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Although complex interactions between hosts and microbial associates are increasingly
well documented, we still know little about how and why hosts shape microbial commu-
nities in nature. In addition, host genetic effects on microbial communities vary widely
depending on the environment, obscuring conclusions about which microbes are
impacted and which plant functions are important. We characterized the leaf microbiota
of 200 Arabidopsis thaliana genotypes in eight field experiments and detected consistent
host effects on specific, broadly distributed microbial species (operational taxonomic unit
[OTUs]). Host genetic effects disproportionately influenced central ecological hubs, with
heritability of particular OTUs declining with their distance from the nearest hub within
the microbial network. These host effects could reflect either OTUs preferentially associ-
ating with specific genotypes or differential microbial success within them. Host genetics
associated with microbial hubs explained over 10% of the variation in lifetime seed pro-
duction among host genotypes across sites and years. We successfully cultured one of
these microbial hubs and demonstrated its growth-promoting effects on plants in sterile
conditions. Finally, genome-wide association mapping identified many putatively causal
genes with small effects on the relative abundance of microbial hubs across sites and years,
and these genes were enriched for those involved in the synthesis of specialized metabo-
lites, auxins, and the immune system. Using untargeted metabolomics, we corroborate
the consistent association between variation in specialized metabolites and microbial hubs
across field sites. Together, our results reveal that host genetic variation impacts the
microbial communities in consistent ways across environments and that these effects con-
tribute to fitness variation among host genotypes.
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Hosts harbor complex microbial communities that are thought to impact health and devel-
opment (1). Human microbiota has been implicated in a variety of diseases, including obe-
sity and cancer (2). Efforts are thus underway to determine the host factors shaping these
communities (3, 4), and to use next-generation probiotics to inhibit colonization by patho-
gens (5). Similarly, in agriculture, there is great hope that selection on plant traits shaping
the composition of the microbiota will help mitigate disease and increase crop yield in a
sustainable fashion. Indeed, the Food and Agriculture Organization of the United Nations
has made the use of biological control and growth-promoting microbial associations a clear
priority for improving food production (6).
Plant-associated microbes can be beneficial in many ways, including improving access to

nutrients, activating or priming the immune system, and competing with pathogens. For
example, seeds inoculated with a combination of naturally occurring microbes were found
to be protected from a sudden-wilt disease that emerged after continuous cropping (7).
Thus, it would be advantageous to breed crops that promote the growth of beneficial
microbes under a variety of field conditions, a prospect that is made more likely by the
demonstration of host genotypic effects on their microbiota (8–11). However, microbial
communities are complex entities that are influenced by the combined impact of host fac-
tors, the abiotic environment, and microbe–microbe interactions (12). Indeed, several stud-
ies have found a strong influence of the environment on estimates of host genotype effects
(8, 13, 14). Although most, if not all, studies exploring the influence that host genotype
exerts on microbial communities suggest that such plant control could be beneficial to
plant performance, almost nothing is known about the relationship between host genotype
effects on microbial communities and on plant performance or fitness. Consequently, the
extent to which host plants can control microbial communities to their advantage, espe-
cially in a consistent manner across multiple environments, remains unclear.
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Here, we combine large-scale field experiments in natural
environments, extensive microbial community analysis, and
genome-wide association mapping to 1) determine how host
genotype affects different microbial community members, and
thus shapes the overall microbiome; 2) estimate host genotype
effects on microbial communities across eight environments
and investigate the contribution of those effects to the perfor-
mance of plant genotypes; and 3) use genome-wide association
mapping to identify key pathways that shape the leaf microbial
communities across multiple environmental conditions.

Snapshot of Microbial Community Variation

We performed a set of field experiments that included natural
inbred lines of Arabidopsis thaliana (hereafter “accessions”) orig-
inally collected throughout Sweden, mainly in two climatically
contrasted regions of the country (Dataset S1); A. thaliana in
the north of Sweden experiences long, snowy winters, and, as a
consequence, plants are typically found on south-facing slopes
of rocky cliffs. Arabidopsis populations in the south of Sweden,
on the other hand, tend to be associated with agricultural or
disturbed fields that experience highly variable snow cover over
the winter months. We used replicate experiments in four rep-
resentative Arabidopsis sites, two each in the north (sites NM
and NA) and south (sites SU and SR) of Sweden. Experiments
were repeated across 2 years, for a total of eight experiments.
Each experiment was organized in a complete randomized

block design including 24 replicates of 200 sequenced acces-
sions (15), established as seedlings in a mixture of 10% native
and 90% potting soil and timed to coincide with local germina-
tion flushes in late summer. Many of the microbiome members
from our experiments were also found within the leaves of
A. thaliana plants that we collected in the field in southern
Sweden in 2017, suggesting that this percentage of native
soil was sufficient to seed a representative microbiome (Dataset
S2). Immediately upon snowmelt in early spring, we sampled
and freeze dried five or six whole rosettes per accession. DNA
was extracted from the freeze-dried rosettes, and both the ITS1
portion of the Internal Transcribed Spacer (ITS) and the V5 to
V7 regions of the 16S RNA gene were sequenced to character-
ize the fungal and bacterial communities, respectively (9, 12,
16). The sequences obtained were clustered into operational tax-
onomic units (OTUs) using Swarm to generate community matri-
ces (17) (see Count Table Filtering). The frequency distributions
of OTUs were highly skewed, with the top 10 most common
OTUs contributing, on average, 59% of the reads in each experi-
ment (ranging from 45 to 78%). Throughout this study, we chose
to focus on the microbes represented by at least 0.01% of the
sequencing reads per experiment. While rare microbes may impact
host performance and have important ecological roles (18), we
would not have had the power to estimate heritability or map
host control of these species. Taxonomic assignments indicate that
the fungal communities were dominated by Leotimycetes and
Dothideomycetes, while the bacterial communities included high
proportions of Alphaproteobacteria and Actinobacteria (SI
Appendix, Fig. S1).
In a principal coordinate (PC) analysis, differences between

northern and southern sites explained 10% and 5% of the over-
all diversity in the fungal and bacterial communities, respec-
tively, while differences between the two consecutive years
explained 5% and 3%. This level of differentiation among
experiments likely underestimates that present in the native
soil, as it has been shown that hosts filter the microbial com-
munity to reduce site-to-site differences (19, 20) (Fig. 1). In

addition, there may have been a homogenizing effect of using a
combination of local and potting soil. Irrespective of how well
our treatments mimicked natural microbial communities, our
analysis of eight common garden experiments permits assess-
ment of the consistency across time and space of plant genetic
effects on their associated microbial communities.

Host Genetic Effects on the Microbiota

Our experiments provided a unique opportunity to investigate
associations between host genetic variation and their resident
microbiomes, within the context of environmental variation across
time and space. We focused on PC from simple unconstrained
PC analysis (PCoA) within each experiment in order to summa-
rize the variation among communities including hundreds or
thousands of species with a few dimensions, and then calculated
the proportion of variance explained by the host genotype (hereaf-
ter heritability or H2). Within each experiment, we found signifi-
cant heritability of PC of the microbial communities (SI
Appendix, Table S1), suggesting that genetic variation in the host
significantly impacts at least a fraction of the microbiota, in line
with results of previous studies (8–10, 12, 21, 22).

