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Abstract

The U.S. is the main country in the world that delivers its food assistance primarily via trans-

oceanic shipments of commodity-based in-kind food. This approach is costlier and less

timely than cash-based assistance, which includes cash transfers, food vouchers, and local

and regional procurement, where food is bought in or nearby the recipient country. The

U.S.’s approach is exacerbated by a requirement that half of its transoceanic food ship-

ments need to be sent on U.S.-flag vessels. We estimate the effect of these U.S. food assis-

tance distribution policies on child mortality in northern Kenya by formulating and optimizing

a supply chain model. In our model, monthly orders of transoceanic shipments and cash-

based interventions are chosen to minimize child mortality subject to an annual budget con-

straint and to policy constraints on the allowable proportions of cash-based interventions

and non-US-flag shipments. By varying the restrictiveness of these policy constraints, we

assess the impact of possible changes in U.S. food aid policies on child mortality. The

model includes an existing regression model that uses household survey data and geospa-

tial data to forecast the mean mid-upper-arm circumference Z scores among children in a

community, and allows food assistance to increase Z scores, and Z scores to influence mor-

tality rates. We find that cash-based interventions are a much more powerful policy lever

than the U.S.-flag vessel requirement: switching to cash-based interventions reduces child

mortality from 4.4% to 3.7% (a 16.2% relative reduction) in our model, whereas eliminating

the U.S.-flag vessel restriction without increasing the use of cash-based interventions gen-

erates a relative reduction in child mortality of only 1.1%. The great majority of the gains

achieved by cash-based interventions are due to their reduced cost, not their reduced deliv-

ery lead times; i.e., the reduction of shipping expenses allows for more food to be delivered,

which reduces child mortality.
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Introduction

Undernutrition causes�45% of deaths in children under 5 years old [1], and the supply of

international food assistance is much less than the demand [2]. Although the U.S. is the

world’s largest provider of food assistance [3] and recently increased its use of cash-based food

assistance [4], it is one of the few countries (along with Brazil and China, although they pro-

vide much less food aid than the U.S. [5]) that provides the majority of its assistance via trans-

oceanic shipments of commodity-based in-kind food aid [2]. Other countries rely on local and

regional procurement (LRP), where food is bought in the recipient country (local) or a neigh-

boring country (regional) and then delivered to the target recipients [6], and direct delivery of

cash or vouchers to the target recipients [7]. LRP provides more timely (62% delay reduction)

and less costly (>50% reduction) delivery than transoceanic shipments [8]. Although the cost

and timeliness of cash and vouchers depend on the complexity of the distribution [9], they are

thought to be much more similar to LRP’s cost and timeliness than to those of transoceanic

shipments. In addition, transoceanic shipments of in-kind food aid can cause volatility in local

markets where monetization (i.e., the food is sold and the money is used for development pro-

grams) is used, and key trade partners view it as a form of export subsidy that violates the

intent of international trade agreements [10].

The presidential administrations of George W. Bush and Barack Obama have sought, with

limited success, greater flexibility in the use of food assistance funding [10]. The Agricultural

Act of 2014 (Public Law, or P.L., 113-79, known as the 2014 farm bill) has authorized LRP for

$80M/yr through fiscal year 2018 for use in emergency food assistance [11] (although funding

has yet to be appropriated), which is to be managed by the U.S. Department of Agriculture. In

contrast, the Food for Peace Act (P.L. 480) Title II program, which is managed by the U.S.

Agency for International Development (USAID) and represents�80% of the U.S. food assis-

tance budget [11], is required to use transoceanic food shipments.

Not all of the commodity shipments originating from the P.L. 480 Title II program are actu-

ally distributed to malnourished people. Until recent years, much of it was sold to commercial

buyers immediately upon arrival in the destination country, with the resulting funds used for

multi-year projects that address the causes of undernutrition in the targeted locations [11].

These monetized transfers are not simply a slow, high-cost way to deliver food to undernutri-

tioned children, but are a policy tool at the intersection of U.S. domestic agricultural policy,

international trade policy, and development policy, which can support poverty reduction and

nutrition improvement while attempting to minimize collateral damage (e.g., only displacing

other exporters’ shipments to the target countries). However, following the 2014 farm bill, U.S.

emergency Title II food aid monetization in sub-Saharan Africa has virtually ended and the

cash-based Emergency Food Security Program and Community Development Fund operated

by USAID have become a major part of emergency response. Although the development (i.e.,

non-emergency) Title II programs and other, small programs (e.g., Food for Progress) are

heavily monetized, they are far smaller than the emergency programs: in fact, emergency food

aid (including Title II emergency food aid, Emergency Food Security Program, Community

Development Fund and Bill Emerson Humanitarian Trust) represents 89.5% of total U.S. food

assistance [12].

