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Palau’amine has received a great deal of attention in the past two decades as an attractive

synthetic target by virtue of its intriguing molecular architecture and significant immuno-

suppressive activity. Here we report the total synthesis of palau’amine characterized by the

construction of an ABDE tetracyclic ring core including a trans-bicylo[3.3.0]octane skeleton at

a middle stage of total synthesis. The ABDE tetracyclic ring core is constructed by a cascade

reaction of a cleavage of the N–N bond, including simultaneous formation of imine, the

addition of amide anion to the resulting imine (D-ring formation) and the condensation of

pyrrole with methyl ester (B-ring formation) in a single step. The synthetic palau’amine is

confirmed to exhibit excellent immunosuppressive activity. The present synthetic route has

the potential to help elucidate a pharmacophore as well as the mechanistic details of

immunosuppressive activity.
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T
he pyrrole-imidazole alkaloids comprise a large family of
natural products and have received a great deal of attention
for their potent biological activities and tremendous

structural diversity1,2. Palau’amine (1) was originally isolated
from a sponge, Stylotella agminata, in 1993 by Scheuer and
colleagues3,4 as a novel class of pyrrole-imidazole alkaloids and
the proposed structure was revised in 2007 (refs 5–9). Since the
initial disclosure of a proposed structure and the later structural
revision, palau’amine (1) has been an attractive synthetic target
because of its intriguing molecular architecture and significant
biological properties, which include antifungal, antitumour and
immunosuppressive activities. The immunosuppressive activity
has been of particular interest and two studies on its mode of
action have been reported10,11. Thus, development of 1 as
molecular probes is required for further elucidation of the
potential of palau’amine as an immunosuppressive agent. In
addition, investigations into the structure–activity relationship
will also be needed for the development of novel lead compound
of immunosuppressive agent. However, palau’amine has been a
well-known natural product and proven to be the most
challenging synthetic target. The noteworthy structural features
of palau’amine include its two guanidine moieties, fused
polycyclic system with a spiro cycle, fully substituted complex
cyclopentane ring, eight contiguous stereogenic centres
including a nitrogen-substituted quaternary carbon centre and
trans-bicyclo[3.3.0]octane skeleton (D/E ring junction). Not
surprisingly, many attempts to synthesize palau’amine9,12–30

and related compounds31–37 have been reported, and numerous
reviews of these different approaches have also been
published38–43. To date, however, there has been only one
report of a total synthesis, by Baran and colleagues44 in 2010,
which was followed by the development of an asymmetric version
in 2011 (ref. 45). The most difficult challenge in the total
synthesis of 1 would be the construction of a trans-
bicyclo[3.3.0]octane system that corresponds to a D/E ring
junction and Baran and colleagues44 has addressed this by
adopting the transannular reaction of nine-membered lactam 2,
named macro-palau’amine, leading to 1 at the final step (Fig. 1).
Despite their short and elegant synthetic route to 1, however, the
total synthesis of palau’amine is still a challenging undertaking.

In particular, as the basic structure of 1 remains to be established,
there is need of an efficient method for constructing an ABDE
tetracyclic ring system that includes a trans-bicyclo[3.3.0]octane
skeleton and, although the development of such a system will be
extremely difficult, it is also absolutely critical for not only the
field of synthetic organic chemistry but also the elucidation of
pharmacophores and the development of palau’amine probes.

Herein we report the successful establishment of an alternative
synthetic route to 1 based on the efficient construction of an
ABDE tetracyclic ring core at the middle stage of total synthesis,
in which many analogues of 1 possessing various ring core
systems are first obtained.

