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Background: CpG island methylator phenotype (CIMP), a common biological phenomenon characterized by a
subset of concurrentlymethylated genes, can have an influence on the progression ofmultiple cancers. However,
the potential mechanism of CIMP in hepatocarcinogenesis and its clinical relevance remains only partially
understood.
Methods:We used amethylation array from the cancer genome atlas (TCGA) to stratify HCC patients into differ-
ent CIMP subtypes, and evaluated their correlation with clinical characteristics. In addition, mutation, CNV, and
transcriptome profiles were also utilized to evaluate the distinctive genomic patterns correlated with CIMP.
Finally, a CIMP-associated prognostic model (CPM) was trained and validated using four independent datasets.
Findings: A subgroup of patients was identified as having CIMP-H, which was associated with worse OS and DFS.
Gene enrichment analysis indicated that the terms “liver cancer with EPCAM up”, “tumor invasiveness up”,
“methyltransferase complex”, and “translational initiation”were enriched in CIMP-H subgroup. Notably, somatic
mutation analysis indicated that CIMP-H patients presented with a higher mutation burden of BRD4, DDIAS and
NOX1. Moreover, four CPMassociated genes could significantly categorize patients into low- andhigh-risk groups
in the training dataset and another 3 independent validation datasets. Finally, a nomogram incorporating a clas-
sifier based on fourmRNAs, pathologicalM stage and CIMP statuswas established,which showed a favorable dis-
criminating ability and might contribute to clinical decision-making for HCC.
Interpretation: Our work highlights the potential clinical application value of CPM in predicting the overall sur-
vival of HCC patients and the mechanisms underlying the role of CIMP in hepatocarcinogenesis.
Fund: This work was supported by the State Key Project on Infectious Diseases of China (2018ZX10723204-003),
the National Nature Science Foundation of China (Nos. 81874065, 81500565, 81874149, 81572427, and
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for the Development of Science and Technology of Hubei Province (CXPJJH11800001-2018356).
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1. Introduction

Liver cancer ranks fifth among the most common malignancies and
is the second leading cause of tumor-related death with an increasing
global incidence in recent years [1,2]. Hepatocellular carcinoma (HCC),
the predominant type of liver cancer, is correlatedwithwell-known un-
derlying etiologies, including chronic hepatitis (B and C) virus infec-
tions, alcohol abuse and aflatoxin exposure [3]. Under the influence of
upeng@tjh.tjmu.edu.cn (P. Zhu),
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these risk factors, both genetic and epigenetic alterations will progres-
sively accumulate and might contribute to activate oncogenes, leading
to the inactivation of tumor suppressor genes and subsequently
resulting in hepatocarcinogenesis [4]. Presently, the main treatments
for HCC include hepatectomy, targeted therapy with sorafenib, thermal
ablation, immunotherapy, transcatheter arterial chemoembolization
(TACE) and liver transplantation [5–7]. However, in spite of great ad-
vances over the past decades, the prognosis of HCC patients remains
poor due to high rate of recurrence [2]. Therefore, it is urgent to identify
robust prognostic biomarkers for HCC patients who might benefit from
curative therapy.

DNAmethylation plays a crucial role in both physiologic and patho-
logical cellular fate commitment [8]. During oncogenesis, aberrant DNA
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context
Evidence before this study

By searching PubMed on Jul 13, 2019, for original articles contain-
ing the terms “CpG islandmethylator phenotype AND hepatocellu-
lar carcinoma” without language or date restrictions, we find that
the links between the molecular traits and CIMP have not been
fully unveiled. In addition, this search also did not identify any
studied, based on the high-throughput profiles, which had evalu-
ated the potential prognostic role of CIMP-associated models in
HCC.

Added value of this study

To our knowledge, our study is the first one to use clinical informa-
tion and genomic profiles from TCGA to investigate the associa-
tion between CIMP phenotype and genomic aberrations, immune
infiltration. In addition, we identify the CIMP-associated prognos-
tic model (CPM) in HCC, which was trained and validated using
four independent datasets. This model is on the basis of four
genes that could screen out the HCC patients with high risk of
poor prognosis in both the training and validation cohorts. Our re-
sults indicate that this CPM is more accurate than conventional
clinical characteristics alone, and a nomogram was also con-
structed for clinical practice to predict HCC prognosis.

Implication of all the available evidence

The CIMP-related prognostic model based on four genes was con-
structed and validated. Itwas found to act as an independent prog-
nostic factor for HCC and reflects the overall epigenetic alterations
in thewhole genome. Toour best knowledge, this is the first report
of a prognostic model incorporating CIMP status and it could be
utilized as a reference to understand the relevance of CIMP in
othermalignancies. Notably, the CPMprovides epigenetic insights
into the main mechanisms that potentially influence the prognosis
of HCC.
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methylation mostly presents as focal hypermethylation surrounding
the promoters of specific genes, as well as global hypomethylation in
non-promoter regions [9,10]. Hypermethylation of promoter region is
a crucial process that can lead to the epigenetic silencing of tumor sup-
pressor genes [11,12]. At the same time, aberrant DNA methylation of
non-promoter elements is an important contributor to intra-tumoral
heterogeneity [13]. By contrast, global hypomethylation might contrib-
ute to chromosomal instability by affecting the intergenic regions of the
whole genome.

CIMP is characterized by concurrent and widespread hypermethyla-
tion of a subset of CpG sites in clinically distinct cancer subtypes, and it
plays a crucial role in chromosomal instability during carcinogenesis
[14,15]. This aberrant methylation phenomenon was first discovered
and validated in colorectal cancer, where it was termed colorectal CIMP
[16,17]. From then on, the CIMP phenotype has been evaluated in a
wide variety of other tumor types, including HCC [18]. The CIMP positive
subgroup has a number of distinct epidemiological, clinicopathological,
and genomic characteristics compared with its CIMP negative counter-
part [19,20]. Since previous studies indicated that there is a lack of a
pan-cancer overlap of specific gene, it appears that a tissue-specific
CIMP pattern exists for each tumor [21]. However, the clinical relevance
of CIMP in HCC still remains controversial, and the potential biological
mechanism mediating its involvement in hepatocarcinogenesis is also
only partially understood.
In the present study, we firstly clustered HCC patients into three dis-
tinct methylation subgroups, named CIMP-H, CIMP-M, and CIMP-L, and
analyzed the diverse clinicopathological features correlated with CIMP
status. The results indicated that patients with CIMP-H status had a
worse prognosis. In addition, the correlations of CIMP status with
RNA-seq datasets, somatic mutations, and copy number variations
(CNVs) in HCC were also evaluated. Importantly, our robust CPM,
consisting of four genes whose expression levels are influenced by
CIMP status, was demonstrated as a robust prognostic model with fa-
vorable predictive performance. Therefore, CPM can greatly contribute
to the decision-making process of clinicians, and related genes might
act as promising therapeutic biomarkers for HCC.
2. Materials and methods