More generally, commodity transfers are just one part of a larger system that includes U.S.

cash for LRP, as well as coordination and competition with other donors and other programs

that target malnutrition in different ways at different locations. While a hypothetical political-

economy model of the U.S. food aid system as a whole would need to take into account the

interactions between these programs, and between the U.S. and other food aid donors (i.e., in

terms of the assistance modalities used by each player), as well as the legislative and lobbying
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constraints under which policymakers operate, such an analysis is well beyond the scope of

our paper. Rather, we focus on the direct child mortality effects resulting from the portion of

U.S. food assistance that is actually used to directly feed undernutritioned children. That is,

our model includes only the non-monetized proportion (89.5% overall, but nearly 100% in

sub-Saharan Africa) of P.L. 480 aid, which in turn is only a fraction (80%) of what the U.S. and

other donors call “food aid.”

In addition to the constraint on transoceanic food shipments, the Cargo Preference Act

(P.L. 83-644) requires that 50% of U.S. food aid volume be delivered on U.S.-flag vessels,

which increases shipping costs [13] and food insecurity [14]. A reduction from 75% to 50%

occurred as a result of the 2012 Surface Transportation Reauthorization Act; in addition, Sec-

tion 318 of the original version of the 2014 Coast Guard and Maritime Transportation Act of

2014, H.R. 4005, had a provision to revert back to 75% that passed the U.S. House of Represen-

tatives on a voice vote, but was not included in the final bill [10].

In this study, we use mathematical modeling and optimization to estimate the impact that

restrictions on U.S.’s cash-based interventions (in our model, we conservatively assume that

all cash-based interventions have LRP’s cost and timeliness characteristics) and cargo prefer-

ence have on child mortality in sub-Saharan Africa, which incurred 49.3% of worldwide

under-five mortality in 2011 (Table 1 in [15]); i.e., we move beyond the comparison of cost

and timeliness [8] and consider child mortality. Because a potential drawback of transoceanic

shipments is their lack of responsiveness to changes in food assistance demand, it is important

to incorporate forecasts of food assistance demand in our analysis. Our starting point is the

model in [16], which uses household survey data and geospatial data to forecast (one and three

months into the future) the mean mid-upper arm circumference Z (i.e., standardized from the

1978 CDC/WHO growth charts) value (MUAC-Z) among children less than five years old in

the arid region of northern Kenya. We use this model, which is geared at predicting slow-

onset emergencies, to forecast mean MUAC-Z in a community for up to nine months in the

future. We then develop a generalization of the martingale model of forecast evolution

(MMFE) [17], which models the forecast updates as they evolve over time and quantifies the

deterioration of the forecasts as they attempt to predict the mean MUAC-Z values further into

the future. This MMFE model is embedded into a global inventory management optimization

problem as seen from the perspective of the United Nations World Food Program (WFP),

which distributes the great majority of the world’s food assistance. In this optimization prob-

lem, monthly food assistance deliveries (food increases MUAC-Z values, which reduces mor-

tality) of cash-based interventions and transoceanic shipments are chosen to minimize child

mortality subject to an annual budget constraint and to restrictions on the use of cash-based

interventions and cargo preference. By varying the restrictiveness of the constraints on cash-

based interventions and cargo preference, we estimate the impact that changes in U.S. food

assistance distribution policies would have on child mortality.

Methods

All details related to the formulation, calibration and solution of the model appear in the Sup-

porting Material (S1 File). The various components of the analysis are described below, their

interrelationships are depicted in Fig 1, and a list of parameters and their values appears in

Table 1.

Forecasting Model

We use monthly data from February 2001 to May 2005 in 42 communities in northern Kenya

(§A.1 of the S1 File), which includes community-level probability distributions of individual
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MUAC-Z scores for N = 2236 children and community-level data pertaining to livestock, food

aid and biophysical variables [16]. Because we will be using the MUAC-Z forecasts to optimize

the food deliveries, we modify the MUAC-Z data so that the forecasts are calibrated to forecast

the mean MUAC-Z in the absence of the food assistance (this effect is quantified in the next

paragraph) that was actually provided. To derive this net MUAC-Z value, for each observation

we find the amount of food assistance delivered to the community in each of the last 54

months and then subtract the effect of each portion of this food assistance from the observed

Fig 1. The interrelationships among the components of the model.

doi:10.1371/journal.pone.0168432.g001

Table 1. Parameter values.

