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Spectral mapping of brain 
functional connectivity from 
diffusion imaging
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Danielle S. Bassett   1,4 & Victor M. Preciado1

Understanding the relationship between the dynamics of neural processes and the anatomical 
substrate of the brain is a central question in neuroscience. On the one hand, modern neuroimaging 
technologies, such as diffusion tensor imaging, can be used to construct structural graphs representing 
the architecture of white matter streamlines linking cortical and subcortical structures. On the other 
hand, temporal patterns of neural activity can be used to construct functional graphs representing 
temporal correlations between brain regions. Although some studies provide evidence that whole-
brain functional connectivity is shaped by the underlying anatomy, the observed relationship between 
function and structure is weak, and the rules by which anatomy constrains brain dynamics remain 
elusive. In this article, we introduce a methodology to map the functional connectivity of a subject at 
rest from his or her structural graph. Using our methodology, we are able to systematically account for 
the role of structural walks in the formation of functional correlations. Furthermore, in our empirical 
evaluations, we observe that the eigenmodes of the mapped functional connectivity are associated 
with activity patterns associated with different cognitive systems.

Understanding the relationship between the dynamics of neural processes and the anatomical substrate of the 
brain is a central question in neuroscientific research1. Modern neuroimaging technologies, such as diffusion 
imaging2,3, allow researchers to track white matter streamlines linking cortical and subcortical structures. This 
information can be conveniently represented in terms of a structural graph representing direct anatomical con-
nections4,5, between distinct brain regions. Complementary information can be acquired with functional neuro-
imaging techniques such as functional magnetic resonance imaging (fMRI)6,7, which measures time-dependent 
neural activity in the form of blood-oxygenation-level-dependent (BOLD) signals8. Temporal correlations 
between BOLD signals (averaged over representative brain parcels) can then be used to build a functional con-
nectivity matrix, which unveils patterns of global coordination among various brain regions9. Prior studies offer 
preliminary evidence that whole-brain functional connectivity is shaped by the structural graph of anatomical 
connections10,11, yet the extent of this relationship in the human brain is not well understood.

An interesting problem in this context is understanding how functional connectivity emerges from the struc-
tural brain graph. This is a challenging problem for several reasons. First, the activity of brain regions that are 
not directly connected by structural links can be strongly correlated due to indirect structural walks along which 
signals propagate12. Second, the propagation of these signals is influenced, in a nontrivial manner, by the length 
and number of white matter streamlines in these walks9. Furthermore, it is unclear how signals propagating over 
different structural walks interfere or interact with each other to induce a global pattern of temporal correla-
tions. Several studies have attempted to overcome these difficulties by mapping the functional connectivity of 
the human brain from the structural graph of anatomical connections. These approaches can be classified in the 
following major groups: (i) those performing a direct statistical comparison between the structural graph and 
the functional connectivity9,10,13,14, (ii) those based on numerical simulations of brain activity and connectiv-
ity15–18, (iii) operator-based propagator formulations of neural dynamics19,20, (iv) approximation of a nonlinear 
mapping between structural and functional connectivity using Taylor’s approximation theory21; and (v) those 
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using graph-theoretical properties of the structural graph as mappings of functional connectivity12,22. While these 
studies have made important progress, it remains challenging to accurately map an individual’s functional con-
nectivity from their structural brain graph.

In this article, we introduce a methodology based on spectral graph theory23 to map functional connectivity 
in the resting state (i.e., when a subject is at rest) from the structural graph using a versatile nonlinear mapping. 
Furthermore, using our methodology, we are able to systematically account for the role of indirect structural 
walks in the generation of functional correlations.

In what follows, we describe this methodology and illustrate its performance on neuroimaging data from the 
Human Connectome Project (HCP)24, using state-of-the-art acquisition and pre-processing methodologies. In 
our evaluations, we use structural graphs and functional matrices obtained from 44 different subjects measured 
non-invasively while at rest. In both cases, each node represents an anatomically defined parcel or brain region 
defined according to the Glasser25 multimodal parcellation atlas, which includes 360 cortical regions of interest. 
Using diffusion weighted imaging (DWI) and probabilistic tractography, we build the edges of the structural 
graph using the normalized number of streamlines connecting brain regions. The topology of the structural graph 
can be conveniently represented as an adjacency matrix26, denoted by S, where rows and columns are indexed by 
brain parcels, with entries being a function of the total number of streamlines between each pair of brain parcels. 
On the other hand, the functional connectivity matrix is computed using functional magnetic resonance imaging 
(fMRI) of blood-oxygenation-level-dependent (BOLD) time signals8. For each brain region, we extract a repre-
sentative time series using the frequency-filtered average BOLD signal9 across the region. An entry [F]ij in the 
functional connectivity matrix F is the Pearson’s correlation coefficient between signals extracted from regions i 
and j.

Using tools from spectral graph theory23, we propose a technique to map the functional connectivity matrix F 
of a subject at rest from his/her structural adjacency matrix S. Our mapping is comprised of two stages. In the first 
stage, we compute a weighted combination of the powers of the structural adjacency matrix S (see Fig. 1). As we 
discuss in the Materials and Methods section, the l-th power of S accounts for structural walks of length l con-
necting different brain regions. In practice, we truncate this weighted sum of powers at a particular value k, which 
represents the maximum length of the structural walks taken into account in the functional mapping. In the 
second stage of our mapping process, we perform a change of coordinates aiming to align the eigenmodes of the 
structural matrix S, which describe the spatial distribution of white matter streamlines, with the eigenmodes of 
the functional connectivity matrix F, whose values capture patterns of functional activity in different regions of 
the brain. Therefore, each functional eigenvector can be described as a weighted combination of the structural 
eigenvectors (see Materials and Methods section for further details). As a result, we obtain a functional mapping 
F̂ whose entries are a nonlinear combination of measurements related to structural walks of lengths up to k, and 
overall distribution of the white matter streamlines crisscrossing the brain.