2.1. Data acquisition from TCGA

Level 3 DNA methylation profiles based on the Illumina
HumanMethylation450 BeadChip Assay, including 377 HCC patients,
were obtained from the TCGA using the TCGA-Assembler 2 R package
[22], and the genomic annotation of each CpG site was conducted
using the IlluminaHumanMethylation450kanno.ilmn12.hg19 R package
(Version: 3.9; http://www.bioconductor.org/packages/release/data/
annotation/html/IlluminaHumanMethylation450kanno.ilmn12.hg19.
html). For individual CpG site, two measurements were accepted: a
methylated intensity (denoted by M) and an unmethylated intensity
(denoted by U). The methylation status of each CpG was expressed as
a beta-value (β = M/(M + U), ranging from 0 to 1) [23]. We used the
minfi R package [24] to remove low-quality probes based on the follow-
ing criteria: first, the methylation of CpG site not available in any
sample; second, single-nucleotide polymorphisms (SNPs) located in
the assayed CpG dinucleotide [25]; third, not uniquely mapped to
the human reference genome (hg19) [26]; fourth, locating in sex
chromosomes [27].

Gene expression profiles obtained using the IlluminaHiSeq RNA-Seq
platform and the corresponding clinical information of 371HCCpatients
were downloaded from the TCGA website (https://portal.gdc.cancer.
gov/repository) (up to May 15, 2019). Gene symbols corresponding to
ensemble IDs were obtained using the Homo_sapiens.GRCh38.91.chr.gtf
file (http://asia.ensembl.org/index.html). The gene expression profiles
were normalized using the scale method provided in the limma R pack-
age [28]. The highest RNA expression level was accepted in case of du-
plicates. In addition, genes with an average expression value of more
than one were extracted, and low-abundance profiles were eliminated.

The somatic mutation profiles of 364 patients based on the whole
exome sequencing platform were downloaded using the TCGAbiolinks
[29]. They were summarized and analyzed using the maftools package
[30]. Samples with missense mutations, nonsense mutations, multiple
hits, splice-site mutations, frameshift insertions, frameshift deletions,
in-frame insertions or in-frame deletions were regarded as positive for
a mutation. Significant somatic mutated genes (SMGs) in three distinct
subtype of HCC were identified using the Mutational Significance
in Cancer (MuSiC) Genome Suite, (http://gmt.genome.wustl.edu/
packages/genome-music/index.html). Tumor mutational burden
(TMB), an emerging biomarker of immunotherapy responses, was cal-
culated by the number of somatic, coding, base substitution, and indel
mutations per megabase within the whole genome. In addition, 35 Mb
was used as the estimated size of the whole human exome in [31].

Level 4 copy number variation (CNV) profiles of HCC were
downloaded from GDAC Firehose (http://gdac.broadinstitute.org) and
classified into three distinct subtypes according to the status of CIMP.
Significant amplification or deletion alterations among the whole ge-
nomewere identified usingGISTIC 2.0, a biological programbased on ro-
bust computational algorithm to detect recurrent somatic CNVs by
evaluating the frequency and amplitude of corresponding events [32].
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Complete clinical information of HCC patients in the TCGA cohort
was collected, including gender, Body Mass Index (BMI), age, AFP
(alpha fetoprotein) level, hepatitis C (HCV) status, hepatitis B (HBV) sta-
tus, pathologic stage, vascular invasion, histologic grade, pathologic
TNM stage, family, alcohol consumption and non-alcoholic fatty liver
disease history (NAFLD), and used for the subsequent analyses.

This study fully complies with the TCGA publication requirements
(http://cancergenome.nih.gov/publications/publicationguidelines).

2.2. Acquisition of gene expression matrix from ICGC and GEO

The gene expression files (ICGC-LIRI-JP) of HCC based on the
Illumina HiSeq RNA Seq platform, including 212 Japanese patients,
were obtained from the international cancer genomics consortium
(ICGC, https://icgc.org/) [33]. The GSE14520 gene expression matrix
files based on platform GPL571, including 225 Chinese patients were
obtained from the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/). Among the two datasets, the highest
RNA expression value was accepted when encountering duplicated
data. Genes with an average expression value more than one were ex-
tracted, and low-abundance profiles were eliminated. Only patients in
the two datasets with N90 days of overall survival (OS) (ICGC LIRI JP
(n = 197), and GSE14520 (n = 216)) were extracted to validate CPM
in the survival analysis. The downloaded profiles fully complied with
the ICGC and GEO data access policies.

2.3. Collection of HCC patients in the Tongji cohort

From 2013 to 2017, surgical biopsies were collected from a total of
100 patientswhounderwent curative hepatic resection for HCCwithout
preoperative therapy at Tongji Hospital (Wuhan, China). OS informa-
tion was collected through electronic medical records or telephone
follow-up. Informed consent forms to donate their tissue samples for
biomedical research, which were approved by the ethics committee of
Tongji Hospital, were signed by all patients.

2.4. Identification and validation of the CpG island methylator phenotype
(CIMP)

To evaluate the CIMP phenomenon in HCC, CpG sites with a rela-
tively high standard deviation of beta-values in 377 HCC tissues (SD N

0.2) and relatively low beta-values in 50 paracancerous tissues (mean
β value b0.05), were selected as the most variable CpG sites for further
survival analysis. The remaining CpG sites, whichwere considered to be
significantly associated with OS based on the threshold of P b .05, were
extracted for further cluster analysis. The ConsensusClusterPlus R pack-
age was used to conduct consensus cluster analysis based on the final
95 probes was on the basis of the K-means algorithm [34]. The correla-
tions between clinical features and each cluster were evaluated using
the chi-square or Fisher's exact test.