Parameter Description Value Reference

N number of children 2236 [16]

T time horizon of model 120 mo

H forecast horizon 9 mo §A.3 of the S1 File

~m t long-term MUAC-Z forecast for month t Fig B in S1 File [16]

σ standard deviation of MUAC-Z 0.62 [16], §B.2 of S1 File

Σ1, Σ2 covariance matrices in MMFE Figs D, E in S1 File [16]

a, b monthly mortality rate = ea−bz -7.13, 0.722 [18]

d mean increase of MUAC-Z from food aid 0.015/kg [19], §C.3 of S1 File

Lf lead time of cash-based interventions 3 mo [8]

Ls lead time of transoceanic shipment 6 mo [8]

p proportion of shipments on non-US carriers 0.25–1.0 P.L. 83-644

l proportion of WFP’s food via cash-based interventions 0.65–1.0 [6]

cf cost of cash-based interventions $0.363/kg [8]

cs cost of transoceanic food aid $0.819−$0.096p/kg [8]

B annual budget for food assistance $19,867 [8, 16]

doi:10.1371/journal.pone.0168432.t001
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realization of MUAC-Z (see §A.2 of the S1 File for details). The dependent variable in the lin-

ear regression model (§A.3 of S1 File) is the mean MUAC-Z in the absence of food assistance

among children in community i in month t + τ as predicted in month t, and the 119 explana-

tory variables include time-lagged values of MUAC-Z moments, livestock variables, food aid

variables and biophysical variables (Table B in S1 File), as well as a community-specific effect

and seasonality (i.e., month of the year). When estimating the regression parameters, we start

generating forecasts in February 2003 so that each forecast is based on at least two years of

data. The empirical relationship between the root mean square error and τ leads us to choose a

forecast horizon of nine months (Fig A in S1 File). We aggregate forecasts across the 42 com-

munities using a population-weighted average, and our resulting forecast in month t for the

mean MUAC-Z in the absence of food assistance in month t + τ in northern Kenya is denoted

by ft,t + τ.

The Effect of Food Assistance on MUAC-Z

Because factors beyond food, such as disease, affect undernutrition [18], it is important to use

results from randomized controlled feeding trials. Consequently, to estimate the effect of food

assistance, we use the results from the only large randomized controlled trial with a nontreat-

ment control group that measures the impact on weight-for-height Z scores (WHZ) and

height-for-age Z scores (HAZ) [19], where 500 kcal/day administered for three months to chil-

dren ages 6-60 months led to a persistent (after a six-month follow up) mean WHZ increase of

0.19. Because WHZ and MUAC-Z both measure how thin a child is, we extrapolate the results

from WHZ to MUAC-Z. Moreover, as in [20], for lack of data we assume that the mean treat-

ment effect is linear in the amount of calories consumed. Hence, we assume that each kcal/day

given for one month causes an increase in the mean MUAC-Z by 0.19/3(500) = 1.3×10−4. In

addition, the data in [16] measure the amount of food assistance in kg, and we assume that

1 kg of food assistance contains 3679 kcal (§A.2 of S1 File), so that (assuming 30 days per

month) 1 kg of food assistance increases MUAC-Z by d = 3679(1.3×10−4)/30 = 0.015.

Forecast Evolution Model

The forecast evolution model is not a forecasting model, but rather is a model of the evolution

of a forecasting system; although in our case the forecasts are generated by the regression

model described earlier, a forecast evolution model can be applied to any set of forecasts, e.g.,

one generated by a human expert without the aid of a statistical model.

Our inventory optimization model requires us to understand how the forecast for the mean

MUAC-Z in month t changes as we approach month t, which is precisely what the forecast

evolution model does. The evolution of the forecasting model is specified by the forecast

updates, �t−τ,t = ft−τ,t−ft−τ−1,t; i.e., the forecast for month t made in month t−τ (ft−τ,t) equals the

forecast for month t made in period t−τ−1 (ft−τ−1,t) plus the forecast update (�t−τ,t). For a given

forecast horizon of H months and a given long-term (i.e., beyond H months in the future) fore-

cast ~mt (which depends on the month of the year), the iterative use of the above equation

implies that the actual mean MUAC-Z in the absence of food assistance in month t equals

~mt þ
PH

t¼0
�t� t;t .

The forecast evolution model is defined by the probabilistic assumptions imposed on the

vector (�t,t,�t,t + 1,. . .,�t,t + H) of forecast updates in each month t, and the classical MMFE

model [17] assumes that these forecast updates form an independent and identically distrib-

uted sequence of normal random vectors with mean zero. However, in an attempt to fit a

model with this independence assumption, we found that our data exhibit significant correla-

tions among forecast updates made in different months for the same target month. This lack
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of independence among forecast updates for the same target month means that the forecasting

method—as with any real method—is not perfect (e.g., it could be due to serial correlation of

weather deviations from seasonal means), and future forecast updates can be partially pre-

dicted from past forecast updates for the same target month. Hence, we generalize the MMFE

model by incorporating two kinds of covariance among forecast updates: covariance among

forecast updates for the same target month, given by Covð�t� t1 ;t
; �t� t2 ;t

Þ ¼ S1

t1 ;t2
, and covariance

among updates made in the same month, given by Covð�t;tþt1
; �t;tþt2

Þ ¼ S2

t1 ;t2
. All other pairs of

updates are assumed to be uncorrelated.