Significant heritability of the resident microbiome could arise
from host genotypes exerting weak control over many community
members, or by targeting a few microbes that then influence the
relative abundance of others through microbe–microbe interac-
tions. In order to investigate these hypotheses, we modeled the
log-ratio transformed counts of individual OTUs with random-
effect linear models and revealed significant genotypic effects (with
the 95% CI of heritability not overlapping zero) for between
10.13% and 21.93% of all OTUs, depending on the site and
year (Fig. 2 A–D and SI Appendix, Fig. S2 A–D). The latter expla-
nation thus seems more likely, given that the influence of the host
appears focused on relatively few OTUs, although it remains to
be investigated whether heritable microbial hubs influence other
members of the microbiome (see below). We found no evidence
that either fungal or bacterial communities are systematically more
impacted by host effects than the other (Fig. 2 A–D and SI
Appendix, Fig. S2 A–D), nor that mean relative abundance was
strongly correlated with OTU heritability (SI Appendix, Fig. S3).

Host Genetics Correlate Most Strongly with
Ecologically Central Microbes

Having found that host effects are concentrated on a small pro-
portion of OTUs, we investigated the possibility that these herita-
ble OTUs trigger a broader community-level change in the
microbiota. First, we computed networks of microbe cooccur-
rence for each experiment. We explored the ecological importance
of heritable OTUs by computing networks of microbe cooccur-
rence for each experiment using the SPIEC-EASI (SParse InversE
Covariance Estimation for Ecological Association Inference)
pipeline (23). Although our networks included both fungal
and bacterial OTUs, most significant cooccurrences involved
OTUs within each domain, with an average of only 7.76% (min
= 6.64%, max = 9.91%) of edges connecting fungal and bacte-
rial OTUs. We quantified the ecological importance of OTUs
using two common characteristics of nodes in a network
(“degree” and “betweenness centrality”) (12), defining ecologically
important “hubs” in each network as OTUs in the 95% tail of
both of these statistics (SI Appendix, Fig. S4). We identified, on
average, 16.5 microbial hubs per experiment (ranging from 11 to
24), representing 78 unique OTUs across all eight experiments
(43 bacterial OTUs and 35 fungal OTUs). These hubs were
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connected to an average of 19.62% (min = 14.50%, max = 25.
23%) of the edges in the networks, indicating that they are likely
important in structuring the microbial community. In addition,
hubs were involved in proportionally more interactions between
fungi and bacteria than the rest of the community (SI Appendix,
Table S3).
Next, we asked whether heritable OTUs are more likely to

be ecologically important hubs, because this could open the
door to community-level impacts of host genetic variation.
Across all eight experiments, we detected 23 OTUs that were
both heritable and hubs at least once (SI Appendix, Table S2
and Dataset S2). This represents a significant enrichment of
hub OTUs among heritable OTUs (Wilcoxon rank sum test:
n = 8, W = 57, P value = 0.007), suggesting that host effects
on the microbiota preferentially influence the relative abun-
dance of ecologically important microbes. In fact, hub OTUs
were often among the OTUs with the highest heritability
within each experiment; these hub OTUs stand out in that we
find no general relationships between heritability and either
betweenness or degree (SI Appendix, Fig. S5). To further
explore how heritability is distributed among members of
microbial communities, we mapped broad-sense heritability
onto the ecological network. In six out of eight experiments,
we observed a significant negative relationship between herita-
bility and the distance (number of network edges) to the
nearest heritable hub (combined P value = 3.96e�25, using
Fisher’s method for combining P values) (24) (Fig. 2 E–H and
SI Appendix, Fig. S2 E–H). This pattern reveals that host
genetic variation impacts the structure of microbial communi-
ties, although whether this occurs due to shared host effects on
many microbes or host effects on hubs that then percolate in
the microbial community through microbe–microbe interac-
tions is unclear.
To discern the contribution of microbe–microbe interac-

tions in the propagation of host genetic effects across the
microbial networks, we took advantage of our replicates of
each host genotype to permute counts for each OTU. We
reasoned that, if microbe–microbe interactions were largely
responsible for the patterns of cooccurrence that we

observed, then microbial cooccurrences would be diminished
by our permutations of replicates within host genotypes.
The same diminution would be evident if patterns of micro-
bial cooccurrence were due to microenvironmental variation
within experiments, independent of host genotype, although
strong microenvironmental effects would have interfered
with our ability to detect heritable OTUs. On the other
hand, if OTUs tended to cooccur due to shared host geno-
type effects, then our permutations would have little impact.
In the networks computed from the permuted datasets, on
average, 91.39% (ranging from 87.67 to 95.2% across our
eight experiments) of all OTUs that previously cooccurred
with at least one other OTU (with degree > 0) had fewer
associations with other microbes. Overall, networks com-
puted from the permuted data had, on average, 75% fewer
edges (ranging from 62 to 87%). This indicates that most
microbe–microbe associations were not due to shared host
genotype effects. Thus, although host genetic variation drove
the cooccurrences for a fraction of OTUs, we interpret our
empirical networks as consistent with a shared role of host
genetics and microbe–microbe interactions, with host geno-
types most strongly impacting microbial hubs that then
influence other members of the microbial communities.

Not only did the heritable hubs seem to have an impact that per-
colated through the microbial community, they were widely distrib-
uted among accessions, sites, and years. We were able to identify
127 fungal and bacterial OTUs that were found in at least 50% of
samples in all experiments. Interestingly, OTUs that were heritable
hubs at least once were overrepresented in this core microbiota
(χ2 = 51.98, degree of freedom [df] = 1, P value = 5.58e-13). This
was not an artifact of their being widespread; significant heritability
estimates were detected across the entire range of prevalence. Indeed,
prevalence of OTUs explained less than 2.6% of variation in OTU
heritability across all experiments (F statistic = 110.66, df = 4176,
P value < 2.2e-16; SI Appendix, Fig. S6). Thus, ecologically impor-
tant OTUs with greatest associations to host genotypes were unusual
in being widespread among plants in multiple experiments. Host
effects on the fungal OTU #8 (hereafter F8) are especially impor-
tant; this OTU showed significant heritability (H2 > 0) in five

Fig. 1. Plants grown in different environments have different microbial communities. The plots represent the projection of each sample on the plane
defined by the first two constrained components of the fungal and bacterial communities, describing variation among sites and years. The percentages in
parentheses are the proportion of the total inertia (square root of the Bray–Curtis dissimilarity) explained by each component. The colors of the points indi-
cate the site from which samples were collected. Experiments from the south are represented in red (SU) and yellow (SR), and experiments from the north
are represented in blue (NR) and dark blue (NA). All points from 2012 and 2013 are encircled by a darker and lighter gray line, respectively.
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out of the seven experiments in which it was a hub (SI
Appendix, Table S2), suggesting that natural variation in A.
thaliana influences its microbiota with some consistency
across environments. The widespread prevalence of these

heritable hubs suggests that variation at particular host genes
associates with particular hubs across time and space, poten-
tially providing a means to impact the microbiota in a robust
fashion.
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Fig. 2. The effect of host genetic variation on the microbial community targets relatively few OTUs and percolates across the network. This figure corre-
sponds to observations in the set of four experiments performed in 2013. The same figure is available for the 2012 experiments in SI Appendix, Fig. S3. (A–D)
Each frame presents the distribution of heritability estimates for individual OTUs in one site. In each frame, Inset graph is a box and whiskers plot contrast-
ing the heritability (y axis) of bacterial (B) and fungal (F) OTUs. (E–H) The heritable hubs are represented at a distance of zero (hub). The other points are
OTUs connected to heritable hubs, directly (distance = 1) or indirectly (distance > 1). The x axis represents the number of edges in the network separating
an OTU and its nearest heritable hub. The correlation coefficients presented are Spearman rank correlations between heritability and distances to the heri-
table hub(s) (including zero).
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Variation in Performance of Host Genotypes
Explained by Their Influence on Microbial Hubs