To validate the robustness of our 95 probes in clustering HCC pa-
tients into different CIMP-related subtypes, the GSE56588 DNAmethyl-
ation profiles based on the Illumina HumanMethylation450 BeadChip,
including 224 HCC samples and 10 normal tissues, was downloaded
from the GEO database [35]. The method of cluster analysis in the
GSE56588 cohort was the same as in the TCGA cohort.

2.5. Gene set enrichment analysis (GSEA)

In order to evaluate the potential mechanism underlying the in-
volvement of CIMP in hepatocarcinogenesis, we performed GSEA analy-
sis (Version: 3.0; http://software.broadinstitute.org/gsea/index.jsp) to
identify the difference of the pathways and corresponding biomarkers
between HCC patients with distinct CIMP statuses in the TCGA cohort
[36]. The annotated gene set file (msigdb.v6.2.symbols.gmt) was
accepted for our analysis as the reference. The significance was also
based on the threshold of P b .05.
2.6. Differentially expressed gene (DEG) analysis

Analysis of differentially expressed genes among the three CIMP-
related subtypes in the TCGA HCC cohort was performed using the
DESeq2 R package [37]. We calculated the adjusted P-values of each
gene using False-discovery rate (FDR)method. An FDR of b0.05 and ab-
solute log2-fold change of N1 was set as the cut-off to detect DEGs.
2.7. Functional enrichment analysis

GeneOntology (GO) and Kyoto Encyclopedia of Genes andGenomes
(KEGG) analyses based on theCIMP-relatedDEGswere conductedusing
the clusterProfiler R package to evaluate the potential biological mecha-
nisms mediating CIMP-related hepatocarcinogenesis [38]. We visual-
ized significant biological pathways and processes using the GOplot R
package (Version: 1.0.2; https://cran.r-project.org/web/packages/
GOplot/index.html).
2.8. Construction and validation of a CIMP-related prognostic model

A total of 371 samples, including 109 CIMP-M, 185 CIMP-L and 77
CIMP-H patients, with both RNA-sequencing profiles and clinical pat-
terns were extracted for further analyses. We evaluated the prognostic
significance of 1179 DEGs based on the univariate Cox regression anal-
ysis, and thosewith P values b.05were selected for further analyses. Im-
portantly, the least absolute shrinkage and selection operator (LASSO)
with L1-penalty, awidespreadmachine learning algorithmadopting ex-
plicable prediction rules that can solve the collinearity problem by di-
mension reduction, was utilized in our study [39]. Based on the
prognostic CIMP-related DEGs, which were significant in the univariate
Cox regression analysis, key CIMP-related genes were extracted using
the LASSO algorithm. In this method, a sub-selection of CIMP-related
biomarkers involved in hepatocarcinogenesis was extracted by shrink-
ing the regression coefficient through using a penalty proportional to
their size. Finally, we retained a relatively small group of biomarkers
with nonzero regression coefficient. Conversely, the majority of the po-
tential biomarkers were eliminated, with zero regression coefficients.
Consequently, LASSO-penalized Cox regression analysis was performed
to further narrow the range of candidate CIMP-related prognostic bio-
markers. In our LASSO analysis performed using the glmnet R package
(version: 2.0-16; https://cran.r-project.org/web/packages/glmnet/
index.html), the dataset was sub-sampled 1000 times and the bio-
markers that were repeated N900 times were selected as CIMP-related
biomarkers. In the end, a CIMP-related prognostic signature was identi-
fied by extracting the regression coefficients from multivariate Cox re-
gression analysis, and the risk score of each patient was calculated by
multiplying the normalized expression level of each CIMP-related bio-
marker with its corresponding regression coefficients. The optimal
cut-off was determined using the surv_cutpoint function of the
survminer R package (Version: 0.4.3, https://cran.r-project.org/web/
packages/survminer/index.html) to separate the patients into high-
and low- risk subgroups. The OS and RFS rates of these subgroups
were compared using Kaplan–Meier analysis based on the log-rank
test. Multivariate Cox regression analyses were then implemented to
detect independent risk factors correlated with the OS and RFS. Hazard
ratios and corresponding 95% confidence intervals (95% CI) were also
calculated in both univariate and multivariate Cox regression analyses.
Finally, receiver operating characteristic (ROC) curve analyses were
conducted using the survivalROCRpackage to investigate the prognostic
performance of the model in four independent cohorts [40].
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2.9. qRT-PCR

Total RNA from 100 fresh-frozen HCC tissue samples was extracted
by TRIzol Reagent (Life Technologies, Carlsbad, CA, USA) and reverse
transcribed using the PrimeScript® RT reagent Kit (Takara Bio, Dalian,
China) according to the manufacturer's protocol. Further, quantitative
real-time PCR was performed using the CFX96 Touch™ Real-Time PCR
Detection System (Bio-Rad, Hercules, CA, USA) and the SYBR Green
Supermix kit (Takara Bio) according to the manufacturers' instructions.
The expression levels of each genes were analyzed using the 2-ΔCT

method with Homo sapiens GAPDH as the control housekeeping gene.
We normalized the expression of the four genes using the scale function
in R software, a generic function whose default method centered and
scaled the data. The primers used in this study are summarized in
Table S1.

2.10. 5-Aza-2′-deoxycytidine treatment

For methylation regulation analysis, HCC cell lines (LM3 and Huh7
cells) were split to low density (30% confluence) 12 h before treatment.
Cells were treated with 5-Aza-2′-deoxycytidine (DAC, Sigma, St. Louis,
MO, USA) at a concentration of 15 μM in the growth medium, which
was exchanged every 24 h for a total of 48 h and cultured at 37 °C in a
5% CO2 incubator. At the end of the treatment period, cells were pre-
pared for extraction of total RNA. The change of four genes expression
was identified by qRT-PCR analysis and each sample makes three
replicates.

