1–17. doi: 10.1016/0003-2670(86)80028-9

Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., et al.

(2008). Review on solving the inverse problem in EEG source analysis. J.

Neuroeng. Rehabil. 5:25. doi: 10.1186/1743-0003-5-25

Groß, J., and Ioannides, A. (1999). Linear transformations of data space in MEG.

Phys. Med. Biol. 44, 2081–2097.

Groß, J., Kujala, J., Hämäläinen, M., Timmermann, L., Schnitzler, A., and

Salmelin, R. (2001). Dynamic imaging of coherent sources: studying neural

interactions in the human brain. Proc. Natl. Acad. Sci. U.S.A. 98, 694–699.

doi: 10.1073/pnas.98.2.694

Hadamard, J., and Morse, P. M. (1953). Lectures on Cauchy’s problem in linear

partial differential equations. Phys. Today 6:18. doi: 10.1063/1.3061337

Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., and Lounasmaa, O.V.

(1993). Magnetoencephalography—theory, instrumentation, and applications

Frontiers in Neuroscience | www.frontiersin.org 10 September 2018 | Volume 12 | Article 616

https://doi.org/10.1016/j.patcog.2003.10.014
https://doi.org/10.1038/nn.4504
https://doi.org/10.1002/hbm.10072
https://doi.org/10.1111/j.0013-9580.2004.56503.x
https://doi.org/10.1093/bib/bbl016
https://doi.org/10.1016/j.neuroimage.2006.11.012
https://doi.org/10.1016/j.neuroimage.2015.08.045
https://doi.org/10.1016/j.neuroimage.2010.07.023
https://doi.org/10.1111/epi.13002
https://doi.org/10.1016/0003-2670(86)80028-9
https://doi.org/10.1186/1743-0003-5-25
https://doi.org/10.1073/pnas.98.2.694
https://doi.org/10.1063/1.3061337
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hu et al. PLS for MEG Source Imaging

to noninvasive studies of the working human brain. Rev. Mod. Phys. 65,

413–460. doi: 10.1103/RevModPhys.65.413

Hoogenboom, N., Schoffelen, J. M., Oostenveld, R., Parkes, L. M., and Fries, P.

(2006). Localizing human visual gamma-band activity in frequency, time and

space. Neuroimage 29, 764–773. doi: 10.1016/j.neuroimage.2005.08.043

Hu, Y., Lin, Y., Yang, B., Tang, G., Liu, T., Wang, Y., et al. (2017). Deep

source localization with magnetoencephalography based on sensor array

decomposition and beamforming. Sensors 17:E1860. doi: 10.3390/s17081860

Hu, Y. G., Ren, C. X., Yao, Y. F., and Li, W. Y. (2012). “Face recognition using

nonlinear partial least squares in reproducing kernel hilbert space”, in Chinese

Conference on Pattern Recognition (Beijing: Springer), 316–323.

Krishnan, A., Williams, L. J., McIntosh, A. R., and Abdi, H. (2011). Partial Least

Squares (PLS) methods for neuroimaging: a tutorial and review. Neuroimage

56, 455–475. doi: 10.1016/j.neuroimage.2010.07.034

Lewi, P. J. (1995). Pattern recognition, reflections from a

chemometric point of view. Chemometr. Intell. Lab. Sys. 28, 23–33.

doi: 10.1016/0169-7439(95)80037-A

Litvak, V., Mattout, J., Kiebel, S., Phillips, C., Henson, R., Kilner, J., et al. (2011).

EEG and MEG data analysis in SPM8. Comput. Intell. Neurosci. 2011:852961.

doi: 10.1155/2011/852961

Mäkelä, N., Stenroos, M., Sarvas, J., and Ilmoniemi, R.J. (2018). Truncated RAP-

MUSIC (TRAP-MUSIC) for MEG and EEG source localization. Neuroimage

167, 73–83. doi: 10.1016/j.neuroimage.2017.11.013

Mattout, J., Phillips, C., Penny, W. D., Rugg, M. D., and Friston, K. J. (2006).