We compute the parameters of this two-stage functional mapping by solving an optimization problem aiming 
to maximize the quality of the functional mapping F̂. In our experimental evaluations, we measure the functional 
mapping quality using the Pearson correlation between the entries of the mapped functional matrix F̂ and those 
of the actual functional matrix F (see the Materials and Methods section). Hereafter, we refer to this optimization 
problem as the spectral mapping problem. In this paper, we study two different types of spectral mapping problems 
(represented in Fig. 2). First, we consider the problem of finding a ‘personalized’ functional mapping for each 
subject. We refer to this problem as the individual spectral mapping problem. Second, we consider the problem of 
finding common functional eigenmodes across the different subjects. Simply speaking, in the individual spectral 
mapping problem we aimed to determine structural to functional dependencies specific to a subject, whereas now 
we seek common resting state functional patterns among the subjects. We refer to this problem as the group spec-
tral mapping problem. In what follows, we solve both spectral problems and illustrate the performance of our 
approach on two different neuroimaging datasets.

Figure 1.  Approach schematic. The entry (i, j)-th entry of the functional connectivity matrix F, denoted by [F]ij, 
represents the correlation between the BOLD time signal components measured from two brain parcels 
corresponding to nodes i and i in the functional graph. The (i, j)-th entry of the l-th power of the structural 
matrix S, denoted by S[ ]l ij, accounts for walks of length l connecting nodes i and j in the structural graph. In the 
figure above, several walks of different lengths connecting nodes i and j are indicated by blue arrows. We 
propose to reconstruct the functional connectivity matrix F using a weighted sum of powers of the structural 
matrix, denoted by + … +a S a Sk

k
0

0 , as well as a change of coordinates (described by the rotation matrix R) 
aiming to align the eigenmodes of the mapped functional matrix F̂ with those of F.
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Materials and Methods
Subjects.  A total of 44 individuals were randomly selected from the HCP 1200 release24. According to the 
coordinating institution, subject recruitment procedures and informed consent forms, including consent to share 
de-identified data, were approved by the Washington University institutional review board. The participants gave 
written consent, and the relevant procedures were carried out in accordance with the institutional review board 
approval and procedures, in accordance with relevant guidelines and regulations.

Connectivity matrices.  The connectivity matrices considered in our experiments are built using neuro-
imaging data from the HCP dataset24, whose acquisition protocols and pre-processing pipelines have been fully 
described27 and extensively discussed in dedicated literature28. The structural matrices were constructed by apply-
ing probabilistic tracking29 with crossing fibers using the probtrackx tool from FSL30, using the pre-processed 
estimated diffusion parameters included in the HCP 1200 release, which were generated by FSL’s bedpostx. The 
number of streamlines between regions was used as a metric of structural connectivity strength. Each region 
in the structural graph corresponds to a localized brain area in the Glasser-360 parcellation25. The matrices 
were symmetrized by averaging entries resulting from tracking in reciprocal directions, and were normalized 
by dividing all entries by the overall maximum weight. Functional MRI data considered resting state sessions, 
whose runs of approximately 15 minutes comprised 1200 samples acquired with a 3 T Gradient-echo EPI and 
TR = 720 ms. Cardiac signals were measured by a pulse oximeter, sampled at 400 Hz and synchronized with the 
scanner. Respiratory signals were measured by an elastic respiratory belt transducer, also sampled at 400 Hz, i.e. 
288 samples per frame of functional image. As a post-processing step on the fMRI time series, both cardiac and 
respiratory down-sampled signals were regressed out of time series data through linear regression. Functional 
connectivity matrices were built as follows. For each brain region in the Glasser-360, we extracted a representa-
tive time-series using the bandpass (0.06–0.125 Hz) filtered time components of the average BOLD signal in each 
region. The (i, j)-th entry of the functional connectivity matrix is given by the Pearson’s correlation coefficients 
between the representative time-series of regions i and j. We adopt a methodology that considers two partitions of 

Figure 2.  Spectral mapping method. In the individual spectral mapping problem (a–d), we map the functional 
connectivity matrix Fj of an individual j at rest (d) from his/her structural connectivity (a). Our mapping is 
based on a two-stage process. In the first stage, we use a polynomial transformation of order k (characterized by 
the coefficients …a a, ,j jk0 ) to map the eigenvalues of Fj from those of Sj. In (b), we include the histogram of the 
eigenvalues of Sj and Fj for the j-th individual (in linear and log-linear scale, respectively). In the second stage, 
we use a rotation matrix Rj, specific to individual j, to infer the eigenmodes of Fj from those of Sj (as illustrated 
in (c), for the first eigenmode). In the lower part of the figure (e–l), we illustrate the group spectral mapping 
problem, in which we find a ‘universal’ mapping, valid for a whole group of individuals. For that purpose, we 
specify a training set composed by structural connectivity graphs (e) and their corresponding functional 
connectivity matrices (h). In the first stage (f), we find a common polynomial transformation (characterized by 

…c c, , k0 ), using the eigenvalues of structural and functional connectivity matrices in the training set. In the 
second stage (g), we find a common set of eigenmodes described by a matrix Q for all the individuals in the 
training set. Finally, using both the polynomial transformation (j) and the rotation (k), we estimate the 
functional connectivity matrix Fj of a subject j (l) from his/her structural graph (i).



www.nature.com/scientificreports/

4SCIEnTIfIC RePortS |  (2018) 8:1411  | DOI:10.1038/s41598-017-18769-x

the dataset, which we refer to as in-sample and out-of-sample. Briefly, in the individual spectral mapping problem, 
the in-sample and out-of-sample functional connectivity matrices are obtained by randomly sub-sampling the 
samples of the time response before calculating the in-sample and out-of-sample correlation matrices. In contrast, 
for the group spectral mapping problem, the in-sample and out-of-sample matrices are obtained by correspond-
ingly partitioning the set of subjects, while considering the whole set of time samples for the functional matrix 
of each subject. Both definitions are explained in detail in subsections ‘Individual spectral mapping’ and ‘Group 
spectral mapping’, respectively.