2.11. Quantification of genome-wide DNA methylation

Genomic DNA from LM3 and Huh7 cells with or without 5-Aza-2′-
deoxycytidine treatment was extracted using a QIAamp DNA Mini Kit
(Qiagen, Germany) and each sample makes three replicates. Extracted
DNA 500 ng from each sample was treated with sodium bisulfite
using an EZ DNA Methylation-Gold Kit (Zymo Research, Irvine, CA).
Genome-wide DNA methylation of two HCC cell lines was quantified
in bisulfite-converted genomic DNA at single-base resolution using
the MethylationEPIC BeadChip (Illumina, San Diego, CA).

2.12. Single-sample gene set enrichment analysis (ssGSEA)

The tumor-infiltrating fraction of diverse immune cell subtypes was
calculated using ssGSEA in the gsva R package (Version 1.32.0, http://
www.bioconductor.org/packages/release/bioc/html/GSVA.html). The
ssGSEA transforms specific gene expression patterns into quantities of
immune cell populations in individual tumor samples [41]. The
deconvolution algorithm utilized in the present study could distinguish
24 immune cell subtypes, including natural killer (NK) cells involved in
innate immunity, as well as several B and T cell types involved in adap-
tive immunity. Kruskal-Wallis analysis was implemented to evaluate
the differences in the tumor-infiltrating fractions of 24 human immune
cell phenotypes between HCC patients with distinct CIMP statuses.

2.13. Construction and evaluation of the nomogram

The independent risk factors, identified by multivariate Cox regres-
sion analysis, were selected to construct a nomogram for the prediction
of the likelihood of OS. Additionally, calibration plots were drawn to in-
vestigate the performance of the nomogram. The concordance index (C-
index)was utilized to assess the consistency between the frequencies of
the actual outcomes and probabilities of the model prediction. The no-
mograms and calibration plots were produced using the rms R package
(Version 5.1-3.1, https://cran.r-project.org/web/packages/rms/). All sta-
tistical analyses were two-tailed, with a statistical significance level set
at 0.05.
3. Results

3.1. Identification of the CpG island methylator phenotype in HCC

Based on the DNA methylation profiles of 377 HCC and 50 normal
samples downloaded from TCGA, 95 most variable CpG sites
(Table S2), whichwere correlated with OS, were extracted for unsuper-
vised consensus clustering analysis. As a result, HCC patients were sep-
arated into three distinct groups (Fig. 1a). The methylation level of
CIMP-L was the lowest and the patients in the CIMP-H subgroup had
widespread hypermethylation among these variable CpG site. Further-
more, the robustness of these 95 most variable CpG sites was also
conformed in an independent GSE56588 cohort from GEO (Fig. S1).
Moreover, to compare the CIMP classification with previous four HCC
hypermethylation clusters, we assigned each of HCC patients to one of
the four DNA methylation-based subclasses from The Cancer Genome
Atlas Research Network [42]. We found correspondence between the
CIMP subtype and TCGA hypermethylation clusters. TCGA Cluster 1
and 2, presented degraded hypomethylation, consisted predominantly
of CIMP-L patients, whereas TCGA Cluster 3, exhibited elevated hyper-
methylation, consisted predominantly of CIMP-H patients (Fig. S2).

To investigate whether the CIMP status was associated with OS, sur-
vival analysis was performed using the Kaplan-Meier method, and the
P-value calculated using the log-rank analysis was approximately
0.0005, which indicated that there were highly significant differences in
OS among the subtypes with different CIMP status (Fig. 1b). In addition,
the relationship between CIMP status and relapse free survival (RFS)
was also investigated, and the result indicated that significant differences
(P= .0057) in RFS also existed among the subtypes with different CIMP
status (Fig. 1c). In conclusion, the patients in the CIMP-H subgroup had
theworstOSandRFS,while theCIMP-L subgrouphad thebestOSandRFS.

The associations between CIMP and clinical characteristics were also
investigated. The demographic and clinicopathological characteristics of
HCC patients in TCGA cohort are summarized in Table 1. There were no
statistically significant differences in the majority of indices, with the
exception of age, AFP level and HCV, HBV infection. There were signifi-
cantly more patients with higher level of serum AFP (P = .003) in the
CIMP-H subgroup. Conversely, significantly fewer patients in the
CIMP-L subgroup were infected with HCV (P= .048) and this subgroup
had a significantly lower age (P b .001).

3.2. Potential mechanism underlying the role of CIMP in
hepatocarcinogenesis

GSEA analysis of HCC patients with different CIMP status based on
the RNA-seq profiles was performed to evaluate the potential biological
mechanism bywhich CIMP influences hepatocarcinogenesis and the re-
sults indicated that the gene signatures of “Recurrent liver cancer up”,
“Liver cancer survival down”, “Liver cancer with EPCAM up”, “Tumor in-
vasiveness up”, “Methyltransferase complex”, and “Translational initia-
tion”were enriched in patientswith CIMP-H status (Fig. 2). Importantly,
the negative relationships between CIMP and prognosis were also con-
firmed in the GSEA analysis, which were consistent with the results ob-
tained from the TCGA cohort. In addition, it can be concluded that the
signatures involved in the aforementioned biological process play an
important role in the role of CIMP in hepatocarcinogenesis. In conjunc-
tion with the association between the expression of EPCAM and CIMP
[43], these facts strongly indicate the potential role of CIMP as a tumor
activator in hepatocarcinogenesis, and HCC in different CIMP subtypes
originated in precursor cells might have a different epigenetic back-
ground of the cell of origin.

3.3. The landscape of tumor-infiltrating immune cells in patients with dif-
ferent CIMP status

The ssGSEA function in gsva R package was used in combination
with a signature matrix of 24 immune cell types to calculate the

http://www.bioconductor.org/packages/release/bioc/html/GSVA.html
http://www.bioconductor.org/packages/release/bioc/html/GSVA.html
https://cran.r-project.org/web/packages/rms/