MEG source localization under multiple constraints: an extended Bayesian

framework. Neuroimage 30, 753–767. doi: 10.1016/j.neuroimage.2005.10.037

McIntosh, A. R., and Lobaugh, N. J. (2004). Partial least squares analysis of

neuroimaging data: applications and advances. Neuroimage 23, S250–S263.

doi: 10.1016/j.neuroimage.2004.05.018

Neugebauer, F., Möddel, G., Rampp, S., Burger, M., andWolters, C. H. (2017). The

effect of head model simplification on beamformer source localization. Front.

Neurosci. 11:625. doi: 10.3389/fnins.2017.00625

Nissen, I., Stam, C., Citroen, J., Reijneveld, J., and Hillebrand, A.

(2016). Preoperative evaluation using magnetoencephalography:

experience in 382 epilepsy patients. Epilepsy Res. 124, 23–33.

doi: 10.1016/j.eplepsyres.2016.05.002

Nolte, G. (2003). The magnetic lead field theorem in the quasi-static

approximation and its use for magnetoencephalography forward

calculation in realistic volume conductors. Phys. Med. Biol. 48, 3637–3652.

doi: 10.1088/0031-9155/48/22/002

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J. M. (2011). FieldTrip:

open source software for advanced analysis of MEG, EEG, and

invasive electrophysiological data. Comput. Intell. Neurosci. 2011:156869.

doi: 10.1155/2011/156869

Oshino, S., Kato, A., Wakayama, A., Taniguchi, M., Hirata, M., and Yoshimine,

T. (2007). Magnetoencephalographic analysis of cortical oscillatory activity

in patients with brain tumors: synthetic aperture magnetometry (SAM)

functional imaging of delta band activity. Neuroimage 34, 957–964.

doi: 10.1016/j.neuroimage.2006.08.054

Pascual-Marqui, R. D., Michel, C. M., and Lehmann, D. (1994). Low resolution

electromagnetic tomography: a new method for localizing electrical activity in

the brain. Int. J. Psychophysiol. 18, 49–65. doi: 10.1016/0167-8760(84)90014-X

Rosipal, R., and Trejo, L. J. (2001). Kernel partial least squares regression

in reproducing kernel hilbert space. J. Mach. Learn. Res. 2, 97–123.

doi: 10.1162/15324430260185556

Schaller, K., and Cabrilo, I. (2016). Anterior temporal lobectomy. Acta Neurochir.

158, 161–166. doi: 10.1007/s00701-015-2640-0

Sekihara, K., Nagarajan, S. S., Poeppel, D., and Marantz, A. (2002a). Performance

of anMEG adaptive-beamformer technique in the presence of correlated neural

activities: effects on signal intensity and time-course estimates. IEEE Trans.

Biomed. Eng. 49, 1534–1546. doi: 10.1109/TBME.2002.805485

Sekihara, K., Nagarajan, S. S., Poeppel, D., Marantz, A., and Miyashita, Y.

(2002b). Application of an MEG eigenspace beamformer to reconstructing

spatio-temporal activities of neural sources. Hum. Brain Mapp. 15, 199–215.

doi: 10.1002/hbm.10019

Sharma, A., and Jacobs, D. W. (2011). “Bypassing synthesis: PLS for face

recognition with pose, low-resolution and sketch,” in 2011 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR)(Colorado Springs, CO:

IEEE), 593-600.

Sutherling, W., Mamelak, A., Thyerlei, D., Maleeva, T., Minazad, Y.,

Philpott, L., et al. (2008). Influence of magnetic source imaging

for planning intracranial EEG in epilepsy. Neurology 71, 990–996.

doi: 10.1212/01.wnl.0000326591.29858.1a

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., Ugurbil,

K., et al. (2013). The WU-Minn human connectome project: an overview.

Neuroimage 80, 62–79. doi: 10.1016/j.neuroimage.2013.05.041

Van Veen, B. D., Van Drongelen, W., Yuchtman, M., and Suzuki, A.

