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Abstract
Gut microbial communities participate in key aspects of host biology, including
development, nutrient absorption, immunity and disease. During host ageing,
intestinal microbes undergo dramatic changes in composition and function and
can shift from commensal to pathogenic. However, whether they play a causal
role in host ageing and life span has remained an open question for a long time.
Recent work in model organisms has revealed for the first time that gut
microbes can modulate ageing, opening new questions and opportunities to
uncover novel ageing-modulating mechanisms and to design anti-ageing
interventions by targeting the gut microbiota.
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Introduction
In hundreds of millions of years of co-evolution, commensal 
microbial communities and their hosts have adapted to one 
another, becoming strictly inter-dependent. A sophisticated 
metabolic cross-talk between microbes and their multi-cellular 
hosts ensures balanced homeostasis and finely regulates most 
physiological processes. During ageing, the complex interaction 
between host and its associated microbial communities—termed 
“microbiota”—undergoes important changes, which can result 
in dramatic phenotypic consequences for the host, including 
dysbiosis, infections and overall functional decline. However,  
what the triggers are of this age-related host-microbiota imbal-
ance is still poorly understood. While a young and healthy 
immune system is capable of efficiently maintaining a taxo-
nomically diverse commensal microbiota, age-related immune 
dysfunction—that is, immunosenescence1—could reduce the  
selection on commensal and pathogenic microbial taxa, allowing 
proliferation of pathobiont and pathogenic bacteria. On the other  
hand, ecological (species-species competitive interactions) 
and evolutionary (emergence of novel strains within a species) 
dynamics in the microbial communities of the gut could also 
trigger age-dependent host demise. Rather than being mutually 
exclusive, a combination of immunosenescence and microbiota- 
intrinsic population and evolutionary dynamics could lead to 
irreversible host dysfunctions, resulting in rapid deterioration 
of health and increased risk for age-related pathologies and  
ultimately death (Figure 1).

Ageing and the microbiota
Biological ageing is a multi-factorial phenomenon, consisting 
of the loss of homeostasis at multiple scales of biological  
complexity, from the molecular (for example, DNA and pro-
teins) to the organelle, cell, tissue, organ and metabolic/system 
level. Both genetic and environmental factors determine ageing 
progression in different species. Research in laboratory model 
organisms has demonstrated that single gene mutations (for  
example, in genes in the insulin–insulin-like growth factor 1 
[insulin-IGF1], AMPK and TOR pathways) significantly affect 
life expectancy and ageing2–5. Additionally, important gene vari-
ants (for example, in the FOXO3 gene) have been associated in 
humans with extreme longevity6. On the other hand, environmen-
tal interventions, such as dietary restriction, changes in nutrient 
sensing, stress and changes in temperature, can also modulate  
life span and ageing in experimental model organisms7–10.

Dwelling at the interface between organisms and the external  
environment, commensal microbes participate in several processes,  
including nutrient absorption11, synthesis of essential vitamins, 
drug processing, pathogenicity, organ development12,13, circadian 
rhythms14, and immune system maturation and modulation15. 
Among all organs, the human gut lumen harbours the  
largest amount and diversity of commensal microbes, whose 
composition and function have been importantly associated 
with the modulation of the insulin signalling pathway and in  
general with the overall metabolic state of the host16. Dramatic  