The extent to which natural variation among host genotypes in
their associated microbes translates into fitness differences has yet
to be determined. Our experiments included additional replicates
of all genotypes that were left to flower and mature in the field.
We harvested mature stems in early summer and used high-
throughput image analysis to measure the size of reproductive
stems, an estimate of lifetime investment in reproduction in this
annual species. This measure encompasses variation in both the
number of siliques and their size (which can increase as a function
of seed number and seed size) but correlated well with seed pro-
duction in an independent experiment (SI Appendix, Fig. S7)
(24). We thus call our estimate "seed-set" in what follows. We
observed that plant seed-set estimates were positively correlated
across experiments (SI Appendix, Fig. S8), suggesting fitness varia-
tion among accessions was relatively consistent across sites. We
therefore asked whether host effects on microbial hubs contrib-
uted to some genotypes producing more seeds across all environ-
ments investigated. Specifically, we used random intercept models
to estimate genotype effects on both heritable microbial hubs and
seed-set in a series of analyses that jointly considered all eight
experiments and investigated the relationship between these two
effects (see Heritable Hubs and Seed-Set across Environments).
We found that the host genotype explained, on average across

experiments, 6.88% (with a 95% CI [5.52, 8.34]) of seed-set.
Host genotype effects on the relative abundances of 19 of our 23
heritable microbial hubs, quantified as random intercept deviation,
were similarly modest, explaining up to 4% of the variation (Fig.
3A; four heritable hubs were not detected in more than two
experiments and were removed for this analysis). We used multi-
ple regression to estimate genetic correlations between host geno-
type effects on seed-set and on microbial hubs. We detected
positive correlations between accession effects on seed-set and
accession effects on three heritable hubs, F8, B38, and B13, as
well as a negative correlation between accession effects on seed-set
and accession effects on F5 (Fig. 3B). The variation explained by
host genotype on the relative abundances of microbial hubs
explained 12.4% of the host genotype effects on seed-set.
These results reveal that a sizable percentage of genetic vari-

ance in seed-set is shared with genetic variation associated with
the relative abundance of a few broadly distributed microbial
hubs, consistent with a causal relationship between genotype
and seed-set mediated by heritable microbial hubs. Of course,
the proportion of shared genetic variation between seed-set and
heritable microbial hubs is unlikely to be equally important
across time and space. In fact, in analyses performed on an
experiment-by-experiment basis, we found that relationships
between host effects on hubs and on seed-set were stronger in
southern Sweden, where we detected significant relationships in
both sites and both years (SI Appendix, Table S4).
Overall, our results highlight the importance for plants of con-

trolling their leaf microbial community and suggest that breeding
plants for their effects on specific members of microbial commu-
nities has the potential to significantly increase plant productivity.

Effect of Hubs on Growth in Controlled Condition

In an effort to confirm that the genetic correlations observed
between heritable hubs and plant seed-set were due to an interac-
tion between host and microbial species, we returned to the field
to collect wild A. thaliana leaves, cultured ∼3,900 bacterial iso-
lates from within these leaves (25), and sequenced both the 16S

RNA gene and gyrase-B. These sequences included 100%
matches for 10 of the 43 bacterial hubs, among which 4 were her-
itable hubs (SI Appendix, Table S2). Among successfully cultured
heritable hubs was B38 which appeared to contribute positively to
the seed-set of accessions in our field experiments (Fig. 3). This
isolate derived from Vårhallarna, in southern Sweden (SI
Appendix, Table S5). We subsequently performed shotgun whole
genome sequencing of B38 which we identified as Brevundimonas
sp. The assembled and annotated genome did not identify puta-
tive pathogenic or virulence genetic factors present in the genome.

If there is an interaction between B38 and the host, the
growth-promoting effect of B38 could be either direct or indirect,
mediated through other members of the community. To test the
direct effect of B38 on host growth, we grew Arabidopsis plants of
an accession (#6136) from the south of Sweden chosen to have
intermediate relative abundance of B38 in the field. Plants were
grown under sterile conditions in 1/2 MS media under long-day
conditions in the growth chamber, with and without B38 inocula-
tion. Approximately 2 wk after germination, over 600 plants were
randomly selected for either drip inoculation with the control or
B38 inoculum, and measured for surface area growth over the fol-
lowing 2 wk. Accounting for variation in plant growth among trials
and plates within trials, we found that plants treated with B38 grew
5.375 (SE = 1.973) mm2 larger than control plants (F = 7.3981,
df = 1, P value = 6.7e�3) between days 7 and 14, corresponding
to a 10.22% growth increase.
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The microbial hubs could, in principle, influence host fitness
directly, for example, by contributing to growth, or indirectly
through their influence on other beneficial members of the
microbial community (26). Here we show that B38 directly
improves host growth over early life stages in isolation from the
rest of the microbial community. This result is consistent with
our field observations, where we found a positive correlation
between genetic variation associated with B38 and with seed-
set, suggesting that, in this instance, the correlation is causative.
The possibility of additional indirect interactions in the field
cannot, of course, be excluded.

Mapping Host Genetic Associations with the
Relative Abundances of Microbial Hubs
across Experiments

Our observation that host control of the relative abundance of four
microbial hubs explains ∼12% of variation in seed-set among Arabi-
dopsis genotypes grown in eight field trials suggests the potential to
reveal host genes that can enhance plant performance in the presence
of microbes, particularly across environments. Toward this end, we
performed genome-wide association mapping for host genotype
effects on microbial hubs (n = 19) and seed-set across all experi-
ments. Despite significant differences among accessions, genome-
wide association (GWA) analysis yielded few peaks with P values
below accepted significance thresholds after correction for multiple
testing. Specifically, we found only two significant associations, both
for microbial hub B41. The first is located on chromosome 1 at
position 29909876 in AT1G79510 annotated as a pseudogene. The
second is on chromosome 4 on positions 15704377, 15704472,
and 15704478. These consecutive single-nucleotide polymorphisms
(SNPs) are located between YUC-1 (AT4G32540), involved in
auxin biosynthesis, and LEUNIG (AT4G32551), involved in the
development of the leaf blade and floral organs.
A potentially more powerful strategy to detect minor quanti-

tative trait loci (QTL) involves computing local association
scores along the genome. The assumption underlying this
method is that neighboring markers in linkage disequilibrium
with causal mutations will also carry association signals; thus,
aggregating P values increases power (27). This method identi-
fied 344 nonoverlapping loci (hereafter QTLs), with sizes rang-
ing from 93 bp to 150,926 bp, including a total of 25,529
SNPs. Out of the 344 QTLs, only 27 included SNPs associated
with multiple traits (Dataset S3).
To investigate functions underlying these associations, we