The first two years of data are used to estimate the parameters of the regression model and

the remainder of the data are used to estimate the covariance matrices S1 and S2, where regu-

larization is performed by applying factor analysis to guarantee stationarity of the forecast

update process and shrinkage is used to compensate for the small sample size (§B.3 of S1 File).

Problem Formulation

Our model follows a total of N = 2236 children equally distributed in age from 6-59 months

for a duration of T = 120 months, where children who reach 60 months of age exit the system

and are replaced by 6-month old children (infants under 6 months do not typically eat solid

food and so are excluded). The decision variables in each month t are the number of kg of food

assistance delivered by cash-based interventions and by transoceanic shipment, denoted by Of
t

and Os
t , respectively (f = fast, s = slow). These two modes of delivery have constant delivery

lead times of Lf = 3 months and Ls = 6 months (they have been estimated to be 12 weeks and

23 weeks for Kenya in Fig 1 of [8]), respectively. Food assistance is divided evenly among all

children and is consumed in the month that it is delivered.

In any month t, we assume that MUAC-Z values have a normal distribution with mean μt

and known standard deviation σ = 0.62 (§B.2 of S1 File), where the latter is independent of the

amount of food assistance (which is reasonable under our assumption of blanket distribution

of food) and the month of the year, and

mt ¼ ~mt þ
XH

t¼0

�t� t;t þ
d
N

X53

t¼0

54 � t

54
ðOf

t� t� Lf
þ Os

t� t� Ls
Þ: ð1Þ

The first two terms on the right side of Eq (1) give the mean MUAC-Z in the absence of

food assistance, as derived from the MMFE model. In the last term in Eq (1), the effect of food

assistance decreases by 1/54th of its original value every month because the 59-month old chil-

dren (who comprise 1/54th of the child population) exit the system and are replaced by

6-month old children.

A child with MUAC-Z value z is assumed to have a monthly mortality rate (i.e., the proba-

bility of dying within one month) of ea−bz, where a = −7.13 and b = 0.722, based on a meta-

analysis (due to the intricate relationship between disease, undernutrition and mortality, this

meta-analysis was restricted to longitudinal studies) of the relationship between monthly mor-

tality and weight-for-age Z score (WAZ) in sub-Saharan Africa and Asia [18] (§3.1 of S1 File)

and on the observation that the relationship between mortality and WAZ is very similar to the

relationship between mortality and MUAC-Z (Table 2 of [21]). The shipments Of
t and Os

t are

chosen to minimize the expected total number of child deaths over months 1,. . .,T.

Our decision variables Of
t and Os

t are each subject to a budget constraint that is impacted by

U.S. food assistance policy regarding cash-based assistance and agricultural cargo preference.

Let cf and cs be the cost/kg of food assistance, which includes commodity and transportation

costs, for the two procurement modes. Based on the cost of cereals in Table 5 of [8], we set cf =

Assessing the Impact of U.S. Food Assistance Delivery Policies on Child Mortality in Northern Kenya

PLOS ONE | DOI:10.1371/journal.pone.0168432 December 20, 2016 6 / 15



$0.363/kg for cash-based interventions and let cs $0.567/kg plus the shipping cost for transoce-

anic shipments. Compliance with the agricultural cargo preference in 2006 (which was

then set at 75% US-flag carriers) was estimated to increase shipment costs by 46% [13], imply-

ing that U.S.-flag carriers were 61.3% more costly than competitive shipping (i.e., 0.75(1.613)

+0.25 = 1.46). Hence, if the shipping cost of $0.228/kg in Table 5 of [8] represents compliance

with using 75% US-flag carriers, then the competitive shipping cost rate is $0.228/1.46 =

$0.156/kg. Denoting the allowable proportion of ships to be non-U.S. flag carriers by p, we

can express the food assistance cost per kg for transoceanic shipments by cs = 0.567 + 0.156[p
+ (1−p)1.613] = $0.819−$0.096p. Weallow p to vary between 0.25 and 1.0, where 0.5 is the cur-

rent value, 0.25 was the value between 1985 and 2012, and 1.0 corresponds to eliminating the

cargo preference restriction.