Spectral graph theory.  Consider a structural brain graph with n nodes and weighted edges. We denote by 
S the n × n adjacency matrix of the structural graph, i.e., the entry [S]ij is the weight of the edge connecting nodes 
i and j. We define a walk of length l from node i0 to il in the graph as an ordered sequence of l + 1 nodes, 

…i i i( , , , )l0 1 , such that the pair of nodes −i i{ , }r r1  are connected for all = …r l1, , . We denote by  i i
l

, l0
 the set of all 

walks of length l from i0 to il in the structural graph. Given a walk = …p i i i( , , , )l0 1 , we define the weight of the 
walk as the following product:

ω = … .
−

p S S S( ) [ ] [ ] [ ] (1)i i i i i il l0 1 1 2 1

A fundamental result in spectral graph theory relates the l-th power of the adjacency matrix S with walks of length 
l in the structural graph, as follows:


∑ ω= .
∈

S p[ ] ( )
(2)

l
ij

p i j
l
,

In other words, the (i, j)-th entry of Sl is equal to the sum of the weights of all walks of length l from i to j. In 
our solution to the spectral mapping problem, we use a weighted sum of powers of S up to order k; in particular, 
we use the matrix Ω = = + … +f S a S a S( ) k

k
0

0 . According to (2), the (i, j)-th entry of Ω is equal to a weighted 
sum over all walks from i to j of length up to k. Furthermore, our functional mapping F̂ is a similarity transforma-
tion of Ω; in particular, = ΩF̂ R R with R being a rotation matrix, whose effect is described next.

Rotation matrix.  In the context of functional and structural connectivity matrices, the rotation matrix R can 
be understood as follows. Recall that the entries of the connectivity matrix F correspond to the correlation coeffi-
cients of the time-series associated with the BOLD signal associated with each possible pair of brain regions. As 
such, the functional eigenmodes are aligned with patterns of neural activity, as discussed in subsection ‘Common 
functional eigenmodes are revealed by group spectral mapping’. Correspondingly, the structural eigenmodes 
capture spatial patterns of propagation throughout streamlines connecting different brain regions31. Now, let the 
eigenvectors of S (respectively, F), denoted by =v{ }i i

n
1 (respectively., =u{ }i i

n
1) form the columns of the matrices 

= | |…|V v v v[ ]n1 2  (respectively, = | |…|U u u u[ ]n1 2 ). We now define the rotation matrix R such that =R UV  (see 
detailed mathematical derivation in Subsection 3.1 the Supplementary Information), which establishes a mapping 
between the structural eigenmodes and the functional eigenmodes. Using the rotation matrix, we then build a 
weight matrix =W V RV  such that =U VW . Therefore, the columns (eigenmodes) of U and V are related via 
the following linear combination:

= = + + … +u Vw w v w v w v , (3)i i i i ni n1 1 2 2

where wi is the i-th column of W and wji is the j-th component of this column vector. In summary, from the rota-
tion matrix R we can directly build a matrix W that allows us to map each functional eigenmode (ui) as a linear 
combination of structural eigenmodes (vj).

Individual spectral mapping.  In this work, we propose a technique to map the functional connectivity 
matrix F of a subject at rest from his/her structural adjacency matrix S. As mentioned above, we propose a map-
ping parameterized as follows:

=F̂ R f S R( ) , (4)

where = ∑ =f S a S( ) i
k

i
i

0  and R is an orthogonal rotation matrix. To find the values of the parameters =a{ }i i
k

0 and R, 
we propose to minimize the quadratic (or Frobenius) norm of the difference between F and F̂, defined as:

 ∑∑− = − .
= =

ˆ ˆF F F F([ ] [ ] )
(5)i

n

j

n

ij ij
2

1 1

2

In other words, given the n × n functional and structural matrices of an individual, F and S, as well as the value 
of the maximum order k, we solve the following optimization problem:

ᵀ

F

ᵀ ᵀ∑










− = =
==

R a S R F RR R R Iminimize subject to ,
(6)a R i

k

i
i

n
{ } , 0

2

i i
k

0

where the constraints guarantee R to be a rotation matrix. We show in the Supplementary Information that the 
solution to this optimization problem can be found as follows.
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First, compute the eigenvalues and eigenvectors of S (respectively, F), denoted by =v{ }i i
n

1 and λ ={ }i i
n

1 (respec-
tively, =u{ }i i

n
1 and ϕ ={ }i i

n
1). Define the Vandermonde matrix

λ λ λ

λ λ λ
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(7)

k
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2
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where the parameter k is the maximum order of the polynomial. Therefore, it can be shown (see Supplementary 
Information) that a solution pair =a R({ *} , *)i i

k
0  to the optimization problem in (6) is given by 

ϕ… = −a a L L L( *, , *) ( )k0
1    and =R UV* . Subsequently, the functional mapping is given by:

∑=










.
=

F̂ R a S R* * ( *)
(8)i

k

i
i

0

Simply speaking, our mapping is the result of aligning both the eigenvalues and eigenvectors of a subject’s 
structural and functional connectivity matrices. Notice that, in general, such alignment would not be possible 
without considering the rotation matrix. Furthermore, since an n × n rotation matrix R has −n n( 1)/2 degrees of 
freedom32, the solution to (6) could in principle allow for overfitting due to the additional number of parameters 
in the mapping. To validate that this is not the case, we consider a version of the optimization problem (6) in 
which we constrain the rank of R to be equal to a given integer m (see Supplementary Information for more 
details). In this respect, we compute in subsection ‘Stability of spectral mapping’ the map for different values of m, 
whose results support our claim about the absence of overfitting in F̂.