Results
Synthetic plan. Our synthetic plan of 1 is outlined in Fig. 1.
In this synthesis, palau’amine 1 would be obtained by the
transformation of functional groups after the construction of a
hexacyclic ring core 3. The two cyclic guanidines corresponding
to the C and F rings of 3 would be built on amino and carbonyl
groups of ABDE tetracyclic ring core 4. The B and D rings of 4
would be formed by a sequential cyclization reaction of amide
and pyrrole nitrogen with the imine and methyl esters of 5,
respectively. As the acylimine moiety of 5 is highly electron
deficient, the nucleophilic addition of amide anion to the C10
carbon centre would occur to form a D ring over the steric strain
of the trans-bicyclo[3.3.0]octane skeleton (D/E ring junction).
The iminoester moiety of 5 would be generated from hydrazide 6
by a N–N bond cleavage and a formation of imine at the C10
position. Overman et al.12 have also employed a hydrazine
fragmentation in their efforts towards the palau’amine core and
the reductive cleavage of the N–N bond occurred spontaneously
due to the high strain of the pyrazolidine ring. On the other hand,
we planned to adopt an E1cB (E-elimination, 1cB-first order with
respect to conjugate base) eliminative cleavage of the N–N bond
of 6, to obtain iminoester 5 directly, although, unlike in the case
of reductive cleavage, there have been very few examples of E1cB
eliminative cleavage of N–N bonds35,46. The direct formation of 5
under basic conditions was expected to induce further cascade
cyclization reactions leading to 4, that is, the ABDE tetracyclic
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ring core 4 might be obtained from 6 in a single step. The
pyrazolidine ring of 6 would be obtained from 7 by the
introduction of an electron-withdrawing group and ring
contraction via an intramolecular SN2 reaction. In 2009, we
reported an efficient synthesis of the cyclopentane core 7 (ref. 47).
The synthesis of 7 began with commercially available cyclo-
pentenone 10, which was converted into acyltosylhydrazide 9 in
22% overall yield after eight steps. The mercury(II) trifluo-
methanesulfonate (Hg(OTf)2)-catalysed cyclization reaction48 of
9 proceeded smoothly to yield a tetra-substituted carbon centre
corresponding to the C16 position of 1 and piperazine 8 was
obtained in 84% yield. Compound 8 was subsequently converted
into 7 as a single diastereomer in 35% yield by a sequence
consisting of oxidation to enone, Morita–Baylis–Hillman
reaction, 1,4-addition of nitromethane and reduction of ketone
(see Supplementary Fig. 1). First, therefore, we attempted to
synthesize the E1cB eliminative cleavage precursor 6 from the
compound 7.

Synthesis of the cascade cyclization precursor 6. After
introduction of the tert-butylchlorodimethylsilyl (TBS) group into
the primary alcohol of 7 to increase hydrophobicity, the tosyl
group was reductively removed and the nitro group was reduced
to the amino group by treatment with SmI2. The resulting primary
amine was protected by the 9-fluorenylmethyloxycarbonyl (Fmoc)
group to afford 11 in 81% yield from 7. Further protections of
secondary alcohol and acylhydrazide proceeded smoothly to give
12 by treatment with tert-butyldimethylsilyl trifluoromethane-
sulfonate as a silylation reagent followed by di-tert-butyl dicar-
bonate in the presence of a catalytic amount of 4-dimethylami-
nopyridine. As we expected, Boc protection occurred on the
nitrogen possessing the acyl group due to the acidity of NH
protons and steric hindrance49. Treatment of 12 with triethylsilyl

trifluoromethanesulfonate and 2,6-di-tert-butyl pyridine at
� 78 �C readily afforded silyl ketene aminal, and the crude
product was treated with N-bromosuccinimide in a mixed solvent
of tetrahydrofurane (THF) and methanol to give bromide 13 in an
82% two-step yield along with 7–14% of starting material 12. The
stereochemical outcome of 13 was determined by a nuclear
Overhauser effect spectroscopy experiment (Supplementary
Fig. 2), which indicated the b-configuration of bromide. It is
likely to be that the attack of bromide on the concave face was
derived from the steric hindrance of the vinyl group. Subsequent
methanolysis of 13 afforded an amide anion 13a that immediately
induced an intramolecular SN2 reaction, leading to 13b. At this
stage, 13b was considered to readily epimerize to 14, to avoid the
steric repulsion of a tighter concave face. The stereochemistry of
14 was determined by a nuclear Overhauser effect spectroscopy
experiment (Supplementary Fig. 3). Next, we attempted to
introduce a strong electron-withdrawing group to nitrogen on a
tetra-substituted carbon centre. After various examinations, we
found that only a trifluoroacetyl group could be introduced to
afford 14 by treatment with an excess amount of trifluoroacetic
anhydride. Although overacetylated product 16 was also obtained,
the extra trifluoroacetyl group on the carbamate was automatically
removed in methanol at 40 �C in a quantitative yield. Finally,
removal of the Fmoc group and condensation of the resulting
primary amine with pyrrole trichloromethyl ketone 17 afforded 18
as a precursor of the key cascade reaction in an 83% three-step
yield (Fig. 2).