Let B be the annual food assistance budget. We assume that l is the maximum allowable

proportion of food that is delivered via cash-based interventions, so that the annual budgets

for the fast and slow shipments modes are
cf l

cf lþcsð1� lÞ B and
csð1� lÞ

cf lþcsð1� lÞB, respectively. We allow l to

vary between 0.65 and 1.0, where 0.65 corresponds to the current portion of WFP’s shipments

that are in the form of cash-based interventions (Fig 2 of [6]) and 1.0 corresponds to the U.S.

shifting entirely from transoceanic shipments to cash-based interventions. Let Bf
t and Bs

t be the

budgets for the fast and slow shipment modes for the remainder of the fiscal year as of month

t. At the beginning of the fiscal year (i.e., for t = 1,13,25,. . .), we have Bf
t ¼

cf l
cf lþcsð1� lÞB and

Bs
t ¼

csð1� lÞ
cf lþcsð1� lÞB, and the remaining budgets evolve throughout the fiscal year according to

Bf
tþ1 ¼ Bf

t � cf O
f
t ; ð2Þ

Bs
tþ1
¼ Bs

t � csO
s
t: ð3Þ

We assume that the remaining budgets are exhausted in the last month of each fiscal year.

The Annual Budget

Our value for the annual budget is derived by assuming that the actual amount of food assis-

tance consumed per year by the 2236 children in [16] was delivered under the pre-2012 values

of l = 0.65 and p = 0.25. In the 42 communities under study, 266.8k kgs/year were delivered on

average and 25.3% of the people were children. Assuming that the average child between six

months and five years of age consumes half as many calories as an adult [22], we calculate that

the 2236 children in [16] received 38,636 kg/yr; at 3679 kcal/kg, this is an average of 174.2

kcal/day per child, which is somewhat less than the typical supplementary feeding dose of

250 kcal/day [23]. The cost of this food is (0.363(0.65) + [0.819−0.096(0.25)]0.35)38,636 =

$19,867/yr.

Computational Approach

The resulting optimization problem is a stochastic dynamic program [24] with a 165-dimen-

sional system state, consisting of the 108 previous orders (Of
t� 54; . . . ;Of

t� 1, Os
t� 54

; . . . ;Os
t� 1

), the

55 previous forecast updates (�t−H,t;�t−H+1,t,�t−H+1,t+1; . . .;�t−1,t,�t−1,t+1,. . .,�t−1,t+H−1; �t,t,�t,t

+1,. . .,�t,t+H), and the current available budgets (Bf
t ;Bs

tÞ. Due to the so-called curse of dimension-

ality [24], we cannot compute the optimal solution. Instead, we find a closed-form solution to a

simpler version of the problem that has only a single shipment mode and allows negative orders

(§C.2 of S1 File). Motivated by the fact that this optimal solution is affine in the system state

(Theorem 1 in the S1 File), we numerically compute the death-minimizing policy to the original
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problem among ordering policies that are affine (within a specific class that has 12 parameters

to be optimized—see Eq (77) in S1 File) in the state variables. Other computational details

appear in §C.3 of S1 File.

Results

Forecasting Model

As in [16], our focus is forecasting and we are not attempting any inference with respect to the

parameters of the regression model; hence, we do not present the results of the regression

model; indeed, the only information we need to know about the regression model for our opti-

mization problem is contained in the parameters of the forecast evolution model. However, we

do note that the results of the calculations described at the end of §1.2 of the S1 File estimate

that the food assistance is associated with a reduction in the mean MUAC-Z in the population

of 1.4, suggesting that food assistance is very important for the health of the children in this

region.

Forecast Evolution Model

In the estimate of S1 (Fig D in S1 File), which is the covariance matrix of forecast updates

made for the same target period, the largest absolute values are along the diagonal, implying

that covariances between pairs of updates made in different periods for the same target period

are not strongly correlated with each other. In addition, the first updates, which correspond to

a lead time of nine months, exhibit a small amount of positive correlation with all future

updates, meaning that the first forecast is usually too conservative and future forecast updates

tend to move the forecast in the same direction. Our analysis shows that the predicted accuracy

of the forecasting method does not match the observed accuracy unless we incorporate the off-

diagonal terms of S1. The largest matrix entries of S1 are at positions (0,0) and (9,9), which are

the variances of the last and first updates, respectively. Hence, the first and last forecast updates

are the most informative, and each of the other forecast updates provides a relatively modest

amount of information. Nonetheless, these other forecast updates are still important because

their impact on forecast error accumulates over time.

The primary characteristic of our estimate of S2 (Fig E in S1 File) is that forecast updates

made in the same period for different future target periods tend to be slightly positively corre-

lated with each other. This feature could be explained by the fact that the same factors (e.g.

change in weather patterns) determine these updates.

In our context, the most important property of the forecasting method is its accuracy. We

measure accuracy by the root mean square error (RMSE) and compare the observed forecast

accuracy for different forecast lead times with the forecast accuracy predicted by our model

(Eq (13) in S1 File). The close fit of the true RMSE, the model RMSE and the RMSE of the

model estimated without regularization (Fig F in S1 File) suggests that our model describes the

accuracy of the forecasting method well, and regularization has only a small impact on forecast

accuracy.