In-sample and out-of-sample dataset partitioning for the individual spectral mapping.  In what follows, we explain 
how to generate in-sample and out-of-sample functional matrices to train our mapping and assess its quality. We 
start with a collection of bold signals = …b b b L( (1), , ( ))r r r

 of length L = 1200, where br(s) denotes the s-th time 
sample of the average BOLD signal in the r-th brain region (where = …r M1, , , according to the Glasser-360 
atlas M = 360 regions). For each region r, we partition the signal vector br into two: one first vector br

(1) including 
L/2 entries of br (chosen uniformly at random without repetition), and br

(2), which includes the remaining entries 
of br. Using the sets of vectors =b{ }r r

M(1)
1 and =b{ }r r

M(2)
1, we compute two functional correlation matrices; the in-sample 

matrix F(1) and the out-of-sample matrix F(2), where F[ ]ij
(1)  (respectively, F[ ]ij

(2) ) is the Pearson correlation coeffi-
cient between bi

(1) and bj
(1) (respectively, bi

(2) and bj
(2)). In our numerical experiments, we use F(1) to find the opti-

mal set of parameters for the mapping F̂ (i.e., we use F(1) to solve the optimization problem in (6)). In the main 
document, we use the out-of-sample matrix F(2) to assess the quality of our mapping.

Group spectral mapping.  Consider a group of N individuals whose structural and functional matrices are 
given by the set of pairs =S F{( , )}j j j

N
1. In this mapping problem, our objective is to find a common mapping able to 

generate an approximation of Fj from Sj, while addressing the following question: can a mapping be obtained in 
terms of common functional eigenmodes across the different subjects? Simply speaking, in the individual spectral 
mapping problem we aimed to determine structural to functional dependencies specific to a subject, whereas now 
we seek common resting state functional patterns among the subjects. Towards this goal, we propose to determine 
a mapping =F̂ Q g S Q( )j j , where = ∑ Λ=g S c( )j r

k
r j

r
0 , with λ λΛ = …S Sdiag( ( ), , ( ))j j n j1  and Q is an orthogonal 

matrix encapsulating the common functional eigenvectors. In particular, notice that the structural eigenvectors 
of a specific subject are not considered, since we aim to find a common set of functional eigenmodes. Therefore, 
the parameters =c{ }r r

k
0 and Q are the solution to the following optimization problem:

ᵀ

F

ᵀ ᵀ∑ ∑





Λ





− = = .
= ==

Q c Q F QQ Q Q Iminimize subject to
(9)c Q j

N

r

k

r
r

j n
{ } , 1 0

2

r r
k

0

The numerical solution to this problem involves an iterative optimization procedure, which is described in 
Section 3.2 of the Supplementary Information.

In-sample and out-of-sample dataset partitioning for the group spectral mapping.  Our dataset consists of a group 
of 44 subjects. In our experiment, we partition this group into two subgroups of equal size, while considering the 
full-length of the time series. We use the pairs of structural and functional matrices in the first subgroup (which 
we refer to as the in-sample set) to train the common mapping, and validate our results with the second subgroup 
(the out-of-sample set).

Matrix correlation quality.  In our empirical evaluations, we measure the similarity between two n × n 
square matrices X and Y using the matrix correlation function, denoted by X Yucorr( , ), and defined as the 
entry-wise correlation between the upper-triangular entries (excluding diagonal elements) of X and Y. In other 
words, if we build two vectors x and y of dimension −n n( 1)/2 by ‘vectorizing’ the upper triangular entries of X 
and Y, the matrix correlation function is simply the correlation between these two vectors.
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Computational implementation.  We provide a publicly available computational implementation of the 
algorithms, allowing other researchers to evaluate and compare mapping results over other databases. The imple-
mentation is available for download at https://brainopt.github.io/spectral-mapping.

Results
Individual functional connectivity is mapped with high accuracy.  We first focus our attention on the 
individual spectral mapping problem (pictorially represented in Fig. 2a–d, and mathematically described in the 
Materials and Methods section). In our numerical evaluations, we consider two different BOLD time series for 
each subject, which we construct as follows. Beginning with a single BOLD time series with 1200 time samples, 
we build one set of samples by randomly selecting half the samples from the original signal. The second set is built 
by choosing the other half of remaining samples. The first set is then used to generate an in-sample functional 
connectivity matrix to train the functional mapping. The second set is used to generate an out-of-sample func-
tional connectivity matrix to validate the quality of the trained mapping. In a first set of experiments, we train and 
validate ‘personalized’ functional mappings for each one of the 44 subjects in the dataset. For each individual, we 
build a hierarchy of mappings with different values of k, where k ranges from 1 to 10. In other words, we gradually 
increase the maximum length of the structural walks being considered in the functional mapping. In Fig. 3a, we 
plot the distribution of the quality of the personalized functional mapping for both the training (in-sample) and 
the validation (out-of-sample) functional matrices. Using the in-sample data, the correlation level achieved by 
the functional mapping after training becomes consistently close to l as k increases above 8 (blue boxes in Fig. 3a). 
Using the out-of-sample data to validate the trained mapping, we observe that the quality of the mapping consist-
ently increases with k, saturating at an average correlation of 0.9410 for k above 8.

Based on these results, we can quantify the role of structural walks of different lengths in the formation of the 
functional connectivity pattern. For example, since the median mapping quality for k = 1 is 0.5735 in the valida-
tion dataset, we conclude that direct structural walks of length l account for 0.5735 of the personalized mapping 
quality. Furthermore, the median mapping quality increases to 0.7747 when we also consider walks of length 
k = 2. Hence, we conclude that structural walks of length 2 account, in the median, for a 20.12% increment in the 
mapping quality. Similarly, as we gradually include structural walks of length 3 to 10 in the mapping, the median 
quality increases according to the following incremental percentages: 5.761%, 1.122%, 2.723%, 2.618%, 2.607%, 
1.805%, 0.643%, and 0373%. Notice how the propagation of neural signals through short structural walks has the 
strongest influence in the resulting functional connectivity. In particular, for a value of k as low as 3, we note that 
median mapping quality is above 80% (0.8323). We also observe that the median mapping quality relatively satu-
rates at ≥k 8. Therefore, walks of length 3 and up to 8 in the structural graph contain most of the information 
needed to map functional correlations, offering fundamental insight into the lengths of walks used for neural 
interactions. In the inset in Fig. 3a, we include a scatter plot to compare the entries of the actual functional con-
nectivity matrix Fj (values in the abscissae) with those of the mapped functional matrix F̂j (values in the ordinates) 