tested pathway and Gene Ontology (GO) term enrichment
(biological processes only) (28, 29). Each annotated gene was
assigned the highest absolute SNP effect within 5 kb, and we
used a combination of methods based on effect sizes accounting
for multiple testing, overlapping gene lists, and the potential
aggregation of functions and associations along the genome
(30–33); we identified 29 enriched GO terms related to biolog-
ical processes across 16 traits (Datasets S4 and S5), including
genes involved in the response to virus (GO:0009615) and nem-
atodes (GO:0009624), hypersensitive response (GO:0009626),
and response to chitin (GO:0010200), all of which are related to
interactions with other organisms. Three enriched GO terms
directly concern auxins and their transport (GO:0009926, GO:
0010540, and GO:0009734); auxins have previously been docu-
mented to contribute to shaping plant interactions with beneficial
bacteria (34, 35). Specialized metabolites also appear to be
involved in shaping the relative abundance of microbial hubs.
Indeed, hub B107 is associated with genes in the geranylgeranyl
diphosphate metabolism (GO:0033385), the universal precursor of

diterpenes, which include carotenoids, gibberellins, and hormones
such as abscisic acid. In addition, loci associated with B76 are
enriched in genes related to specialized metabolite biosynthesis
(GO:0044550) and genes involved in the synthesis of sinapoyl
glucose and sinapoyl malate (PWY-3301), a side branch in the
synthesis of phenylpropanoids. Genes involved in the synthesis of
glucosinolates from phenylalanine (like glucotropaeolin in ref. 36,
PWY-2821) and hexahomomethionine [specifically, 8-(methylsul-
finyl)octyl-glucosinolate (36), PWYQT-4475] are also enriched in
loci associated with B5 and F71, respectively.

The functions highlighted by our analysis are in line with other
studies suggesting the involvement of specialized metabolites, aux-
ins, and the immune system in influencing the leaf microbial
communities (37, 38). Our analysis also highlights less obvious
functions, like fatty acid and brassinosteroids biosynthesis (Dataset
S5). This is especially true for beneficial members of the commu-
nity. For example, loci associated with the relative abundance of
the beneficial microbial hub B38 are enriched for transition metal
ion transport (GO:0000041), response to carbohydrates (GO:
0009743), and fatty acid biosynthesis (PWY-4381).

Plant Specialized Metabolites Correlated with
Microbial Hub Abundance

Our biological processes and pathway enrichment analysis suggest
that specialized metabolites are involved in shaping microbial
hubs. To support this result, we quantified 20 compounds using
untargeted metabolomics in a subset of the field samples in which
we characterized the rosette microbiome. These compounds were
chosen to be abundant, allowing annotation, while limiting the
number of tests required to explore their association with micro-
bial hubs. We found that the relative abundance of 14 out of 19
hubs was significantly correlated with at least one of 11 specialized
metabolites (after correction for multiple testing), 6 of which dis-
played significant heritability across field sites ranging from 1 to
38% (SI Appendix, Fig. S9 A and B).

The molecule 8-(methylsulfinyl)octyl-glucosinolate (36) (260_
GSL_8MSO in SI Appendix, Fig. S9 and Table S6) displayed the
strongest relationship with multiple microbial hubs in the field (SI
Appendix, Fig. S9A and Table S6), as well as significant heritability
under field conditions (SI Appendix, Fig. S9B). The variation
among accessions of this abundant glucosinolate was less evident
in the greenhouse and in sterile conditions (SI Appendix, Fig.
S9B), however, leaving open the possibility that the correlation is
induced by one or more of the microbial hubs. In contrast, other
molecules significantly related to the abundance of microbial
hubs in the field across experiments (354_C_Cy-GRGF_785 and
358_F_R-K-R_577; SI Appendix, Table S6) are heritable in all
conditions, and variation among accessions in the field is positively
correlated with the variation among accessions in the greenhouse.
This suggests that these flavonoids are constitutively and consis-
tently produced by accessions and influence microbial hubs in a
manner that is robust to heterogeneity among field experiments.

Conclusion

In this study, we show that, not only does host genetic varia-
tion influence the microbiome, it does so consistently. Host
genotype effects are centered on ecologically important hub
species, and appear to percolate through the microbial commu-
nity, at least in part as a result of microbe–microbe interactions.
Our replicate field experiments were instrumental in allowing
us to reveal consistent host effects on the leaf microbiome via
common and widespread hub species.
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Furthermore, we found that the influence of host genetics on
a handful of prevalent microbial hubs has a far-reaching impact
on the community, and is associated with a substantial fraction
of the variation in our fitness estimates among accessions.
Although these relationships are correlational, a causal relation-
ship is plausible (39), and, indeed, we were able to culture one
of the identified hubs and confirm a direct positive effect on
host fitness experimentally.
Understanding how host performance or fitness components

are influenced by their ability to shape microbial communities
could provide a basis for breeding crops favoring microbes that
are beneficial to both growth and resistance to pathogens. We
successfully mapped variation in host microbe interactions
using genome-wide association, and our results suggest that
natural and artificial selection can act on plant traits such as
leaf specialized metabolites, auxins, and the immune system to
improve plant performance through effects on microbial com-
munities (40, 41). In addition, we found that at least some
plant metabolites are expressed in a consistent manner that is
robust to variation among our experiments and correlates with
the relative abundance of microbial hubs. Our results therefore
suggest that ongoing efforts to harness host genotype effects on
the microbiome for agricultural purposes can be successful, and
highlight the value of explicitly considering abiotic variation in
those efforts.

Materials and Methods

Field Experiments. This study uses a set of 200 diverse accessions (inbred
lines; SI Appendix, Table S1) that were previously resequenced (15). The seeds
were produced simultaneously in the greenhouse of the University of Chicago
under long-day conditions, except for a 12-wk vernalization period at 4 °C,
required to induce flowering. The seeds for the common garden experiments
were cold stratified in water at 4 °C for 3 d before being planted in trays of 66
open-bottom wells, each measuring 4 cm in diameter. For each experiment,
trays were filled with a mix of 90% standard greenhouse soil and 10% local soil.
The local soil was collected at the site where each experiment was established,
within 2 d of seeds being planted in each year. The standard greenhouse soil
was bought in a single order for the four experiments each year. The sites cho-
sen for the experiments were as follows:

SU: Ullstorp (agricultural field, lat: 56.067, long: 13.945)
SR: Ratchkegården (agricultural field, lat: 55.906, long: 14.260)
NM: Ramsta (agricultural field, lat: 62.85, long: 18.193)
NA: Ådal (south-facing slope, lat: 62.862, long 18.331)

The sites were chosen to be Arabidopsis habitats and located near known natu-
ral populations. Each experiment included three complete randomized blocks,
including eight replicates per accession. Experiments were sown in pairs (two in
the north and two in the south) over 6 d, corresponding to the sowing of one
block a day, alternating between the two experiments (between 7 and 12 August
in the north, and between 31 August and 5 September in the south, in both
years). The trays were placed in a common garden the morning after sowing
under row tunnels to avoid disturbance by precipitation and to favor germination
(on the campus of Mid Sweden University in the north and Lund University in the
south). Trays were watered as needed, and missing seedlings were transplanted
between cells within blocks and then thinned to one per cell after 9 d. Seventeen
days after sowing, trays were laid in the field in their final location over tilled soil.
For each experiment, the blocks were laid across the most obvious environmental
gradient (exposition, shading, slope, soil humidity, … ). The pierced bottom of
the cells allowed the roots to grow through and reach the soil, as was verified
upon harvest. The same protocol was followed in 2011 and 2012.