Main Results

We compute the annual child mortality rate in the population of 2236 children as a function of

the food assistance delivery parameters l and p (Fig 2). Because the cost of transoceanic ship-

ments only influences the non-cash portion of food assistance, the curves in Fig 2 fan out to

the upper left from a single point in the lower right. The annual mortality rate decreases from

4.4% to 3.7% (a 16.2% relative reduction) as we switch from the current U.S. policy (l = 0.65
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for cash-based interventions, p = 0.5 for non-U.S. carriers) to a pure cash-based policy (l = 1).

Nearly all of the improvements in Fig 1 are due to increasing the use of cash-based interven-

tions: at l = 0.65, where the cargo preference parameter p has its maximum impact, increasing

p from 0.25 to 1 decreases the annual mortality rate from 4.5% to 4.4% (a 2.0% relative

reduction).

Our model is based on the estimated parameters, which are subject to statistical uncertainty.

We quantify the impact of uncertainty on our main results by performing a Monte Carlo simu-

lation with 1000 repetitions. We focus on uncertainty in parameters which are estimated in

this paper: the two covariance matrices, the month-specific means of MUAC-Z and the vari-

ance of MUAC-Z in the population. For each run of the Monte Carlo simulation, we draw

new values of the estimated parameters from the corresponding sampling distributions of the

estimators, which are normal distributions for the MUAC-Z means and Wishart distributions

for the two covariance matrices and the variance of MUAC-Z. The sampling distributions are

assumed to be independent of each other. For each set of drawn parameter values, we simulate

the performance of the procurement policy optimized for the nominal set of parameter values.

This allows us to simulate the uncertainty in the actual performance of the policy that was

derived based on nominal parameter values. The 95% confidence intervals are computed as

Fig 2. Dependence of the annual mortality rate on the proportion of food assistance utilizing cash-based interventions (l) and the

proportion of transoceanic shipments employing non-US-flag carriers (p). The current U.S. policy is represented by l = 0.65 and

p = 0.5, the elimination of the U.S.-flag vessel requirement corresponds to p = 1.0, and l = 1.0 corresponds to the U.S. switching entirely to

cash-based interventions.

doi:10.1371/journal.pone.0168432.g002
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the 2.5th and 97.5th percentiles of the empirical distributions of simulated mean annual mortal-

ity rates.

For the p = 0.5 and p = 1.0 curves in Fig B, Figs G(a-b) in S1 File show the 95% confidence

intervals for the mean annual mortality rate, and Figs G(c-d) in S1 File give the 95% confi-

dence intervals for the absolute reduction in the mean annual mortality rate relative to the

l = 0.65 case. The confidence intervals are much wider in Figs G(a-b) in S1 File than in Figs

G(c-d) in S1 File because sampling variability shifts the entire annual mortality rate curve up

or down. Hence, conditional on a particular realization of estimated parameters, Figs G(c-d)

in S1 File imply that an increase in l leads (with high confidence) to a decrease in the mean

annual mortality rate.

Cash-based interventions are both cheaper and faster than transoceanic shipments, and so

improved efficiency could be due to larger quantities procured because of the reduced cost of

cash-based interventions, or to more efficient ordering based on more accurate forecasts

because of shorter delivery lead times under the cash-based interventions. To isolate the

impacts of cost and delivery lead time, we recompute the curves in Fig 2 under two sets of

assumptions (fixing p = 0.5 in both cases): first, that the delivery lead times of transoceanic

shipments and cash-based interventions are both three months (Fig H in S1 File), so that the

only difference between the two procurement channels is the lower cost under cash-based

interventions, and then under the assumption that the cost of cash-based interventions is

the same as the cost of transoceanic shipments (we set cs = cf = (0.65(0.363) + 0.35[0.819

−0.096(0.5)] = $0.506/kg) (Fig H in S1 File), so that the only difference between the shipment

modes is the shorter lead time of cash-based interventions. These results imply that the main

driver of the mortality reduction associated with cash-based interventions is reduced cost, not

reduced delivery lead time.

Sensitivity Analysis

We perform three sensitivity analyses, while fixing the cargo preference parameter p = 0.5 in

the first two analyses. In the first analysis, we change the delivery lead times from the Kenya-

specific values of Lf = 3 months and Ls = 6 months to Lf = 2 months and Ls = 5 months, which

represent the respective averages of 8.5 weeks and 22.3 weeks over the nine countries consid-

ered in [8]. This modest reduction in delivery lead times has virtually no effect on the results

(Fig I in S1 File). In the second analysis, due to the imprecision of the effect of food assistance,

we re-analyze the problem with d = 0.0075/kg, which is half the effect of our base-case value of

d = 0.015/kg. The annual mortality rates are higher in this case (Fig J in S1 File), and the rela-

tive reductions in the annual mortality rates are approximately half of what they are in Fig 2.