Figure 3.  Spectral mapping performance (Glasser-360). We represent the evolution of the correlation quality 
between the mapped and the actual functional connectivity matrices when we vary the maximum length of the 
walks under consideration (denoted by the parameter k) for the individual and the group spectral mappings. In 
(a), we plot the evolution of the correlation quality evaluated over 3 different splits of the BOLD signal time-
series samples in the training (in blue) and validation (in red) sets, for the individual spectral mapping. The 
inset in (a) includes a scatter plot of the entries of the mapped functional matrix F̂ (values in the ordinates) 
versus the actual connectivity matrix F (values in the abscissae) when k = 8 for the individual with the median 
correlation quality. The ordinates of the blue (respectively, red) dots in the scatter plot correspond to the entries 
of the functional connectivity matrix used for training (respectively, validation). In (b), we plot the evolution of 
the correlation quality evaluated over 3 different splits of the BOLD signal time-series obtained from group 
spectral mapping in the training (in yellow) and validation (in green) sets.

https://brainopt.github.io/spectral-mapping
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when we choose k = 8 for the individual with the median correlation quality. The ordinates of the blue (respec-
tively, red) dots correspond to the entries of the functional connectivity matrix used for training (respectively, 
validation). For illustration purposes, we also display in Fig. 4 structural and functional connectivity matrices of 
an individual whose mapped functional connectivity achieves the median correlation quality across all subjects.

With regard to the rotation matrix, its role in relating the functional and structural eigenmodes can be visu-
alized in terms of the projection of the eigenmodes on the cortical surface. Recall that the functional eigenmodes 
(describing the dynamic patterns of neural activity) can be represented as a linear combination of the structural 
eigenmodes (capturing spatial patterns of propagation). Such relationship is expressed in (3) and is illustrated in 
Fig. 5. The figure displays the actual distribution of weights obtained for the decomposition of the four functional 
eigenmodes associated with the largest functional eigenvalues in terms of the structural eigenmodes, along with 
their respective cortical projections.

Group spectral mapping partially maps individual connectivity from common parameters.  In 
addition to the individual spectral mapping problem, we also consider the group spectral mapping problem, in 
which we aim to find a ‘universal’ mapping able to estimate a representative functional connectivity matrix for a 
group of subjects. In other words, given the structural graphs and functional connectivity matrices of a group of 
individuals, we aim to find a common mapping to estimate the functional connectivity matrix for any individual 
in the group with the maximum possible overall correlation quality (see the Materials and Methods section for a 
technical description of this problem). From a neuroscientific perspective, this problem corresponds to under-
standing the role of common eigenmodes in neural interactions performed in many individuals. To evaluate the 
performance of the method, we partition the set of 44 subjects into two subsets: an in-sample subset of 22 individ-
uals whose structural graphs and functional connectivity matrices are used to train the universal mapping, and 
an out-of-sample subset of 22 individuals used to evaluate the mapping quality. In this setup, we find the optimal 
parameters of the universal mapping for the in-sample training set when the maximum length of structural walks 
under consideration ranges from k = 1 to 10. In Fig. 3b, we plot the performance of the universal functional 
mapping for both the in-sample training set (yellow boxes) and the out-of-sample validation set (green boxes). 
Overall, the performance in the validation set is well aligned with the training set, and both tend to increase as we 
increase the value of k. As expected, the universal mapping presents a lower performance when compared with 
the personalized mappings, highlighting the existence of meaningful individual differences in how functional 
eigenmodes interact to compose functional dynamics. In particular, when the out-of-sample mapping case is 
considered, the best median performance stabilizes at around 0.5180 for the group case (while in the personalized 
case, it saturates at around 0.9410). It is interesting to conjecture that differences between the mapped and actual 
functional connectivity matrices may be related to the individual’s cognitive state in healthy subjects, or to indi-
vidual differences in symptomatology in clinical populations.

Figure 4.  Structural and functional connectivity matrices for the Glasser-360 parcellation. We consider an 
individual whose mapped functional connectivity achieves the median correlation quality across all subjects, for 
parameter k = 8. In (a), we present the functional connectivity matrix obtained from all time samples. In (b) and 
(c), we show the empirical functional connectivity matrix for the same individual obtained from the in-sample 
and out-of-sample data, respectively. In (d) we display the mapped functional connectivity matrix using the 
individual spectral mapping, whereas in (e) we present its structural connectivity matrix. Lastly, (f) displays the 
pair-wise correlation between the above mentioned matrices, for all possible combinations.
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Spectral mapping exhibits robustness to parcellation and image acquisition techniques.  It is 
instructive to evaluate if the spectral mapping method achieves comparable performance with different parcel-
lation and acquisition approaches to generating structural and functional connectivity matrices. To address this 
question, we performed the same analyses described in the previous section with an alternative anatomical atlas. 
More precisely, we consider connectivity matrices generated from a parcellation into 148 regions following mor-
phological criteria33, which we refer to as Destrieux-148. The corresponding evolution of functional matrix corre-
lation quality for the in-sample and out-out-sample sets, obtained for the individual and group spectral mappings, 
is presented in Fig. 6a,b. We note that it exhibits a similar behavior to the one obtained for the Glasser-360, with 
the correlation quality stabilizing at lower values of the parameter k, what can be mathematically explained by the 
comparatively smaller total number of regions in the parcellation. In particular, as with what was observed for 
Glasser-360, in the current case, the median mapping quality for k = 3 is above 80% (0.8290). Correspondingly, in 
Fig. 7 we display the structural and functional connectivity matrices of an individual whose mapped functional 
connectivity achieved the median correlation, considering all splits of the dataset. As a second set of experiments, 
we also considered an alternative dataset9, whose results are presented in the Supplementary Information. This 
dataset employs legacy single-tensor diffusion technology, which imposes significant limitations34,35, with respect 
to the tractography and estimation of structural connectivity matrices. These findings are therefore included 
exclusively to enable discretionary comparison with previous studies that use comparably limited datasets.