Construction of the ABDE tetracyclic ring core. Having pre-
pared the cleavage precursor 18, we next attempted the single-
step construction of an ABDE tetracyclic ring system. To induce
an E1cB eliminative cleavage of the N–N bond, 18 was treated
with 3.0 equiv of lithium hexamethyldisilazide (LHMDS) as a
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strong base at � 78 �C and warmed to room temperature
(condition I). The reaction afforded the expected tetracyclic
compound 19 that corresponds to the ABDE ring of palau’amine,
including the trans-bicyclo[3.3.0]octane skeleton, in modest yield
(Fig. 3). The transfused D/E ring junction and the stereo-
chemistry of 19 were confirmed by a nuclear Overhauser effect
experiment and by comparison of the coupling constant with the
natural product (see Supplementary Figs 4 and 5). It was note-
worthy that the coupling constant at the C11 proton indicated the
characteristic value (J¼ 14.5 Hz) of a trans-bicyclo[3.3.0]octane
skeleton. The reaction pathway leading to the ABDE ring system
19 is explained below. Treatment of 18 with 3.0 equiv of a strong
base would abstract two NH protons and hydrogen at the C10
position, thereby inducing a b-elimination of nitrogen possessing
an electron-withdrawing group of 18’, as shown in Fig. 3. This
would lead simultaneously to both the cleavage of the N–N bond
and the imine formation at the C10 position to give 18A. The
nucleophilic addition of amide anion to the electron-deficient
C10 carbon centre would occur immediately to give 18B
possessing a trans-bicyclo[3.3.0]octane skeleton (D/E ring

junction). Furthermore, the cascade reaction would not stop at
18B due to the remaining pyrrole anion and subsequent con-
densation of pyrrole with methyl ester formed a B ring to give 19
(Fig. 3). The results encouraged us to scale up this reaction from a
few milligrams to 100 mg with the goal of completing the total
synthesis of palau’amine. However, the reaction was found to
suffer from poor reproducibility, often leading to poor to low
yields even after a prolonged reaction time. After careful
consideration of the reaction mechanism, we established an
improved method involving the partial protonation of the anionic
intermediates with acetic acid (condition II). On treatment with
3.0 equiv of LHMDS, substrate 18 undergoes stepwise lithiation of
the two NH protons at � 78 �C and then the C10-proton at
around 0 �C. Once the C10 proton is abstracted, the formation of
18A and the subsequent cyclization of amide anion leading to
18B would proceed rapidly and completely. Indeed, only 18B was
detected as its protonated form by thin layer chromatography
(TLC) (see Supplementary Fig. 6), indicating the fast conversion
of 18A to 18B and the slow formation of 18C from 18B. The
smaller pKa value (in dimethyl sulfoxide) of the pyrrole moiety
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(should be o23 of pyrrole) compared with that of methanol (28)
predicted that the equilibrium between 18B and 18C favoured the
former, which led us to remove the methoxide ion without
quenching the pyrrole anion. Thus, after checking the conversion
of 18 into 18B by TLC, the mixture was cooled to � 78 �C again
and an exact 1.0 equiv of acetic acid was slowly added.
On warming to room temperature, the desired product 19
was obtained in up to 74% yield with good reproducibility in
acceptable scales for total synthesis (Fig. 3).