Sample Collection and DNA Extractions. The rosettes used to characterize
the microbial community were harvested in the spring of 2012 and 2013 only a
few days after the plants were exposed, following snowmelt. We harvested two
randomly selected replicates per accession in each experimental block. Upon

harvest, rosettes were placed in sealed paper envelopes, placed on dry ice, and
then kept at �80 °C until lyophilized (S1 Appendix, Supplementary Methods).
DNA extractions were performed on powdered lyophilized rosette tissue. The
protocol used included two enzymatic digestions to maximize yield from
gram-negative bacteria (42) but otherwise followed (43). Further details about
sample processing and DNA extractions are given in SI Appendix,
DNA Extraction.

PCR and Sequencing. To describe the microbial communities, we amplified
and sequenced fragments of the taxonomically informative genes 16S and ITS for
bacteria and fungi, respectively. For bacteria, we amplified the hypervariable
regions V5, V6, and V7 of the 16S gene using the primers 799F (50-AACMGGAT-
TAGATACCCKG-30) and 1193R (50-ACGTCATCCCCACCTTCC-30) (9, 44). For fungi, we
amplified the ITS-1 region using the primers ITS1F (50-CTTGGTCATTTAGAGGAAG-
TAA-30) (16) and ITS2 (50-GCTGCGTTCTTCATCGATGC-30) (45). The sequencing was
performed using 11 MiSeq 500 cycle V2 kits following ref. 46. Primer design
(47), PCR conditions (48), and sequencing methods (49, 50) are presented in
more detail in SI Appendix, PCR and Sequencing.

Sequence Processing and Clustering. The demultiplexed fastq files gener-
ated by MiSeq reporter for the first read of each run were quality filtered and trun-
cated to remove potential primer sequences and low-quality base calls using the
program cutadapt (51). The reads were then further filtered and converted to fasta
files using the FASTX-Toolkit (-q 30 -p 90 -Q33). The fasta files for each run were
then dereplicated using AWK code provided in the swarm git repository (https://
github.com/torognes/swarm) (17). The resulting dereplicated fasta files were fil-
tered for PCR chimeras using the vsearch uchime_denovo command (https://
github.com/torognes/vsearch). The dereplicated fasta files for each run were then
combined and further dereplicated at the study level. The fasta files were then
used as input for OTU clustering using swarm (-t 4 -c 20000). The clustering iden-
tified 150,412 and 251,065 OTUs for the fungal and bacterial communities,
respectively. The output files were combined into two separate community matri-
ces using a custom python script (available at GitLab, https://forgemia.inra.fr/
bbrachi/microbiota_paper) (52). The taxonomy of each OTU was determined
using the quiime2 2019.1 v8 feature classifier trained on the UNITE V8 and SILVA
1.32 database for bacteria and fungi, respectively (53, 54).

Count Table Filtering. The count tables obtained for both the bacterial and
fungal communities were filtered in successive steps by removing the following:

1) samples corresponding to empty wells and additional plant genotypes pre-
sent in the experiments sampled by mistake (leaving 7,476 and 7,240 sam-
ples for the fungal and bacterial count tables, respectively)

2) samples with less than 1,000 reads (leaving 6,678 and 6,819 samples for
the fungal and bacterial count tables, respectively)

3) OTUs not represented in at least 10 reads in at least five samples (leaving
1,381 and 993 OTUs for the fungal and bacterial count tables, respectively)

4) for the bacterial community, OTUs assigned to plant mitochondria (leaving
993 OTUs in the bacterial count table, no OTUs assigned to plant
mitochondria)

5) for a second time, samples with less than 1,000 reads (leaving 6,656 and
6,783 samples for the fungal and bacterial count tables, respectively).

The final count tables used in the study included 993 OTUs and 6,793 sam-
ples for the bacterial communities and 1,381 OTUs and 6,656 samples for the
fungal community.

The counts for the bacterial community included between 570 and 1,051
samples per experiment. The counts for the fungal community included between
530 and 996 samples per experiment.

Differentiation of the Microbial Communities among Sites and Years.

This analysis was performed for the fungal and bacterial communities indepen-
dently, including all samples and only OTUs with read counts above 0.01% of
total read counts (after the filtering described above) across sites and years. To
investigate how the microbial communities differed among sites and years, we
performed a constrained ordination on log-transformed read counts using the
capscale function in the R-package Vegan (55) and following ref. 56. The log
transformation offers the advantage of removing large differences in scale
among variables. The capscale function performs canonical analysis of PC, an
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analysis similar to redundancy analysis (rda), but based on the decomposition of
a Bray–Curtis dissimilarity matrix among samples (instead of Euclidean distance
in the case of rda). This allows identification of the dimension that maximized
the variance explained by components, while discriminating groups of samples,
here sites and years, with the formula “Y ≈ site + year + site * year” where Y is
the count matrix normalized to 1,000 reads and transformed with log(x + 1)
(23, 56).

Core Microbiota. In order to define a core microbiota, we counted, for each
OTU, the number of site/year combinations in which it was prevalent. We
defined “prevalent” as being present in at least 50% of the samples in a given
site/year. We performed this analysis using count tables for each experiment
with the filtering described in the previous paragraph. Therefore, for an OTU to
be designated as a member of the core microbiota, it needed to have nonzero
counts in more than 50% of the samples within each site/year combination and,
due to previously described filtering, needed to be represented by at least 10
reads in five of those samples across all site/year combinations (see Count
Table Filtering).

Heritability of the Microbiota. In this analysis, count tables were split per
site and year before filtering for OTUs represented by more than 0.01% of the
reads (after the filtering described in Count Table Filtering) for each of the bacte-
rial and fungal communities. The resulting 16 counts tables were normalized to
1,000 reads per sample and used to calculate 16 Bray–Curtis pairwise dissimilar-
ity matrices among samples. Count tables were not rarefied. Relative abundan-
ces were multiplied by the minimum depth of 1,000 reads. These matrices were
then decomposed into 10 PC. For each component, we estimated broad sense
heritability (hereafter H2), that is, the proportion of variance explained by a ran-
dom intercept effect capturing the identity of the accessions present in the exper-
iment (plate effects had limited impact on H2 estimates but were included in
the models) in models following

Yikeβj:Plateij þ ak þ εik, [1]

where Yik was one of the 10 PC, β is the effect of the plate, Plate is the design
matrix capturing the assignation the ith sample to the jth plate, and
akeNð0,σ2aÞ is the random intercept term capturing the effect of the kth acces-
sion and εikeNð0,σ2eÞ captures the residual variance. Heritability (H2) was esti-
mated as the percentage of variance explained by the random accession
intercept,

H2 ¼ σ2a
σ2a þ σ2e

: [2]

Mixed models were fitted using the function lmer in the lme4 R package (57).
We computed 95% confidence intervals (CIs) using 1,000 bootstraps, and com-
ponents were considered to have significant H2 when their CIs did not overlap
zero (lower bound of the CI ≥ 0.01).