Common functional eigenmodes are revealed by group spectral mapping.  To investigate the neu-
rophysiological drivers of these mappings, we depict in Fig. 8 brain surface activation maps representing the first 
four common eigenmodes of the mapped functional connectivity F̂ (i.e., the eigenvectors of F̂ associated with the 
four largest eigenvalues). In particular, the first eigenmode (Fig. 8a) represents the so-called Bonacich centrality 
of the functional connectivity matrix, which measures how ‘well-connected’ or ‘central’ a region is in the func-
tional graph36. The displayed activation areas correspond to widespread cortical involvement. Dominant areas in 
the second eigenmode (Fig. 8b) include posterior prefrontal cortex, parieto-occipito-temporal (POT) region and 
middle temporal gyrus. These are all heteromodal cortex areas associated with higher cognitive processing. The 
third eigenmode (Fig. 8c) presents high values over primary and secondary visual cortices, left ventral premotor 
areas and inferior parietal cortex. These areas are all associated with vision and visually guided action planning. 
Finally, the fourth eigenmode (Fig. 8d) presents dominant contributions in most areas of the intraparietal sulcus 
and dorsolateral prefrontal cortex. These areas form an strongly connected prefrontal-parietal network involved 
in attention.

Figure 5.  Decomposition of functional eigenmodes in terms of structural eigenmodes for the Glasser-360 
parcellation. The absolute values of the components of functional eigenmodes ui ( = …i 1, ,4) associated with 
the largest functional eigenvalues are vertically displayed on the left-hand side. In the top row, we display the 
average across individuals of the absolute values of the components of structural eigenmodes vi ( = …j 1, ,6) 
associated with the largest structural eigenvalues. Additionally, we summarize the distribution across 
individuals of the first six absolute values of the weights wij (depicted as box plots) used to express each 
functional eigenmode ui as a linear combination of structural eigenmodes vi, when all possible n = 360 
structural modes in the parcellation are considered.
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Stability of spectral mapping.  In what follows, we examine the stability of our mapping to ensure that the 
spectral mapping method is not overfitting the data. In this direction, we vary the number of degrees of freedom 
in the functional mapping using two hyper-parameters. The first hyper-parameter is the order of the maximum 
power of S, denoted by k, included in the first stage of our functional mapping (see Fig. 2). As previously men-
tioned, this value is equal to the maximum length of the structural walks considered by the functional mapping. 
The second hyper-parameter is the rank m of the rotation matrix R used in the second stage of the functional 
mapping (see Fig. 2). By reducing the rank of the rotation matrix, we restrict the number of eigenmodes of S that 
we aim to align with the eigenmodes of F. Computationally, this has the effect of reducing the number of free 
parameters associated with the rotation matrix R. In Fig. 9, we plot the influence of these hyper-parameters on the 
quality of the solution of the individual spectral mapping problem. This quality is measured as the correlation 
coefficient between the entries of the functional matrix F and the entries of the mapped functional matrix F̂. 
Figure 9 contains subplots displaying the evolution of the functional correlation quality for all the 44 individuals 
in the dataset as we vary the hyper-parameters. In our evaluations, we observe that the functional mapping 
achieves a high correlation quality even for relatively low values of the hyper-parameters, indicating that it is 
possible to map the functional connectivity with a relatively low number of degrees of freedom.

Perturbation analysis.  Now, we propose to investigate the robustness of the individual spectral mapping 
with respect to noise in the structural matrices. First, for each structural and functional connectivity matrix pair 
(S,F) associated with a given individual, we obtain the set of parameters (a*, R*) obtained as a solution to (6). 
Then, we generate a perturbed matrix S˅ from the original structural matrix S, i.e., we adopt a random multiplica-
tive model acting on each element of the structural matrix. This model has the desirable property of preserving 
the structural matrix sparsity, and producing perturbations which are, on average, proportional to the value of 
each element. Quantitatively, the perturbation model can be described as follows. For each element [S]ij or the 
original structural matrix, we sample a perturbation value from a uniform distribution with support between 
(−ρ, ρ), i.e., ρ ρ∆ ∼ −[ ] uniform( , )ij , where ρ is a parameter that we vary. An entry of the perturbed matrix is, 
therefore, defined as

= + ∆ .S˅ S[ ] (1 [ ] )[ ] (10)ij ij ij

Subsequently, we compute the (perturbed) mapped functional connectivity matrix F˅ using the set of parame-
ters (a*, R*), i.e.,
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Finally, in order to assess the robustness of the individual spectral mapping, we compare the functional corre-
lation quality ucorr ˆ ˅F F( , ) for all individuals and different values of parameter ρ, the results of which we present 

Figure 6.  Spectral mapping performance (Destrieux-148). We represent the evolution of the correlation quality 
between the mapped and the actual functional connectivity matrices when we vary the maximum length of the 
walks under consideration (denoted by the parameter k) for the individual and the group spectral mappings, 
for the Destrieux-14833 parcellation. In (a), we plot the evolution of the correlation quality evaluated over 3 
different splits of the BOLD signal time-series samples in the training (in blue) and validation (in red) sets, 
for the individual spectral mapping. In (b), we plot the evolution of the correlation quality evaluated over 3 
different splits of the BOLD signal time-series in the training (in yellow) and validation (in green) sets, for the 
group spectral mapping.
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Figure 7.  Structural and functional connectivity matrices for the Destrieux-14833 parcellation (148 regions). 
We consider an individual whose mapped functional connectivity achieves the median correlation quality 
across all subjects, for parameter k = 5. In (a), we present the functional connectivity matrix obtained from 
all time samples. In (b) and (c), we show the empirical functional connectivity matrix for the same individual 
obtained from the in-sample and out-of-sample data, respectively. In (d) we display the mapped functional 
connectivity matrix using the individual spectral mapping, whereas in (e) we present its structural connectivity 
matrix. Lastly, (f) displays the pair-wise correlation between the above mentioned matrices, for all possible 
combinations.