Figure 1. Age-dependent changes in gut microbiota. Evolutionary and ecological community changes during host ageing may play 
fundamental roles in shaping age-specific microbial communities. (Above) De novo mutations (asterisk) or horizontal gene transfer in young-
associated commensal bacterial species may lead to the evolution of highly fit bacterial strains that become more abundant in aged individuals, 
eventually leading to age-related pathogenicity. (Middle) Species-species bacterial ecological interactions could affect community dynamics 
that shape microbiota composition throughout host life span, ultimately affecting host physiology during ageing. (Bottom) An age-dependent 
decline in immune function may cause decreased surveillance over microbial communities over time, leading to age-dependent dysbiosis. 
On the other hand, a healthy microbiota itself could be necessary to preserve a healthy immune function during ageing.
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compositional changes occur with development in the human gut 
microbiota during early childhood, and the community becomes  
richer and more stable afterwards17,18. Despite being diverse in 
composition across healthy individuals, the adult gut microbial 
composition is considered functionally stable and involved in 
essential processes, such as protein translation, carbon metabo-
lism, adhesion, amino acid and vitamin synthesis19. Age-related 
frailty is importantly associated in humans with the loss of 
diversity in the core microbiota groups20. Transplantations  
of microbes from obese individuals into mice raised in germ-
free conditions lead to dramatic effects in recipient mice, includ-
ing higher adiposity and differences in fatty acids and amino 
acid metabolism21. Notably, gut microbes can effectively tune 
host inflammatory responses and several gut microbial taxa 
play a powerful anti-microbial action, suggesting a potential 
immune role of the gut microbiota, which can help fight infec-
tions by pathogenic bacterial species. For instance, faecal  
material transfer from healthy donors is successfully used in the 
clinic to resolve acute Clostridium difficile infections22. Probiotic 
diets have been associated with beneficial life span effects in a 
mouse study23, and human centenarians and ultra-centenarians 
are characterised by a gut microbial composition enriched in 
health-associated bacteria24. Studies in yeast, flies and mice  
humans have shown that the gut microbiota undergoes dra-
matic changes during the ageing process20,25–27, raising the ques-
tion of whether these changes are a consequence or a cause of 
ageing. Experimental work in flies showed that, upon ageing,  
commensal microbes can lead to dysbiosis, which is followed 
by loss of barrier function and ultimately host demise28. Recent 
work in nematode worms demonstrated that feeding worms 
with different bacterial species and with Escherichia coli mutant 
strains significantly tunes host life span29,30. Remarkably, despite 
the extensive influence of commensal microbes on host biology, 
very little is known about whether and how the complex micro-
bial communities associated with vertebrate intestines affect  
ageing and whether they can be used to modulate ageing and life 
span.

A recent study conducted in a naturally short-lived vertebrate, 
the turquoise killifish (Nothobranchius furzeri)31,32, showed that  
heterochronic gut microbiota transfer from young subjects to  
middle-aged individuals led to life span extension and delayed 
motor decline33. Turquoise killifish undergo a wide range of  
age-related transformations that resemble human ageing-related  
phenotypes, including cancer, loss of pigmentation, reduced 
fecundity, neurodegeneration, cognitive decline, and cellular 
senescence, offering a unique opportunity to study ageing in a 
short-lived vertebrate32,34. Notably, unlike invertebrate model 
organisms, such as worms and flies, captive killifish have a very 
complex gut microbial community, consisting of hundreds of  
bacterial taxa, similar in complexity to other vertebrates,  
including mammals33. Although young-derived gut microbiota 
can extend life span and delay ageing in this short-lived  
vertebrate model, several important questions still need to be  
answered. Is the life span modulatory role of the gut microbes 
amplified in short-lived species or is this a more general  
mechanism that applies broadly to other vertebrates, including  
mammals? Do gut microbes modulate host ageing in vertebrates  
via conserved ageing pathways or via novel mechanisms?