Fig. 1. TheDNAmethylation landscape of hepatocellular carcinoma. (a) Threemethylation clusterswere generated via k-means consensus clustering. The rows represent 95 CpGs that had
high variation (SD N 0.2) in tumor tissues and lowmethylation levels (β value b0.05) in normal tissues. CIMP-H (red) presented a hypermethylation pattern in nearly all CpG sites andwas
regarded as the CpG island methylator phenotype. (b-c) Kaplan-Meier survival curves of each subtypes. The CIMP-H subgroup had a worse OS (b) and RFS (c) than the other groups.
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differences in the proportions of different infiltrating immune cells
among patients with different CIMP status. The resulting heatmap sum-
marizes the tumor-infiltrating immune-cells landscape of 371 HCC pa-
tients in the TCGA cohort (Fig. S3b). However, there were no
statistically significant differences in the majority of immune-cell sub-
types. In addition, the correlations among the tumor-infiltrating im-
mune cell types were only weak or moderate (Fig. S3c). Nevertheless,
the CIMP-H subgroup had significantly lower proportions of cytotoxic
cells, dendritic cells, interdigitating cells, macrophages, neutrophils,
gamma delta T cell (Tgd), and type 1 T. helper cell (Th1) cells than the
other groups (P b .05, Figs. 3 and S3a). These results indicated that com-
paredwith its counterparts, patients in CIMP-H subgrouphave a distinct
immune phenotype, characterized by less immune infiltration, lower
cytotoxic potential and immune activation. Since the T-cell immune
response in antitumor immunity is the central event, effective immuno-
therapy of immune checkpoint inhibitors depends on the generation of
neoantigen-specific T-cells and its penetration into the tumor
microenvrironment. Consequently, immunotherapies are more likely
to be less efficacious in CIMP-H phenotype with less immune infiltra-
tion, lower cytotoxic potential and immune activation.

3.4. Analysis of mutations and CNVs in patients with distinct CIMP statuses

In previous studies, the precise landscape of the driver gene muta-
tions of HCC was illustrated based onwhole genomic profiles [42], Con-
sequently, the correlation of CIMP with multiple omics mutational
profiles was investigated in present study. There was no significant dif-
ference of tumor mutational burden (TMB), an emerging biomarker of



Table 1
Demographic and clinical characteristics of HCC patients from the TCGA cohort in different
CIMP-related subgroups.

CIMP-M CIMP-L CIMP-H P-value

Number of patients 112 188 77
Age (mean (sd)) 62.06 (11.18) 56.68 (14.46) 62.47 (12.92) b.001
AFP (median [IQR]) 14.00 [4.75,

136.00]
11.00 [3.00,
126.00]

43.00 [7.50,
2599.00]

.003

Pathologic_M (%) .642
M0 79 (70.5) 138 (73.4) 55 (71.4)
M1 1 (0.9) 1 (0.5) 2 (2.6)
MX 32 (28.6) 49 (26.1) 20 (26.0)

Pathologic_N (%) .691
N0 73 (65.2) 129 (69.0) 55 (71.4)
N1 1 (0.9) 3 (1.6) 0 (0.0)
NX 38 (33.9) 55 (29.4) 22 (28.6)

Pathologic_Stage (%) .675
Stage I 54 (50.5) 90 (51.4) 31 (43.7)
Stage II 29 (27.1) 42 (24.0) 16 (22.5)
Stage III 23 (21.5) 41 (23.4) 22 (31.0)
Stage IV 1 (0.9) 2 (1.1) 2 (2.8)

Pathologic_T (%) .86
T1 57 (50.9) 95 (50.8) 33 (43.4)
T2 30 (26.8) 46 (24.6) 19 (25.0)
T3 21 (18.8) 39 (20.9) 21 (27.6)
T4 4 (3.6) 7 (3.7) 3 (3.9)

Family_History (Yes
%)

36 (36.7) 56 (33.3) 22 (36.7) .815

Pathologic_Grade (%) .712
G1 17 (15.3) 31 (16.6) 7 (9.5)
G2 53 (47.7) 93 (49.7) 34 (45.9)
G3 37 (33.3) 57 (30.5) 30 (40.5)
G4 4 (3.6) 6 (3.2) 3 (4.1)

Race (%) .488
ASIAN 47 (43.5) 85 (46.4) 29 (38.2)
Other 3 (2.8) 11 (6.0) 5 (6.6)
WHITE 58 (53.7) 87 (47.5) 42 (55.3)

Vascular_Invasion (%) .542
Macro 6 (6.6) 6 (3.7) 5 (7.4)
Micro 22 (24.2) 51 (31.5) 21 (30.9)
None 63 (69.2) 105 (64.8) 42 (61.8)

Gender (Male %) 82 (73.2) 129 (68.6) 44 (57.1) .062
NAFLD (Yes %) 8 (7.3) 9 (5.0) 3 (4.3) .617
HBV = (Yes %) 18 (25.7) 56 (31.3) 33 (30.3) .685
HCV (Yes %) 20 (18.3) 20 (11.2) 16 (22.9) .048
Alcohol_consumption
(Yes %)

33 (30.3) 65 (36.3) 20 (28.6) .391

BMI (Low %) 68 (68.0) 129 (75.9) 49 (69.0) .304
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immunotherapy responses, among the patients in the different CIMP-
related subgroups (Fig. S4). However, patients in the CIMP-H group
had significantly higher somatic mutation burdens in DDIAS and NOX1
(Fig. 4a), which have been shown to play an important role in the carci-
nogenesis of multiple tumors [44–47]. At the same time, somatic muta-
tions in BRD4 (Fig. 4a), which is considered a key oncogene and
promising therapeutic target, were also significantly enriched in the
CIMP-H subtype [48,49].

Furthermore, differences in somatic copy number alternations be-
tween patients with different CIMP statuses were evaluated using
GISTIC 2.0 and a total of 158 geneswerewithin the chromosome regions
with copy number significantly amplified or deleted in CIMP-H sub-
group (Table S3). As illustrated, amplifications on chromosomes 2 ac-
companied with a deletion on chromosome 9 were enriched in the
CIMP-H subgroup. Focal amplification peaks, including well-studied
drivers such as CRIM1 (2p22), NBAS (2p24) were identified in the pa-
tients with CIMP-H, along with a focal deletion peak at 9p21.3
(C9orf53) (Fig. 4b).