Figure 8.  Eigenmodes of the mapped functional connectivity obtained from group spectral mapping. Lateral, 
medial and flat cortical surface renderings for the absolute values of the components of the eigenmodes 
associated with the four largest eigenvalues of the functional connectivity matrix generated by group spectral 
mapping. In (a), color plot for the first eigenmode (i.e., Bonacich centrality of the functional connectivity 
matrix). The blue areas (OFC, 25) are likely to be areas where signal is corrupted by missing data, distortion 
artifacts and other artifacts associated with imaging this area of the brain with fMRI. In (b), the color plot of the 
second eigenmode takes high values (yellow) over the posterior prefrontal cortex, parieto-occipito-temporal 
(POT) region and middle temporal gyrus. In (c), the third eigenmode takes high values over the primary and 
secondary visual cortices, left ventral premotor areas and inferior parietal cortex. In (d), the fourth eigenmode 
takes high values over most areas of the intraparietal sulcus and dorsolateral prefrontal cortex.
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in Fig. 10. In particular, we consider the parameter ρ = {0.10,0.20} and generate perturbation matrices for each 
individual with entries obtained according to (10). Take the parameter k = 8. The out-of-sample functional corre-
lation achieved was 0.9410 for the unperturbed case, whereas we achieve 0.8981 and 0.8165 for the perturbed case 
with ρ = 0.10 and ρ = 0.20, respectively. Therefore, these results support the fact that the proposed mapping pre-
sents considerable robustness with respect bounded perturbations in the structural matrix.

Similarity of spectral characteristics across individuals.  From a mathematical perspective, the effec-
tiveness of the group spectral mapping method is, in part, explained by the similarity of spectral characteristics 
across subjects in the dataset. In particular, as we illustrate below, the eigenvalues of the functional (respectively, 
structural) matrix present a high level of similarity across individuals. Furthermore, the most relevant eigenvec-
tors of these matrices (i.e., those associated with the largest eigenvalues) are also well aligned among individuals. 
To evaluate spectral similarities in the data, we start by plotting the eigenvalues of the structural matrix (in 
decreasing order) in Fig. 11c. In this figure, we include a box plot for the eigenvalues in the dataset. More pre-
cisely, for each eigenvalue number (i.e., the i-th eigenvalue number of each matrix, in decreasing order), we rep-
resent the average value, as well as the first and third quartile for the 44 values corresponding to the i-th 

Figure 9.  Stability of spectral mapping for individual spectral mapping (for all subjects). Thin lines denote the 
evolution of the functional correlation quality for each one of the 44 individuals in the dataset, whereas bold 
lines indicate the average over all thin lines. In (a) we plot the evolution of the quality for as we vary the value of 
the hyper-parameter k, while in (b) we plot the quality evolution as we vary the hyper-parameter m.

Figure 10.  Robustness of the mapped functional connectivity to perturbations in the structural connectivity 
matrix for the Glasser-360 parcellation. In (a) and (b), we present the distribution of functional correlation 
quality of the mapped functional connectivity matrix as a function of the maximum walk length when the 
individual’s structural connectivity matrix has its entries perturbed by at most 10% (0.10) and 20% (0.20), 
respectively.
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eigenvalues of all the individuals in the dataset. We observe how the distribution of eigenvalues is very concen-
trated; in other words, the eigenvalues of the structural matrices in our dataset are very similar across individuals. 
Similarly, in Fig. 11f, we include a box plot for the eigenvalues of the functional matrices. We observe that, in this 
case, the eigenvalues are also similar across the dataset. We now shift our attention to the similarity between 
eigenvectors. In particular, we study the alignment among the first eigenvectors of the structural matrices (i.e., 
those eigenvectors associated to the largest eigenvalue) across individuals in the dataset. For each pair of individ-
uals, we compute the correlation between their first eigenvectors. Since our dataset contains l = 44 individuals, we 
have − =l l( 1)/2 946 possible pairs. In Fig. 11a, we plot a histogram for the values of all these correlations and 
observe that, in average, the first eigenvectors present a 70.4% correlation. We repeat this computation using the 
second eigenvectors of the structural matrices, and plot our results in Fig. 11b. Similarly, in Fig. 11d–e, we plot the 
histogram of correlations for the first and second eigenvectors of the functional matrices, respectively.

From a mathematical perspective, these spectral similarities allow us to find a high-quality ‘universal’ mapping 
able to map the adjacency matrix of structural brain graphs into functional connectivity matrices using tools 
from spectral graph theory. From a neurophysiological perspective, such similarities indicate that healthy human 
subjects display a similar organization of walks in structural graphs, as well as functional connectivity matrices.

Comparison to null models.  To gain critical understanding on the effectiveness of our method, we perform 
a series of tests considering several null models, using the function ucorr(A, B). We consider the parameter k = 8. 
Using this function, we first evaluate ucorr(Fi, Si) for each individual i in the dataset. This correlation measures the 
inherent similarities between structural and functional modalities for the same subject. In Fig. 12a, we display in 
blue a box plot summarizing the distribution of correlations, which yields a mean (and standard deviation) of 
0.1709(0202), respectively. Apart from similarities between structural and functional matrices for the same sub-
ject, we also measure inherent similarities for different subjects. In this direction, we evaluate ucorr(Fi, Si) for all 
pairs (i, j) of individuals in the dataset. In Fig. 12a, we display in purple a box plot summarizing the distribution 
of correlations, which yields a mean (and a standard deviation) of 0.1699(0.0211). These numerical results suggest 
that the functional matrices Fi in our dataset are poorly correlated with the structural matrices Si; in fact, the 
average correlation between Fi and Si is similar to the average correlation between Fi and Sj for ≠j i. Furthermore, 
we also analyze similarities among the functional (respectively, structural) matrices in the dataset by evaluating 
ucorr(Fi, Fj) (respectively, ucorr(Si, Sj)) for all pairs (i, j) of individuals in the dataset. In Fig. 12b, we display box 
plots summarizing the distribution of correlations for the functional and structural modalities, whose means (and 
standard deviations) are 0.4077(0.0901) and 0.9445(0.0054), respectively. From these results, we observe that 
structural matrices present a significant level of correlation across individuals, while functional matrices present 
a lower average correlation.