Heritability of Individual OTUs. This analysis was also performed per site,
year, and community, as in the microbiota H2 estimation analysis. In this analy-
sis, counts were transformed to centered log-ratios (CLR; after adding one to all
counts to handle zeros) using a dedicated function in the R package mixOmics
(58, 59). Individual transformed OTU counts were modeled with a model follow-
ing Eq. 3,

Yikeak þ εik , [3]

where Yik is the vector of transformed counts for one OTU, and ak ≈Nð0,σ2aÞ
is the random intercept term capturing the effect of the kth accession.
εkeNð0,σ2eÞ captures the residual variance. H2 estimates and CIs were com-
puted as the proportion variance explained by the accession term akeNð0,σ2aÞ
for each OTU (Eq. 2). We computed 95% CIs using 1,000 bootstraps, and OTUs
were considered to have significant heritability when their CIs did not overlap
zero (lower bound of the confidence interval ≥ 0.01). H2 estimates for our esti-
mate of seed-set (see below) were estimated the same way using a Box–Cox
transformation.

Microbe–Microbe Cooccurrence Networks. Microbe–microbe cooccurrence
networks were computed for the fungal and bacterial communities together,
using the count tables per site/year and filtering OTUs represented by less than
0.01% of the reads within each community. The count tables were then

combined into the same table and analyzed using the SPIEC-EASI (v1.1) pipeline
(23). This method computes sparse microbial ecological networks in a fashion
robust to compositional bias and uses conditional independence to identify true
ecological interactions, meaning that a connection between two OTUs will be sig-
nificant when one provides information about the other, given the state of all
other OTUs in the network. This means that covariance among OTUs induced by
microenvironmental and host genetic variation is controlled. SPIEC-EASI was run
using the neighborhood selection framework, and model selection was regular-
ized with parameters set to a minimum lambda ratio of 1e�2 and a sequence of
50 lambda values (see documentation for SPIEC-EASI and the huge R package,
which provides regularization functions) (60).

Network Statistics. The inferences of microbe–microbe ecological interactions
inferred using SPIEC-EASI were passed to the igraph package (61), which was
used for enforcing simplicity of graphs (no edges that connect vertices to them-
selves or duplicated edges), computing degree and betweenness centrality of
vertices, computing distances between vertices, and plotting. With each of the
eight networks thus computed, hubs were defined as OTUs with degree and
betweenness centrality both in the 5% tail of their respective distributions. We
then checked the overlap between heritable OTUs and hubs, and the overrepre-
sentation of heritable OTUs among hubs was tested using a simple χ2 test across
all site/year combinations. The relationship between distances to heritable hubs
(OTUs that are both hubs and have significant H2) and heritability was investi-
gated using Spearman’s rank correlation coefficient. Distances were calculated as
the number of edges between OTUs and the closest heritable hub in the net-
work. OTUs not connected to heritable hubs were assigned a distance equal to
one more than the maximum distance observed for OTUs connected to herita-
ble hubs.

In order to investigate whether the microbe–microbe associations detected in
the networks were mostly due to host genetic effects shared among microbes,
we performed permutations of the count tables for each site and year as follow:

1) Compute read counts per sample.
2) Perform a log-ratio transformation of the count table (count + 1).
3) Compute heritability estimates for each OTU (H2; see Heritability of Individual

OTUs).
4) For each OTU, and for each Arabidopsis genotype, resample the log-ratio

transformed counts without replacement across samples. This permutation
scheme maintains shared host effects on OTUs but breaks up correlations
among OTUs that are independent of the host genotype.

5) Compute new heritability estimates on the permuted data for each OTU
(H2P), which is equal to H2.

6) Transform the nonpermuted and the permuted log-ratio transform count
tables back to proportions using the softmax function (https://rpubs.com/
FJRubio/softmax) and then back to counts using the counts per sample com-
puted in step 1 above.

7) Infer interaction networks from both these new count tables using SPIEC-
EASI (seeMicrobe–Microbe Cooccurrence Networks).

Estimation of Seed-Set. The experiments each included eight replicates per
block per accession (24 replicates per experiment). While we harvested two repli-
cates per block (six replicates per experiment) for microbiota analysis, the
remaining plants were left to grow, flower, and produce seeds in the field. We
harvested the mature stems of all remaining plants at the end of the spring,
when all plants had finished flowering and siliques were mature, and stored
them flat in individual paper envelopes. We estimated lifetime seed production
(seed-set) by the size of the mature stems. After removing remaining traces of
roots and rosettes, each mature plant was photographed on a black background,
using a digital single-lens reflex camera (Nikon 60D) mounted on a copy-stand
and equipped with a 60-mm macro lens (Nikon 60mm). The photographs were
segmented [using custom scripts in R based on the EBimage package (62)] to
isolate plants from the image background and estimate the total surface of the
image they occupied.

We validated this method with mature plants harvested from a previous
experiment that was planted in NM in fall 2010, and that included the 200
accessions used in this study. We counted siliques and estimated the average
silique size for 1,607 mature stems that were also photographed. The total
silique length produced per plant (number * average size) was highly correlated
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with our size estimates based on image analysis (Spearman’s rho = 0.84) and
displayed a clear linear relationship.

Relationship between Host Effects on Microbial Hubs and Seed-Set. To
investigate the relationship between host genotype effects on heritable hubs
and seed-set in each experiment, we computed estimates of accession effects
(best unbiased linear predictors [BLUPs]) for both log-ratio transformed heritable
hubs and Box–Cox transformed seed-set estimates. We then fitted multiple
regressions for each site/year combination aiming to explain seed-set variation
among accessions with their influence over microbial hubs and following Eq. 4.

fie∑
n

j¼1
βj:hij

� �
þ γj:h

2
ij

� �h i
þ εi, [4]

where fi is the seed-set estimate of the ith accession (BLUP), and hij is the effect
of the ith accession on the jth hub. βj is the regression coefficient for the jth hub,
and γj is the regression coefficient for the jth hub squared. εkeNð0,σ2eÞ cap-
tures residual variance per accession. We then performed forward/backward
model selection to obtain the final models presented in SI Appendix, Table S4.

Heritable Hubs and Seed-Set across Environments. We next investigated
host effects on heritable hubs and seed-set across all eight experiments. Simi-
larly to previous analyses, count tables were split per site and year before filter-
ing for OTUs represented by more than 0.01% of the reads (after the filtering
described in Count Table Filtering) for each of the bacterial and fungal communi-
ties. The resulting 16 count tables were then transformed (CLR) and combined
into one before fitting a mixed model following Eq. 5,

Yikeβj:expij þ ak þ εik, [5]

where Yik is the vector of transformed counts for one OTU, βj is the effect of the
experiment j, expij is the design matrix capturing the assignation the ith sample
to the jth experiment, n = 8), and akeNð0,σ2aÞ is the random intercept term
capturing the effect of the kth accession. εikeNð0,σ2eÞ.

Seed-set data were analyzed the same way, except we performed Box–Cox
transformation of the data. The lambda parameter for the Box–Cox transforma-
tion was estimated using the same model, but without the random accession
term. Heritability was calculated according to Eq. 2.