The mechanism underlying the cascade reaction under
‘condition II’ is explained as follows. The intermediate 18B
possesses three nitrogen anions of Boc-carbamate (B24), pyrrole
(o23) and trifluoroacetoamide (B17), according to the order of
basicity by comparison of the pKa values of protonated NH
functional groups. Thus, an exact 1.0 equiv of acetic acid would
protonate only the anion of Boc-carbamate and trianion 18B
would be converted into dianion 18D. Although the mixture was
warming to room temperature, the remaining pyrrole anion
induced condensation with methyl ester, simultaneously generat-
ing methoxide as in the case with trianion. However, as the
condensation product 18E possesses an active NH proton, unlike
in the case with trianion, methoxide does not attack the pyrrole
amide but extracts the active Boc-NH proton to give the same
dianion 18C with a quenching methoxide anion. Among various
acids, including phenol and imide derivatives, acetic acid was
found to be the best protonating reagent. In addition, precise
amounts of LHMDS and acetic acid are very important for this
pKa game reaction. As stated above, we succeeded in establishing
an efficient method for constructing the basic core structure of
palau’amine.

Theoretical calculations on the coordination effect of lithium.
The remaining question in this cascade reaction is how the amide
anion of 18A got close to the C10 carbon centre, to overcome the
steric strain of the trans-bicyclo[3.3.0]octane skeleton, although
the Boc-imine moiety of 18A was highly electron deficient. Thus,

we focused on the coordination effect of lithium ion. If the
lithium countercation of amide anion formed a coordination
bond with the carbonyl group of methyl ester, the amide nitrogen
(N14) and the C10 carbon centre would be located at tran-
sannular positions that are close to each other due to the strain of
the eight-membered ring. To investigate this coordination effect,
theoretical calculations were carried out by the density functional
theory method. The optimized structure of 18A including lithium
ions is shown in Fig. 4a (the effects of coordination of solvent
THF molecules to lithium ions are discussed in the
Supplementary Data; see the Supplementary Discussion and
Supplementary Figs 7 and 8). Interestingly, the calculation actu-
ally indicated not only the expected coordination of lithium
amide to the carbonyl group of methyl ester but also the
unpredictable coordination of lithium salt of pyrrole anion to
the carbonyl oxygen of the Boc group. Therefore, the two
trans-oriented side chains were quite close to each other by the
chelation to two lithium ions and the distance between N14 and
C10 at the transannular positions was calculated to be only
2.94 Å. Owing to the short distance between the two reaction
points, the energy barrier of the cyclization reaction (18A-18B)
was estimated to be only 1.5 kcal mol� 1, allowing the reaction to
proceed smoothly (see Fig. 4b for the potential energy profile of
the cyclization reaction). Thus, the nucleophilic addition of the
amide anion (N14) occurred before the rotation of the single
bond of C10–C11, which was also restricted by the coordination
effect of lithium ion, to afford 19 as a single diastereomer
possessing the b-configuration of the NHBoc group at the C10
position. From the calculated result, it was concluded that the
chelation effect of lithium ion played a significant role in the
formation of the trans-bicyclo[3.3.0]octane skeleton. In fact, this
cascade reaction in the presence of 3.6 equiv of hexamethylpho-
sphoric triamide as a lithium ion scavenger afforded a complex
mixture and the desired cyclized (D/E ring) products and related
intermediates were not detected. Furthermore, the use of other
bases, such as sodium hexamethyldisilazide (NaHMDS) and
potassium hexamethyldisilazide (KHMDS), also did not give any
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All calculations were performed by the Gaussian 09 package58.
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desired cyclization products. In addition, the yield of tetracyclic
19 was dramatically decreased to 10B20%, when the initial
treatment of 3.0 equiv of LHMDS was directly conducted at 0 �C.
This result clearly suggested that the coordination of lithium ions
to the two carbonyl groups must be formed first at � 78 �C before
the extraction of the C10 proton occurs at 0 �C.