3.5. Construction of a CIMP-based prognostic model

To identify differentially expressed genes between HCC patients
with different CIMP statuses, differential expression analysis was con-
ducted by using the DEseq2 R package [37], which revealed and 1180
differentially expression expressed genes were identified with FDR
values of b0.05 and the absolute log2-fold changes of N1. Then, trans-
regulation analysis, which was defined as the correlation of one gene's
methylation and another gene's expression, was performed based on
differentially expressed genes and differentially methylated CpG sites
among different CIMP subtypes, according to previous study [50]. As a
result, numerous differentially expressed genes were predominantly
trans-regulated by differentially methylated CpGs (Fig. S5). By
performing univariate Cox regression analysis, 137 differentially
expressed genes were identified to be significantly correlated with OS
(Table S4). To obtain the genes with the greatest potential prognostic
values, LASSO regression analysis was performed, and the four genes
PLEKHB1, ESR1, SLCO2A1, and GNA14 were finally selected. In addition,
we have analyzed the correlation between the expression level of four
genes and methylation levels of corresponding CpG sites, and found
that the expression of GNA14 were significantly negatively correlated
with the methylation level of most CpG sites mapped to it and the
other three genes showed significant positive correlation (Fig. S6) [51].
Upon treatment with 5-Aza-2-deoxycytidine, re-expression of PLEKHB1,
ESR1, SLCO2A1 and GNA14 was found and 39 of 95 most variable CpG
sites presented elevated DNA methylation in LM3 and Huh7 cells. It is
generally believed that distal regulatory DNAmethylation can also affect
dysregulation of cancer genes by influencing transcription factor regula-
tory networks. The results indicated that 39 of 95most variable CpG sites,
especially 7 CpG sites with the most change of methylation, might affect
the expressions of PLEKHB1, ESR1, SLCO2A1, and GNA14 (Tables S5 and
S6). Our studies also suggested that the expression of four genes could
be regulated by specific DNA methylation in HCC cells (Fig. S7). Then,
we normalized the expression of these four major marker genes using
scale, a generic R function whose default method centered and scaled
the data. The regression coefficient of each gene was calculated using
multivariate Cox regression. Finally, the CPM (risk score = 0.16 × nor-
malized expression level of PLEKHB1–0.08 × normalized expression
level of ESR1–0.13×normalized expression level of SLCO2A1–0.21×nor-
malized expression level of GNA14) was constructed as the predictive
prognostic model. The optimal cutoff point (0.23) was calculated using
the surv_cutpoint function from the survminerRpackage, and thepatients
in the TCGA cohort were categorized into high and low-risk subgroups.
As illustrated in Fig. 5a, the patients in the high-risk subgroup had a
worse OS than their low-risk counterparts (HR, 2.77; 95% CI, 1.89–4.05;
P b .001). In addition, survival plots for the CPM in different CIMP sub-
groups were drawn and the results indicated that the CPMwas also sig-
nificantly associated with OS in CIMP-L, CIMP-M, and CIMP-H
subgroups (Fig. S8). Furthermore, we also investigated the performance
of the CPM in predicting RFS, and the result indicated that it could also
distinguish high-risk from low-risk patients (HR, 1.87; 95% CI,
1.36–2.59; P b .001, Fig. 5b). The predictive performance of the CPM
was evaluated using time-dependent ROC curves, and the area under
the ROC curve (AUC) for OS was 0.756 at 0.5 years, 0.723 at 1 year,
0.716 at 2 years and 0.702 at 3 years (Fig. 5c). Finally, the results of uni-
and multivariate Cox regression analyses indicated that the predictive
performance of CPM for OS is independent of CIMP status (Fig. 5d).

3.6. Validation and evaluation the CPM in the GEO, ICGC, and Tongji cohorts

In order to evaluate the robustness of the CPM constructed using
data from the TCGA cohort, its performance was also assessed using
the GEO, ICGC, and Tongji cohorts, respectively including 216, 197,
and 100 HCC patients. The patients in the different cohort were catego-
rized into a high- and low-risk groups using the same risk formula and
cutoff obtained using the TCGA cohort. Consistent with the results gen-
erated obtained for the TCGA cohort, patients in the high-risk group had
worseOS than those assigned to the low-risk group (GEO:HR: 2.95; 95%
CI: 1.90–4.58; P b .001; ICGC: HR: 6.27; 95% CI: 2.95–13.33, P b .001;
Tongji: HR: 3.42; 95% CI: 1.80–6.54, P b .001Fig. 6a). In addition, the
CPM reached an AUC of 0.710 at 0.5 years, 0.692 at 1 year, 0.672 at



Fig. 2. Gene set enrichment analysis of CIMP status in the TCGA dataset. (a-f) Significant enrichment in CIMP-H compared with the other groups in HCC.

Fig. 3. The significant differences in the abundance of tumor-infiltrating immune cells between CIMP-H and the other groups in HCC.
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Fig. 4. Association between CIMP and mutational signatures and CNV in HCC. (a) Significantly mutated genes in the HCC subsets stratified by CIMP status. (b) Composite copy number
profiles of CIMP-H compared with the other HCC groups with gains shown in red and losses in blue.
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2 years, and 0.658 at 3 years in the GEO cohort, as well as an AUC of
0.870 at 0.5 years, 0.807 at 1 year, 0.799 at 2 years, and 0.845 at
3 years in the ICGC cohort, and an AUC of 0.705 at 0.5 years, 0.726 at
1 year, 0.730 at 2 years, and 0.738 at 3 years in the Tongji cohort
(Fig. 6b). These results demonstrate the robust performance of the
CPM in the distinct cohorts.

Next, CPM was compared with HCC-related prognostic biomarkers
published in the literature [52–58]. The formulae were extracted from
each publication, and the results of comparative time-dependent ROC
curve analysis indicated that the CPMas best at predicting the prognosis
in the ICGC or TCGA cohort (Figs. 7 and S9). Therefore, our results indi-
cate that CPM is relatively robust across distinct molecular levels, plat-
forms and datasets.

3.7. Altered biological processes and pathways in high- and low-risk
subgroups

We performed GO and KEGG analysis to investigate the biological
mechanisms revealed by CPM. Gene, highly associated with risk scores
(absolute Pearson correlation coefficient N 0.5 and P b .05) were
regarded as risk score-related biomarkers. Genes correlated with the
risk score in the TCGA cohort were significantly enriched in the “protein
targeting to membrane”, “ribonucleoprotein complex biogenesis”, “nu-
clear transcribedmRNA catabolic process”, “regulation of ubiquitin pro-
tein ligase activity”, “positive regulation of PI3K signaling”, “condensed
chromosome”, and “structural constituent of ribosome” terms based
on GO analysis, as well as “Ribosome tryptophan metabolism”, “Valine,
leucine and isoleucine degradation”, “beta Alanine metabolism”, and
“Propanoate metabolism” according to KEGG analysis (Fig. 8a, b).