For both heritable microbial hubs and seed-set, we retrieved random intercept
accession effects (BLUPs) and fitted a multiple linear regression following Eq. 6,

Fie∑
n

j¼1
βj:Hij

� �
þ γj:H

2
ij

� �h i
þ εi, [6]

where Fi is the effect of the ith accession (n = 200) on seed-set (across all experi-
ments), Hij is the effect of accession i on hub j across all experiments, and H2

ij is
the squared effect of accession i on hub j. βj and γj are the corresponding
regression coefficient for hub j and εi ≈Nð0,σ2eÞ captures the residual vari-
ance per accession. The final model was obtained after backward/forward model
selection based on AIC.

Isolation, Culture, and Identification of Microbial Hubs.
Bacteria sampling from wild A. thaliana plants. We collected two leaves
from 10 plants at five locations in Sweden (SI Appendix, Table S5) which we
stored in 20% glycerol at �20 °C. Wild A. thaliana microbial isolates were col-
lected using modified methods that were previously described (25), using six
distinct media selected to capture a diverse set of bacterial isolates (63). After iso-
lating and cultivating colonies, we performed DNA extraction and identified over
3,900 isolates using 16S and gyraseB sequencing [SI Appendix, Bacteria
Sampling from Wild A. thaliana Plants (64)]. Matches to our experimental OTUs
are indicated in Dataset S2. Of the isolates identified, we focused on the herita-
ble hub, B38, which appears to contribute to seed-set in the field.

B38 Whole Genome Assembly. We used a low-input method for Illumina
library preparation (65). Briefly, ∼2 ng of extracted DNA was used in a reduced
volume (5 μL) tagmentation reaction with TDE1 (incubate 55°C for 10 mins,
room temperature for 5 mins). The tagmentation reaction was added to a 15-μL
PCR, adding the Illumina adapters (Kapa HiFi Hotstart PCR kit KK502, standard
Illumina adapters and cycling). The library was cleaned with 0.8× volume SPRI
(solid-phase reversible immobilization) beads, quantified on the Bioanalyzer,
and run on the MIseq2500 using paired end 300 chemistry. Reads were trimmed
for adapters (BBDuk, ktrim = r, k = 23, mink = 11, hdist = 1 tbo) and quality

across a sliding window (k = 4, trimq = 20) (66). Reads were assembled using
SPAdes (using the settings –isolate -k 21,33,55,77) and annotated with the soft-
ware Prokka designed for rapid prokaryotic genome annotation (67, 68).

Plant Growth Assays with B38.
Plant growth. A. thaliana accession 6136 from Southern Sweden was used in
the growth assays. In our field experiments, it displayed average relative counts
for B38 (rank 102 of 199). The plant assay used slightly modified methods as
previously described (69). The seeds were exposed to chlorine gas for steriliza-
tion: In a bell jar with dessicant, an open 1.5-mL tube with seeds was placed
next to a 50-mL beaker with 40 mL of Chlorox bleach and 1 mL of hydrochloric
acid, sealed with parafilm, and incubated for 4 h. Sterilized seeds were subse-
quently sown on 24-well tissue plates containing 1.5 mL of 1/2 MS media (Mur-
ashige & Skoog medium including Nitsch vitamins, bioWORLD) containing
500 mg/L MES (2-Morpholinoethanesulfonic acid hydrate), pH 5.7 to 5.8. Plates
were wrapped in parafilm and vernalized in the dark at 4 °C for 4 d. The plates
were individually wrapped with micropore tape to prevent environmental con-
tamination and transferred to a growth chamber with 16 h of light at 16 °C. The
plants were treated with either B38 or control inoculum between days 13 and
15 postvernalization. The plates were returned to the chamber to grow for
another 14 d.
B38 inoculation. The B38 isolate grew in R2A liquid media in an orbital shaker
for approximately 3 days, until the optical density at a wave length of 600
(OD600) reached 0.2. To ensure no environmental contamination, a portion of
the inoculum was saved for DNA extraction and subsequent 16S Sanger
sequencing verification. The liquid cultures were pelleted by centrifuging at
1,800 relative centrifugal force (RCF) at 18°C for 7 min, decanted, and resus-
pended in 0.1 M MgSO4. The plants in each 24-well plate were randomly
selected to receive the infection (B38 + 0.1 M MgSO4) or control (0.1 M
MgSO4) treatment. Each plant was drip inoculated using pipettes with 180 μL of
the selected treatment. The plates were rewrapped in micropore tape and
returned to the growth chamber.
Measuring plant growth. We performed three trials of 11, 28, and 23 plates,
totaling 62 twenty-four-well plates. Plants were not treated and were removed
from the experiment if they had less than three true leaves, cracked agar, or
failed to germinate, resulting in a total of 1,094 plants. The plants were individu-
ally photographed immediately before inoculation, then again at 7 and 14 d
postinoculation. The images were processed using a custom script employing
cv2 in Python (70), which quantified plant surface area in each well by scaling
based on the wells’ size, converting images into binary images, and measuring
nonwhite pixels within each well (i.e., plant surface area). The output images
were manually inspected, and any images which failed to be accurately proc-
essed were manually measured using the same pipeline described above, but
using Image J.

Due to the high humidity of the plates and the drip inoculation, 422 plants
showed signs of waterlog stress. Plants were scored for symptoms of stress
induced by waterlogging (blindly with regard to B38 inoculation) as categorized
by translucent/white leaves or stunted growth, and were removed from the
experiment.

We used a linear mixed model (Eq. 4) accounting for variation in plant
growth among trials and plates within trials to estimate the effect of B38
inoculation.

Gijeβ:Ti þ pj þ εij, [7]

In Eq. 4, Gij is the growth of ith plant in the jth plate/assay combination. β is the
estimate of the treatment effect compared to the controls (intercept), and Ti is
the treatment (inoculation with a B38 or control solution); pjeNð0,σ2pÞ is the
random intercept effect capturing variation among plates in assays (n = 62
plates across three trials). εijeNð0,σ2eÞ captures the residual variances.
Genome-Wide Association Mapping.
Single polymorphism calling and filtering. SNPs used in this study were gen-
erated in the context of the 1001 Genome Project (71) and published in Long
et al. (15). As pipelines evolved, we reran SNP calling to ensure optimal quality
(SI Appendix, Single Polymorphism Calling and Filtering).
Phenotype preparation and association analysis. Association mapping analy-
ses were performed for the 11 heritable microbial hubs for which we estimated
host genotype effects across experiment and accession seed-set estimates.
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Association analyses were performed using a classical one-trait mixed model
accounting for genetic relatedness among accessions (kinship) (71).

In order to take advantage of linkage disequilibrium and gain power
by grouping association statistics in contiguous markers, we computed local
association scores (27). We followed the instructions provided by the authors
and defined the parameter Xi as the 0.999 quantile of the distribution of
�logðp� valueÞ � 1 rounded to the closest integer for each trait investigated
(19 microbial hubs and seed-set). The approach highlights regions, which we
call QTLs.