In the above experiments, we have examined inherent similarities in the dataset by studying correlations 
between structural and functional matrices for the same, as well as different, individuals. In the following set of 
experiments, we evaluate the similarity between the ‘personalized’ functional mapping and functional matrices. As 
previously described, the ‘personalized’ functional mapping for the i-th individual in the dataset is trained using 
the pair of matrices ucorr(Si, Fi) and characterized by the set of parameters ai and Ri. The input of this mapping is 
a structural matrix S and its output, denoted by F̂ S( )i , is a functional matrix mapped from S. In the next experiment, 
we first compute the functional matrix mapped when the input is the j-th structural connectivity Sj using the 

Figure 11.  Spectral characteristics for structural and functional connectivity matrices (for all subjects). In (a,b) 
(respectively d,e), histograms of eigenvector correlations are displayed for the eigenvectors associated with the 
two largest eigenvalues of the structural (respectively, functional) matrices. Panel (c) (respectively, f) displays 
the distribution of ordered eigenvalues in the set of structural (respectively, functional) matrices, with the five 
largest eigenvalues magnified in the inset.
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‘personalized’ mapping corresponding to the i-th individual. We denote this matrix as =ˆ ˆF F S( )i
j

i j . We then com-
pare this matrix with Fi and Fj by computing F̂ Fucorr ( , )i

j
i  and F̂ Fucorr( , )i

j
j  for all pairs of individuals (i, j) in the 

dataset. In Fig. 12c, we display in gray a box plot summarizing the distribution of F̂ Fucorr ( , )i
j

i , whose mean (and 
standard deviation) is 0.7267(0.1642). This relatively high value is, in part, explained by the inherent similarity 
among structural matrices of different subjects, as pointed out in the previous paragraph. Similarly, in Fig. 12c, we 
display in brown a box plot summarizing the distribution of F̂ Fucorr ( , )i

j
j  for all ≠i j, whose mean (and standard 

deviation) is 0.2996(0.0988). These values should be compared with F̂ Fucorr ( , )i
i

i , i.e., the correlation between the 
mapped and actual functional matrices for the i-th individual. As plotted in Fig. 3a, the average correlation in this 
case is much higher (at 0.9828(0.0779) for the in-sample case, and at 0.9092(0.0755) for the out-of-sample case). 
From these comparisons, it is possible to conclude that the spectral mapping method captures features that are 
specific to each individual’s structural and functional connectivity matrices, since such mapping is not reproduci-
ble (on average) by swapping either the matrices or the parameters associated with the mapping.

Discussion
In analyzing the methodological advantages and disadvantages of our proposed method, the following obser-
vations can be made. The individual spectral mapping is mathematically assured to asymptotically approximate 
the functional matrix, as the parameter controlling the maximum walk length is increased. Therefore, it provides 
a first-principles mapping between the structural and functional connectivity matrices, which is interpretable 
in terms of a weighted combination of walks of different lengths and the alignment of structural and functional 
eigenmodes. As a potential disadvantage, a critique might be raised on the number of degrees of freedom intro-
duced by the rotation matrix. To address that concern, we have shown in subsection ‘Stability of spectral mapping’ 
that the number of degrees of freedom can be controlled by using rank-constrained rotation matrices, with little 
relative impact in the approximation quality, as shown in Fig. 9. In contrast, the group spectral mapping enables 
a novel approach to analyze common spectral characteristics between groups of individuals, with a relatively 
lower number of degrees of freedom, but a more challenging computational approach. As a result, the solution 
to the group mapping problem relies on the use of advanced numerical optimization algorithms to handle the 
constraints imposed by the common rotation matrix, as described in Section 3.2 of the SI.

Our results have important implications for cognitive neuroscience. First, it is remarkable that walks of length 
up to k = 3 offer the most contribution for mapping accuracy, even across structural brain networks constructed 
from different spatial resolutions. This surprisingly low value of k suggests that relatively parsimonious polysyn-
aptic connections impose critical constraints on brain dynamics and observed functional connectivity. The dis-
proportionate contribution of short walks (of length up to 3) to the functional mapping may be due to energy 
considerations: it is intuitively plausible that processing information along longer walks may require more energy 
than processing information along shorter walks. An alternative explanation could lie in the temporal constraints 
imposed by our environment: over evolutionary time scales, the time it takes an organism to respond to threats 
or opportunities is negatively correlated with the organism’s reproductive success. Assuming longer walks require 
more time and more energy; it is then reasonable that relatively short walks in the structural graph can map the 

Figure 12.  Null model analysis (for all subjects). We consider the parameter k = 8. Briefly, in (a) we present 
the inherent similarities across modalities, while in (b) we evaluate the similarities across subjects, for each 
modality. In addition, in (c) we consider the performance of individual spectral mapping when operating with 
shuffled data or parameters.
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observed functional dynamics. However, this line of argument also begs the question of why the functional con-
nectivity matrices cannot be mapped with high accuracy using only walks of length k = 1 or k = 2. To address this 
question, it is important to note that walks of increasing length offer a greater dimensionality to the dynamic range 
of the system. Systems that only utilize structural walks of length k = 1 necessarily have an impoverished ensem-
ble of possible states in comparison to those that utilize structural walks of longer lengths. Thus, it is intuitively 
plausible that the mapping accuracy obtained from k = 3 is an indirect indication of a careful balance between the 
competing requirements for a broad dynamic range and an energetically and temporally efficient system.

Finally, it is important to note that the methods we develop here are more generally applicable to other prob-
lems in which one wishes to map one set of matrices from another set of matrices. In the context of neuroimaging, 
we could use these same tools to ask how structural graphs prior to an injury relate to structural graphs after an 
injury. We could also ask whether and how functional connectivity matrices change over time, either during 
learning or as a function of normal aging. It will be interesting in future to determine whether features of the rota-
tion matrix (the mapping from structure to function) are related to individual differences in cognitive abilities in 
healthy subjects, symptomatology in diseased cohorts, or genetic variability.
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