Possible mechanisms by which the gut microbiota 
can modulate host ageing
Pioneering work in nematode worms showed that mitochondrial 
unfolded protein response is the target of a key microbial metab-
olite, colanic acid, whose production leads to extended worm  
longevity29. Mice raised on a life-long dietary restriction regime—
typically associated with longer life span—have a significantly 
altered gut microbiota, characterised by lower abundance of  
bacterial taxa negatively associated with life span and a higher  
representation of bacteria of the genus Lactobacillus35,36. Trans-
fer of germ-free mice with conventional specific pathogen-free 
microbiota induces high levels of serum IGF1, suggesting a 
direct connection between gut microbiota and the metabolic  
activation of canonical ageing pathways37. Similarly, high levels of 
health-beneficial short-chain fatty acids lead to serum upregulation  
of IGF1, further supporting a strong mechanistic link between  
the insulin-IGF1 pathway and gut microbial metabolism37. 
Short-chain fatty acids generated by commensal gut microbes 
induce anti-inflammatory responses38, protecting from bacte-
rial and fungal infections39 and leading to life span extension 
in worms40. Through similar mechanisms, young-associated 
gut microbes may induce a healthier state and a slower ageing 
rate41. The health-span–promoting drug rapamycin also has anti-
inflammatory actions42 and, when transiently administered to  
middle-life mice, significantly reshapes the gut microbiota, lead-
ing to increased abundance of segmented filamentous bacteria 
in the small intestine43. The gut microbiota could in fact affect  
ageing and life span via its action on the immune system, mod-
ulating pro- and anti-inflammatory responses, importantly  
associated with host ageing44. Studies in gnotobiotic mice have 
helped elucidate the contribution of different components of 
complex gut microbiota in modulating host’s metabolism and  
physiology (for instance, in the case of inflammatory bowel  
disease–induced dysbiosis)45. In gnotobiotic mice, single 
microbial taxa (for example, Bacteroides thetaiotamicron and  
Faecalibacterium prausnitzii) play complementary roles in the 
gut and can lead to specific metabolic alterations in gut epithelial 
mucus production and in short-chain fatty acid synthesis and 
consumption, which could be importantly linked with the risk 
for ageing-related pathologies46. Colonising the gastrointestinal 
tract of laboratory mice with microbiota from wild mice, inves-
tigators were able to reduce inflammation, promoting host  
fitness and survival after lethal viral infections and against  
colitis-associated tumorigenesis47. These results raise the  
question of whether similar effects could be induced by main-
taining a highly diverse, young-associated intestinal microbiota 
throughout mice ageing. A functioning inflammasome and B-cell 
compartment are key to shaping the gut microbiota compo-
sition, as shown in experiments conducted in mice lacking  
Nlrp6 and RAG2, respectively45. Specifically, inflammasome 
and adaptive immune function were essential to shaping the 
microbiota in the presence of pro-inflammatory bacteria45. It is 
possible that, during ageing, immune function shifts towards 
inflammatory responses against commensal bacteria, leading to 
host-microbiota disbalance. Similarly, chronic inflammation is 
associated with a higher risk for age-associated diseases44. In the 
context of infection, immune tolerance for commensal bacteria 
indeed shifts towards inflammation, compromising this delicate  
host-microbiota balance48. Systemic translocation of the gut  
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pathobiont Enterococcus gallinarum in a mouse model predisposed 
to autoimmunity has been causally associated with triggering 
of autoimmune responses, further providing a mechanistic  
connection between microbiota composition and host immune  
status49.

Immunosenescence may indeed lead to a failure in maintaining 
commensal microbiota structure and function; on the other 
hand, microbial-intrinsic population dynamics—which could 
lead to the emergence of more pathogenic bacteria—may trigger 
immune failure and eventually induce functional decline in the 
host. Longitudinal studies in human samples over a six-month 
period have shown that gut microbial communities are rather  
stable, and within-host bacterial evolution is the consequence 
of horizontal gene transfer among bacterial strains from the 
same microbiota rather than occurring from de novo mutations 
or introgression from bacteria resident in other hosts50. If this 
approach is extended to the study of bacteria throughout host 
life span, it could be possible to ask whether microbes evolve  
during host ageing and whether higher virulence—associated with  
pathogenicity in older subjects—is the consequence of the  
microbial evolution to evade immune surveillance.

Overall, the study of the host-microbiota dynamics throughout 
ageing can help reveal novel physiological and molecular mech-
anisms that contribute to the maintenance of homeostasis and 
ultimately help design powerful and personalised interven-
tions that target the microbiota as a novel fundamental player  
implicated in the regulation of host ageing processes.

Open questions
The intimate connection between host physiology and commen-
sal microbial function supports the implication of host-associated 
microbiota in the majority—if not the entirety—of biologi-
cal processes of the host, including ageing. The study of the 
microbiota in the context of host ageing is a novel field of 
research and sets itself at the interface of several fields of inves-
tigation, including medical microbiology, immunology, ecology,  
evolutionary and population genetics, tissue and cell biology, 

physiology, nutrition, and metabolic research. Several con-
founders affect the microbiota changes occurring during human  
ageing, including age-dependent dietary changes, drug use, 
changes in mobility and housing conditions (community dwell-
ing or elderly care facilities). Beyond descriptive connections 
between microbial composition and host health status, very 
few studies to date have dissected the causal role of the gut 
microbiota during ageing. To unweave the complex functional  
connection between host and microbiota in the context of  
ageing, it will be of paramount importance to study the role of 
not only bacteria but also archaea, viruses, fungi and microbial 
eukaryotes living between complex multi-cellular hosts and 
their environment. This holistic understanding of community  
dynamics can help reveal the intricate ecology of health, disease 
and ageing processes. To this end, it will be key to adopt novel 
experimental and analytical approaches to study the impact of  
different complex microbial communities on the host. Ultimately,  
by acting on microbial composition, nutrition and the immune  
system, it will be possible to test the efficacy of novel interventions 
to beneficially impact ageing and delay the onset of age-related 
pathologies.
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