The third sensitivity analysis considers an alternative estimate of the annual food budget,

which uses the worldwide supply-to-demand ratio of food assistance instead of the actual

amount of food delivered in [16]. If we assume that 790.7M people (adults and children) in

developing countries are undernourished [25], the cost to feed one person for one year is $40

[26], and the WFP spends $3.8B on food assistance (as in 2012 [3]), then the supply-to-

demand ratio of food assistance is 3:8B
790:7Mð40Þ

¼ 0:120 (i.e., the WFP is supplying only 12.0% of

the food necessary to feed all undernourished people, which is not inconsistent with an esti-

mate that 16% of consolidated appeals for emergencies in sub-Saharan Africa are funded [2]).

Assuming that the percentage of undernourished children is the same as the percentage of

children with Z values below -2 (Fig 9 of [27]), and using the counterfactual estimate that

70.8% of children in the 42 communities in [16] would have MUAC-Z <−2 in the absence of

food assistance (note that 22.8% of the children in [16] had MUAC-Z values below -2, which is

similar to the 23.8% of people in Sub-Saharan Africa who are undernourished [25]), we

Assessing the Impact of U.S. Food Assistance Delivery Policies on Child Mortality in Northern Kenya

PLOS ONE | DOI:10.1371/journal.pone.0168432 December 20, 2016 10 / 15



assume that the annual budget is enough to feed 0.12(0.708)(2236) = 190 children. Assuming a

dose of 250 kcal/day [23] per child and 3679 kcal/kg, we feed each child 24.8 kg/yr, for a total

of 4712 kg/yr. At post-2012 values of l = 0.65 and p = 0.5, the cost of this food is (0.363(0.65) +

[0.819−0.096(0.5)]0.35)4712 = $2382/yr. In summary, this more restrictive budget is much

smaller than the base-case budget of $19,867/yr, primarily due to the assumption that only

12% of needy—rather than all— children require food, but also because this budget has a

smaller dose (174.2 vs .250 kcal/day) and a slightly smaller cost (p = 0.25 vs. 0.5).

The results under this more restrictive budget (Fig K in S1 File) are qualitatively identical to

those under the base-case budget in Fig 2, except that the mortality reductions are much

smaller: switching from the current U.S. policy (l = 0.65, p = 0.5) to l = 1 achieves a relative

reduction in the annual mortality rate of only 2.2%, compared to 16.2% under the base-case

budget. Even though each kg of food has a higher impact under the restrictive budget (a reduc-

tion in the annual mortality rate of 1.39% per kg/person-mo under the restrictive budget and

0.60% per kg/person-mo under the base-case budget), the restrictive budget provides far less

food than the base-case budget (0.06 kg/person-mo vs. 0.61 kg/person-mo), which impedes

the leverage of the cash-based interventions.

Discussion

Results

As noted earlier, the international food assistance landscape has been changing quickly, and

for the better. But there remains much room for improvement in relaxing the direct transfer

in-kind and cargo preference requirements still built into Title II emergency food aid, which

remains the workhorse program for U.S. food aid. Our study directly tackles this issue and

generates two main results. First, we estimate that child mortality in northern Kenya can be

reduced by 16.2% (i.e., from 4.4% to 3.7%) if the U.S. joined the rest of the world and switched

entirely to cash-based interventions such as LRP, cash transfers and food vouchers; to our

knowledge, there are no other analyses that directly assess the impact of these changes on child

mortality. Although our forecasting data are from Kenya, the results are likely to be representa-

tive of sub-Saharan Africa (recall that 22.8% of the children in [16] had MUAC-Z values below

-2, which is similar to the 23.8% of people in Sub-Saharan Africa who are undernourished

[25]). The relative child mortality reduction achieved by a change in U.S. policy is approxi-

mately linear in the food budget, as can be seen by comparing the results under the base-case

budget and the restrictive budget considered in the sensitivity analysis: the budget ratio is

2382/19,867 = 0.120 and the relative mortality reduction ratio is 2.2/16.2 = 0.136. To the extent

that spatial targeting is efficient (i.e., areas with significant mortality receive significant

amounts of food assistance), the 16.2% estimate should be indicative of the overall relative

reduction in child mortality in sub-Saharan Africa. Given that the United Nations Millenium

Development Goal 4, which is to reduce child mortality by 67% between 2000-2015, was not

achieved in most countries [28], a change in U.S. policy might help accelerate progress on this

crucial metric.