(1997). Localization of brain electrical activity via linearly constrained

minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 44, 867–880.

doi: 10.1109/10.623056

Vorwerk, J., Cho, J. H., Rampp, S., Hamer, H., Knösche, T. R., and Wolters, C. H.

(2014). A guideline for head volume conductor modeling in EEG and MEG.

Neuroimage 100, 590–607. doi: 10.1016/j.neuroimage.2014.06.040

Wennberg, R., and Cheyne, D. (2014). Reliability of MEG source imaging

of anterior temporal spikes: analysis of an intracranially characterized

spike focus. Clin. Neurophysiol. 125, 903–918. doi: 10.1016/j.clinph.2013.

08.032

Wold, S., Ruhe, A., Wold, H., and Dunn, W. J. (1984). The collinearity problem

in linear regression. the partial least squares (PLS) approach to generalized

inverses. SIAM. J. Sci. Stat. Comp. 5, 735–743.

Wold, S., Sjöström, M., and Eriksson, L. (2001). PLS-regression: a basic

tool of chemometrics. Chemometr. Intell. Lab. Sys. 58, 109–130.

doi: 10.1016/S0169-7439(01)00155-1

Zhang, J., and Liu, C. (2015). On linearly constrained minimum variance

beamforming. J. Mach. Learn. Res. 16, 2099–2145. Available Online at: http://

www.jmlr.org/papers/volume16/zhang15b/zhang15b.pdf

Zumer, J., Attias, H., Sekihara, K., and Nagarajan, S. (2007). A probabilistic

algorithm integrating source localization and noise suppression for MEG and

EEG data. Neuroimage 37:102. doi: 10.1016/j.neuroimage.2007.04.054

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer YZ and handling editor declared their shared affiliation at the

time of the review.

Copyright © 2018 Hu, Yin, Zhang and Wang. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 11 September 2018 | Volume 12 | Article 616

https://doi.org/10.1103/RevModPhys.65.413
https://doi.org/10.1016/j.neuroimage.2005.08.043
https://doi.org/10.3390/s17081860
https://doi.org/10.1016/j.neuroimage.2010.07.034
https://doi.org/10.1016/0169-7439(95)80037-A
https://doi.org/10.1155/2011/852961
https://doi.org/10.1016/j.neuroimage.2017.11.013
https://doi.org/10.1016/j.neuroimage.2005.10.037
https://doi.org/10.1016/j.neuroimage.2004.05.018
https://doi.org/10.3389/fnins.2017.00625
https://doi.org/10.1016/j.eplepsyres.2016.05.002
https://doi.org/10.1088/0031-9155/48/22/002
https://doi.org/10.1155/2011/156869
https://doi.org/10.1016/j.neuroimage.2006.08.054
https://doi.org/10.1016/0167-8760(84)90014-X
https://doi.org/10.1162/15324430260185556
https://doi.org/10.1007/s00701-015-2640-0
https://doi.org/10.1109/TBME.2002.805485
https://doi.org/10.1002/hbm.10019
https://doi.org/10.1212/01.wnl.0000326591.29858.1a
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.1109/10.623056
https://doi.org/10.1016/j.neuroimage.2014.06.040
https://doi.org/10.1016/j.clinph.2013.08.032
https://doi.org/10.1016/S0169-7439(01)00155-1
http://www.jmlr.org/papers/volume16/zhang15b/zhang15b.pdf
http://www.jmlr.org/papers/volume16/zhang15b/zhang15b.pdf
https://doi.org/10.1016/j.neuroimage.2007.04.054
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Partial Least Square Aided Beamforming Algorithm in Magnetoencephalography Source Imaging
	Introduction
	Methods
	Partial Least Squares Analysis
	Minimum Variance Beamforming
	Source Imaging via Partial Least Squares

	Results
	Simulated Data Generation
	Experimental Results in Simulated Data
	Experimental Results in Epilepsy Data

	Discussion and Conclusions
	Limitations

	Author Contributions
	Funding
	References