3.8. The CPM is independent of frequently used clinical characteristics

Univariate and multivariate Cox regression analyses were per-
formed to investigate whether CPMwas an independent predictive fac-
tor for the prognosis of HCC patients from the TCGA cohort. The results
of the adjustment for conventional clinical patterns, including gender,
diagnostic age, pathologic TNM, pathologic grade, pathologic stage, vas-
cular invasion, and serum AFP level, indicated that CPM also acted as an
independent prognostic factor, which confirmed its robust predictive
ability for the OS of HCC patients (OS: HR, 2.82; 95% CI:, 1.85–4.32; P b

.001, Fig. 9a). Furthermore, theC-index between CPMand common clin-
ical patterns, including 15 prognosis-predictive factors, were compared.
The results showed that CPM had the highest C-index (0.68, Table S7).
Finally, CPM was also found to act as an independent prognostic factor
for predicting the RFS in the TCGA cohort (HR, 1.61; 95% CI:,
1.08–2.40; P = .019, Fig. 9b). In conclusion, the results demonstrated
that CPM possesses an optimal predictive ability for prognosis indepen-
dent of common clinical patterns.

3.9. Establishment of a nomogram based on the CPM

In order to establish a quantitative approach for HCC prognosis,
whichmight contribute to the clinical decision-making of practitioners,
we integrated the CPM and independent clinical risk factors (CIMP type
and Pathologic M) to construct a nomogram (Fig. 10a). On the basis of
multivariate Cox analysis, a point scale of the nomogram was utilized
to dispense points to respective variables.We drew a horizontal straight
line to ascertain the points for each variable, and the total points of each
patient were calculated by adding the points of all variables together,
which were normalized to a distribution from 0 to 100. The estimated
survival rates at 1, 3, and 5 years of HCC patients were calculated by
drawing a vertical line between the total point coordinate axis and
each prognostic coordinate axis. The results of the nomogram indicated
that CPM had the greatest weight among the total points, consistent
with the previous multivariate regression analysis. The C-index of our
nomogram reached 0.71 with 1000 bootstrap iterations (95% CI:
0.68–0.74). The results of the calibration plots indicated that there
was good consistency between the predicted and the actually observed
outcomes (Fig. 10b). The predictive performance of our nomogramwas
also compared with that of CPM, CIMP type and Pathologic M, and the
results indicated that the nomogram performance was better than
that of CPM (C-index: 0.68), CIMP type (C-index: 0.59) and Pathologic
M (C-index: 0.51). Consequently, our results suggest that the nomo-
gram is an optimal model for the prediction of HCC prognosis compar-
ing with individual risk factors.

4. Discussion

As changeable and possibly heritable genetic alterations, epigenetic
mechanisms offer promising clues for the treatment of various diseases,
including many cancers [59]. The results of previous studies indicated
that a number of epigenome-targeting therapies in hematological ma-
lignancies seem to be advantageous and safe [60]. While investigations
in solid malignancies had several limitations, painstaking explorations
of epigenetic targeting therapies, including clinical trials, are
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nevertheless under way [61,62]. To our best knowledge, there are no
registered clinical trials of targeted drugs for CIMP-H subtypes in HCC.

DNMT inhibitors, such as 5-azacytidine, can result in dose-
dependent global demethylation through the degradation of DNA
methyltransferases, which can restore the expression of aberrantly
methylated oncogenesis-related genes. In addition, the results of previ-
ous studies indicated that DNMT inhibitors can contribute to the rever-
sion of neoplastic immune evasion by activating important defense
pathways. For instance, in a HepG2 xenograft model of HCC,
guadecitabine, a second-generation demethylating agent, can inhibit
the growth of HCC cells by restoring the DNA methylation levels of
carcinogenesis-related genes, which might act as a promising therapy
in advanced HCC [63]. Although drugs aimed at epigenetic targets
showed promising results in previous studies, a related clinical investi-
gation utilizing guadecitabine against HCC has not been registered to
date. Taking the potential unfavorable influence of reversion of DNA
methylation in hepatocarcinogenesis into account, which was reported
in previous studies [64], it was reasonable to consider the CIMP-H sub-
types in when designing clinical trials.

CIMP is characterized by simultaneous and general hypermethyla-
tion of specific CpG sites, which plays a vital role in chromosomal insta-
bility in diverse cancer subtypes [14,15,65]. However, the potential
mechanism by which CIMP impacts hepatocacinogenesis are still only
partially understood. Furthermore, it is necessary to construct potential
CIMP-related prognosticmodels to categorize patients, whichwould in-
crease the effectiveness of epigenetic therapy. To our best knowledge,
this is the first attempt to investigate the potential mechanism linking
CIMP with HCC. In agreement with previous studies, we found that
CIMP is significant associated with worse OS and RFS in HCC, and the
CIMP-H group tended to have relative higher serum AFP level
[19,50,66]. Based on the gene set enrichment analysis between CIMP-
H and the other groups, we identified that the CIMP-H subtype was
enriched with biomarkers associated with the terms in “Recurrent
liver cancer up”, “Liver cancer survival down”, “Liver cancer with
EPCAM up”, “Tumor invasiveness up”, “methyltransferase complex”,
and “Translational initiation”. It could be speculated that CIMP-related
biomarkers might play a vital role in hepatocarcinogenesis through
the aforementioned biological process. In view of the correlation be-
tween the expression of EPCAM and CIMP in colorectal carcinoma [43],
our results predominantly indicate that the CIMP might act as a tumor
promoter in hepatocarcinogenesis by inducing the formation of the
methyltransferase complex to translationally regulate corresponding
genes, and HCC in different CIMP subtypes originated in precursor
cells might have a different epigenetic background of the cell of origin.

In addition, the landscape of tumor-infiltrating immune cells among
patients with different CIMP statuses was also investigated in our study,
and the results indicated that there are no statistically significant differ-
ences in the abundance of themajority of immune cell subtypes. Never-
theless, the CIMP-H subgroup presented with significantly less
proportions of cytotoxic cells, dendritic cell, interdigitating cell, macro-
phages, neutrophils, Tgd, and Th1 cells than the other groups, which in-
dicated that immunotherapies are more likely to be less efficacious in
CIMP-H phenotype with less immune infiltration, lower cytotoxic po-
tential and immune activation.