The second main result is that the effect of relaxing the cargo preference restriction is dwar-

fed by the effect of increasing cash-based interventions. More specifically, eliminating the

cargo preference restriction (i.e., using all non-U.S.-flag vessels for transoceanic shipments)

would achieve the same child mortality reduction as increasing cash-based intervention use

from 0.65 to 0.69. Note that the cargo preference restrictions and the cash-based intervention

restrictions are not two alternative policies, but rather are closely connected: as can be seen in

Fig 2, the move to cash-based assistance renders cargo preference restrictions largely irrelevant

because much of the food would be purchased in developing countries, obviating the ocean
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freight problem. Hence, U.S. policymakers interested primarily in minimizing child mortality

should focus their efforts on relaxing the restrictions on cash-based interventions.

Our results also highlight two other issues. The MMFE parameter estimates (Fig D in S1

File) suggest that the power of the forecasting tool from [16] comes from the updates in the

first and last (ninth) months, which may be useful when considering other uses of this forecast-

ing tool. In addition, for slow-onset emergencies, we find that the benefits from switching to

cash-based interventions stem from cost reduction, not delivery acceleration (Fig H in S1

File). This finding suggests that prepositioning of food aid, which is an alternative approach

to improve timeliness [29] but—in contrast to LRP—increases the cost of transoceanic

food shipments by 25-40%, is not a cost-effective approach to slow-onset emergencies. None-

theless, prepositioning may be appropriate for unforeseen disasters (e.g., tsunamis, earth-

quakes) [30].

Limitations

The model and related data have some shortcomings that make it difficult to quantify the accu-

racy of our results. We estimate the increase in MUAC-Z from supplementary food by using

randomized controlled trial data on food’s impact on WHZ. Similarly, we estimate the rela-

tionship between MUAC-Z and mortality using data on the relationship between WAZ and

mortality, although the two relationships are very similar (Table 2 in [21]). The data in [16]

uses MUAC-Z standards from the 1985 CDC/WHO growth charts rather than the more recent

WHO charts [31]. We assume blanket distribution of food, which is the primary mode of food

distribution in slow-onset disasters; analyzing a food allocation policy that targeted children

with low MUAC-Z would be much more difficult because we would have to better understand

the left tail of the MUAC-Z distribution.

Fitting the MMFE model in a nonstationary environment is problematic. Kenya experi-

enced an exceptional drought in the year 2000, and we removed the first 12 months from the

data set to provide a reasonable fit to the forecasting model in [16]. Even with this omission,

the standard MMFE model did not provide a good fit to the forecasts, and we needed to incor-

porate off-diagonal terms of S1 because the initial forecast (for nine months in the future) was

typically conservative, and subsequent forecast updates were positively correlated. In addition,

the forecasting model in [16] has not been applied outside of the arid region of northern

Kenya. It is difficult to assess whether—and how—the model’s forecasting performance would

change if used in other parts of sub-Saharan Africa. However, Africa receives >80% of U.S.

emergency food assistance and the primary recipients are countries with large arid and semi-

arid regions (Chad, Ethiopia, Kenya, Mali, Niger, Somalia, South Sudan, Sudan) [12]. So our

study region of northern Kenya is not atypical.

Finally, we assume that the cost and timeliness of LRP extend to cash transfers and food

vouchers. While this assumption is likely to be conservative (cash and vouchers may be faster

and less expensive than LRP), the optimal mix of cash, food or vouchers to deliver food assis-

tance is a multi-faceted problem that includes the impact on local food prices, consumers and

producers in urban and rural areas [7], and is beyond the scope of the present study. A range

of studies have questioned whether in-kind food aid deliveries disrupt recipient food markets,

to the detriment of local producers, or even help prolong civil conflict [2, 32–34]. These

hypothesized effects help explain the mixed support of recipient countries for traditional, in-

kind food aid. There is a literature documenting other impacts of this policy switch: e.g., con-

sumers prefer cash-based assistance [35] and humanitarian agency personnel in conflict zones

are at a reduced risk [36, 37]. These arguments helped motivate passage of the Global Food

Security Act of 2016 (S. 1252) by the U.S. Congress in July 2016 that permanently authorizes
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the Emergency Food Security Program by which the U.S. now provides cash-based food assis-

tance along the lines we recommend.

Taken together, despite our considerable effort to capture the forecasting, lead time and

ordering interactions, the main driver of our results is the different cost of the two procure-

ment modes (i.e., cf and cs in Table 1). These estimates are reasonably accurate, and suggest

that our second main result—that the impact of restrictions on cash-based interventions is far

greater than the impact of cargo preference restrictions—is quite robust. However, the first

main result—that the elimination of the restriction on cash-based interventions would

decrease child mortality by 16.2%—is less precise.

Conclusion

We estimate that the restriction on the use of cash-based interventions (LRP, cash transfers

and food vouchers) is much more consequential than the agricultural cargo preference

requirement, and that a shift by the U.S. to rely entirely on cash-based interventions for its

food assistance distribution could reduce child mortality by 16.2%. This improvement is due

primarily to the reduced cost of cash-based interventions, not to the reduced delay.
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