The null association model (without fixed SNP effect) from Gemma allows us
to estimate SNP-based heritability or pseudoheritability (72), which is the propor-
tion of variance explained by the random accession effect, accounting for the
genetic similarity among accessions. To investigate whether the regions
highlighted by the local score approach included true positives, we computed
SNP-based heritability for each trait, each time using three sets of SNPs to com-
pute the kinship matrix: 1) all the SNPs in the genome over 10% frequency, 2)
all the SNPs within QTLs identified by the local score approach, and 3) all SNPs
not included in the QTLs identified by the local score approach.
Pathway enrichment analysis. To investigate biological functions associated
with seed-set of accessions or their influence over microbial hubs, we searched
for enrichment in annotated pathways (in the BIOCYC database) and GO catego-
ries (biological processes only) in A. thaliana. Gene-set enrichment methods are
designed for assays that directly assign P values or effects to individual genes
(i.e., RNA sequencing experiments). Here, for each trait, each gene was attrib-
uted the largest absolute SNP effect within a distance of 5 kb on each side and
followed the setRank procedure that accounts for overlapping categories and
multiple testing. We set the parameter “setPCutoff” to 0.01 and set the
“fdrCutoff” to 0.05 (30). To account for specificities of gene-set enrichment in the
context of association mapping, we also tested the enrichment of the gene
groups identified by setRank using a weighted Kolmogorov–Smirnov score (31)
and a permutation scheme accounting for the nonindependence of marker
effects due to linkage disequilibrium along the genome, as well as the potential
clustering of genes with similar function (32, 33). Briefly, enrichment was calcu-
lated using a weighted Kolmogorov sum using gene effect rank (and not a gene
effect significance threshold) (31). Enrichments were then tested against an
empirical distribution generated from 1e5 permutations. For each permutation,
chromosomes are randomly reordered and reoriented, and the whole genome is
shifted (or “rotated”) by a random number, before reassigning SNP effects to
genes and calculating enrichment for the groups of genes of interest. We consid-
ered only categories with empirical P values below 0.05.

Untargeted Metabolomics.
Plant material and sample preparation. This analysis uses three sets of sam-
ples. The first are samples collected from the experiments in Sweden and corre-
spond to a subset of those used for the microbial community. In particular, we
chose samples from the four experiments established in 2012 and focused on a
subset of 50 accessions selected to span the genetic variation among hosts in
our mapping population. The second set of samples correspond to six replicates
of the same 50 genotypes grown in the University of Chicago greenhouse dur-
ing the summer 2014 under long-day conditions (16-h light period), in standard
culture soil. After 28 d, plants were vernalized for 3 wk at 4 °C, and leaf samples
were collected after vernalization, immediately flash frozen in liquid nitrogen,
freeze-dried, and stored at room temperature. The third set corresponds to three
replicates of the same 50 genotypes, grown on sterile agar medium (Murashige
& Skoog with Nitsch vitamins) in individual well plates in a growth chamber
with a 16-h light period (long-day condition). Seeds were sterilized by a 70% eth-
anol bath for 10 min, and manipulated under a sterile hood. Samples were col-
lected after 28 d of growth, flash frozen, freeze-dried, and stored at room
temperature.

Dried samples from the three sets were coarsely ground, and distributed in 18
ninety-six-well plates with two ceramic grinding beads per well (10 mg per
well ± 2 mg). Samples were randomized across all plates to limit confounding of
biological effects. In addition, each plate included 16 random samples (1/6) from
each experimental unit (greenhouse, sterile, and the four field experiments).

Specialized Metabolite Extraction and Liquid Chromatography–MS
Analysis. The extraction protocol was designed to extract polar compounds
such as glucosinolates and flavonoids. Samples in plates were ground using a

Geno/Grinder (SPEX SamplePrep 2010) at 1,750 rpm for 2 min. The extraction
buffer (70% methanol, 30% water, internal standard: quercetin, 0.0708 mM)
was added using a Tecan pipetting robot (100 μL per milligram of dry material).
Samples were shaken at room temperature for 2 h and filtered on 96-well filter
plates (0.45 μm) on a vacuum manifold. The flow-through was collected in
96-well plates and stored at 4 °C.

Samples were autoinjected through a Zorbax SB-C18 2.1 × 150 mm,
3.5-μm column on an Agilent Q-TOF liquid chromatography–MS with dual
electrospray ionisation (ESI, Agilent 6520) with the following parameters:
325 °C gas temperature, 6 L�min�1 drying gas, 35-eV fixed collision
energy, 35 psig nebulizer, 68-V skimmer voltage, 750-V OCT 1 RF Vpp,
170-V fragmentor, and 3,500-V capillary voltage. Mass accuracy was
within 2 ppm to 5 ppm. Samples were eluted with 0.1% formic acid in
water (A) and 100% acetonitrile (B) using the following separation gradi-
ent: 95% A injection followed by a gradient to 90% A at 1 min, 45% A at 6
min, and 100% B at 6.5 min with 4-min hold and 3-min equilibration. An
external standard (sinigrin, 1 mM) was run four times before each plate
and one time every 20 samples to monitor and maintain run quality. Com-
pounds were characterized using retention times and fragmentation pat-
terns of chromatograms with automatic agile integration in Agilent Mass
Hunter Software (Qualitative Analysis B6 2012), and fragments were com-
pared to online databases, massbank (massbank.jp) and plantCyc (plantcy-
c.org). The XCMS package for peak detection in R (cran.r-project.org) was used
to align chromatograms, adjust retention times, and group the peaks. For every
molecule, a “barcode” peak was chosen to have a unique retention time and
mass to charge ratio (m/z) combination. The size of these peaks relative to the
internal standard, Quercetin, was used to quantify each molecule in every
sample.
Statistical analysis. The peaks’ intensities relative to the internal standard were
used to capture molecule concentration variation. Standardized intensities were
square root transformed before analysis. Heritability of individual compounds in
the three conditions was performed using random intercept models identical to
those used to estimate OTU heritability. A fixed “site” effect was added for the
field samples. In the greenhouse and sterile conditions, a simple random acces-
sion term was used to quantify heritability and estimate accession effects
(BLUPs). Those accession effects were used to estimate genetic correlation
between specialized metabolites in the field and the greenhouse. We used Pear-
son’s correlation coefficient and corrected the corresponding P values for false
discovery rate (FDR; n = 20).

For the field samples, we modeled the relationships between the relative
abundances of 19 microbial hubs and the relative intensity of 20 compounds (SI
Appendix, Table S6) using a linear model following Eq. 8,

Hieβ1s:Ssi þ β2:Mi þ β3s:Ssi:Mi þ εi, [8]

where Hi are the log-ratio transformed counts of one of the 19 microbial hubs
used for mapping, β1s are the four site effects, Ssi is the design matrix assigning
sample i to site s, β2 is the effect of one of the 20 molecules identified in our
untargeted screen, and Mi is the relative intensity of the molecules measured in
sample i. β3s are site-specific regression coefficients (interactions between the
site and molecule effects). εieNð0,σ2eÞ captures the residual variances. We fit-
ted 380 models (19 hubs and 20 molecules) and used F tests to estimate term
significance. All P values corresponding to the molecule effect β2 were corrected
for FDR (n = 380).

Repeatability of Analysis and Data Availability. All scripts used to per-
form the analyses presented in this paper, as well as nonessential but comple-
mentary figures, are available in the GitLab repository https://forgemia.inra.fr/
bbrachi/microbiota_paper (52).

Data tables for OTU counts, seed-set estimates, and plant growth data for the
B38 experiment are also available in a Zenodo repository (73).

Metabarcoding Illumina sequences (ITS and 16S amplicons) and the B38
sequence data have been deposited in National Center for Biotechnology Informa-
tion under BioProject PRJNA707473 (74).
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