Based on the mutation analysis, the patients in CIMP-H had signifi-
cantly higher somatic mutation burdens in the DDIAS, NOX1, and
BRD4. DDIAS, a DNA damage-induced apoptosis suppressor, can exert
an anti-apoptotic activitywhenDNA damage occurs, and has been iden-
tified as a promising therapeutic target in HCC [44]. NOX1 (NADPH oxi-
dase 1), was found to be able to increase the stemness of CD133+
Fig. 5. Prognostic analysis of the CPM in the TCGA cohort. (a, b) Based on theKaplan-Meier
survival analysis, OS (a) and RFS (b) was significantly higher in the low-risk score group
than the other groups. (c) Time-dependent receiver operating characteristic analysis
was utilized to evaluate the predictive performance of the CPM. (d) Univariate and
multivariate regression analysis of the correlation between the CPM and CIMP status
regarding the prognostic value.



Fig. 6. Prognostic analysis of the CPM in three independent cohorts. (a) Based on the Kaplan-Meier survival analysis, OS was significantly higher in the low-risk score group than in the
other groups from the GSE14520, ICGC, and Tongji cohorts. (b) Time-dependent receiver operating characteristic analysis was performed to compare the performance of CPM in the
GSE14520, ICGC, and Tongji cohorts.
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thyroid cancer cells by activating the Akt signaling pathway [47]. BRD4
(bromodomain containing 4) may act as an epigenetic reader and tran-
scriptional coactivator to participate in carcinogenesis [48]. To date, a
few selective small-molecule inhibitors, including JQ1 and I-BET762,
have already been developed to target BRD4, and studies indicated
that they may have anti-proliferative activity in various tumors [67].
Our study sheds new light on the potential mechanisms by which a
Fig. 7. ROC curves showing the sensitivity and specificity of the CPM and other known b
high mutation burden in DDIAS, NOX1, and BRD4 in the CIMP-H sub-
group might contribute to hepatocarcinogenesis by reducing cancer
cell apoptosis, as well as the regulation of stemness and epigenomic
signals.

Next, a CIMP-based prognostic model (CPM) was developed based
on 4 genes, and trained using the TCGA cohort. It was able to screen
out the HCC patients with poor prognosis. The robustness of CPM was
iomarkers reported in previous studies in the prediction of OS for the ICGC cohort.



Fig. 8. Circular plot of the biological processes (a) and KEGG pathways (b) enriched for the risk score associated genes.
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validated in three independent cohorts. These results might contribute
to a potential therapeutic strategy involving epigenetic regulation to
improve the prognosis of HCC patients. The four genes used in CPM,
PLEKHB1, ESR1, SLCO2A1, and GNA14, might act as individual targets,
and it is definitely possible to combine these four targets could produce
a more effective therapeutic approach.. However, the potential mecha-
nisms by which these four genes contribute hepatocarcinogenesis
remain poorly understood, and further evaluation of potential mecha-
nisms may be worthwhile. In addition, our results indicate that the
CPM could act as an independent prognostic factor after adjusting con-
ventional clinical characteristics. It seemed that CPM might potentially
have predictive power than traditional prognostic patterns. Subse-
quently, a comprehensive evaluation combining CPMwith other impor-
tant clinical patterns (CIMP status and pathologic M) was performed.
Based on the calibration plot, there was a favorable consistency be-
tween the actual and predicted values for 1-, 2-, and 3-year OS. Our
model was constructed based on the complementary perspective for
respective tumors, and provides a personalized score for individual pa-
tients. Consequently, our nomogram could be a valuable newprognostic
method for clinicians in the future.

There are a number of strengths in our study. Firstly, our robust CPM
was based on four independent cohorts, which validated our prognostic
signature sufficiently. Secondly, the CIMP-related biomarkers of CPM
Fig. 9. Univariate and multivariate regression analysis of the relation between the CPM an
showed a significant biological background, which indicates that they
can be potentially applied in clinical adjuvant therapies, which was
not necessarily the case with previous studies. Thirdly, CPM showed a
more robust predictive performance than conventional clinical prog-
nostic features and other signatures reported in the literature.

Although our study sheds new light on the epigenomic microenvi-
ronment and possible CIMP-related therapies, it still has some
limitations. Firstly, our studieswas based on single-omics (DNAmethyl-
ation), so that patientswith same CIMP phenotypemight possess differ-
ent heterogeneity because of different characteristics in terms of other
omics data platforms. Secondly, our attempts was based on a retrospec-
tive design, and prospective studies should be conducted to validate
our results. Furthermore, the biological functions and molecular
mechanisms of the four indicator genes alone and in combination
should be evaluated to accelerate their clinical application in HCC.
Thirdly, the rate of lacking data for some clinical features was rela-
tively high, which might reduce the statistical reliability and validity
of multivariable Cox regression analysis. Fourthly, it was reported
that the quantitative signatures would be unsuitable for direct appli-
cation to individual samples because their application needed pre-
collecting a set of samples for normalization [68,69], the prognostic
signature based on quantitative method of genes should be identified
in the future.
d clinicopathological characteristics regarding OS (a) and RFS (b) in the TCGA cohort.



Fig. 10. Integration of CPM and clinical characteristics (a) Nomogram constructed to predict the 1-, 3-, and 5-year OS in the TCGA cohort. (b) Calibration curve of the nomogram for
predicting the probability of OS at 1, 2, and 3 years.
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5. Conclusion

The CIMP-related prognostic model based on four genes was con-
structed and validated. Itwas found to act as an independent prognostic
factor for HCC and reflects the overall epigenetic alterations in the
whole genome. To our best knowledge, this is the first report of a prog-
nostic model incorporating CIMP status and it could be utilized as a ref-
erence to understand the relevance of CIMP in other malignancies.
Notably, the CPM provides epigenetic insights into the main mecha-
nisms that potentially influence the prognosis of HCC. Finally, it is ur-
gent to design prospective clinical trials for further validation of its
prognostic performance and evaluation of its clinical applicability in
personalized management of HCC.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2019.08.064.
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