Total synthesis of palau’amine. Having established an efficient
method for constructing an ABDE ring system that overcame the
most difficult barrier to the total synthesis of palau’amine, we
attempted a total synthesis from 19 (Fig. 5). We first tried to
construct a C-ring by using an amino group (N9) on C10 and a
carbonyl group at C6 as a foothold. The amino group (N9) of
19 was converted into thiourea by removal of the Boc group
according to Ohfune’s method50 followed by treatment with
N-benzyloxycarbonyl isothiocyanate (CbzNCS) and the pyrrole
amide at C6 was selectively reduced to hemiaminal 20 as an
isolable compound in 88% overall yield after three steps from 19.
The removal of the Boc group did not proceed after the reduction
of the pyrrole amide, indicating that the planar configuration of the
sp2 carbon centre reduced the steric hindrance around the N9
amino group. Furthermore, the use of carbodiimide derivatives for
the direct formation of guanidine did not proceed and only
CbzNCS as a small and reactive reagent reacted with the sterically
hindered resulting N9 amine. As the thiourea moiety of 20 could
not be directly converted into guanidine due to the predominant
cyclization from hemiaminal oxygen to activated thiourea, the
thiourea moiety was converted into isothiourea 21. At this stage,
the structure of the synthetic intermediate including the
trans-bicyclo[3.3.0]octane skeleton was unambiguously confirmed
by an X-ray diffraction study (Supplementary Method
and Supplementary Data 1). Treatment of 21 with LHMDS
and methanesulfonyl chloride at � 78 to � 40 �C induced a
sequential reaction of mesylation, the elimination of mesylate and
the addition of nitrogen to the isothiourea moiety to give
pentacyclic 22 in 65% yield, in a manner similar to that of the
synthesis of (þ )-dibromophakellstatin reported by Nagasawa and
colleagues51. Having constructed a C-ring, we next tried to form an
F-ring. Only the reductive condition using diisobutylaluminium

hydride was successful for the removal of the trifluoroacetyl
group and subsequent treatment of the resulting amine with
CbzNCS afforded thiourea 23 in good yield. The thiourea moiety
was directly converted into guanidine 24 by the condensation
using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide52 with
o-nitrobenzylamine in 82% yield. However, the oxidative
cleavage of the vinyl group without the oxidation of pyrrole was
difficult, probably due to the steric hindrance of the TBS group at
the C17 position. Thus, two TBS groups were removed by
hydrogen fluoride (HF) � pyridine and only primary alcohol was
protected again by the triisopropylsilyl group, to give 25 in a 67%
two-step yield. In the case of the free secondary hydroxyl group,
dihydroxylation using OsO4 and tetramethylethylenediamine in
dichloromethane53 proceeded smoothly at � 78 �C to give osmate
and subsequent hydrolysis in the mixed solution of methanol and
1 M HCl afforded the desired diol. The oxidative cleavage of diol
was successful only in the mixed solution of methanol and water
(4:1) to give an unstable F-ring product 26, which gradually
decomposed even under the neutral condition, due probably to the
retro-aldol reaction at the C17 position. Product 26 was then
directly used for the next reaction without purification. With the
construction of an ABCDEF ring system of palau’amine, the
conversions of functional groups into 1 were finally attempted. The
substitution of the secondary hydroxyl group to chloride with
stereoretention proceeded by the use of the neighbouring-group
effect of guanidine on the F-ring. The activation of secondary
alcohol by using sulfuryl chloride induced the participation of
guanidine depicted as 27 in analogy with ‘massadine aziridine’54

and the subsequent nucleophilic attack of chloride afforded 28
with an a-configuration of chloride, along with a small amount of
epimer at the C20 position as an unnatural configuration. On the
other hand, the hydroxyl group of hemiaminal also reacted with
excess sulfuryl chloride to give dichloride when more than
1.0 equiv of sulfuryl chloride was used, and the chloride at the
C20 position was readily hydrolysed to convert back to 28. Next,
we had to develop a new method for converting the methylthio
group into an amino group, leading to guanidine under acidic
conditions, because we found that hexacyclic intermediates were
readily decomposed under the basic conditions. After various
examinations, we achieved the desired conversion by the reaction
of a trifluoromethanesulfonyl imide salt of o-nitrobenzylamine
with sulfoxide 29 to give 30 in a 70% two-step yield. The
overoxidation into sulfone and the use of a salt other than
trifluoromethanesulfonic imide afforded only a complex mixture.
In the final transformation of the functional group, the primary
alcohol was converted into chloromethanesulfonate 31 (ref. 55)
after removal of the triisopropylsilyl group. The azidation reaction
of 31 proceeded at room temperature to afford 32 as a protected
palau’amine. When methanesulfonate was adopted as a leaving
group, the azidation reaction required a high temperature (50 �C)
that also induced azidation at the C17 position via the
neighbouring-group effect. Fortunately, the minor epimer of the
unnatural configuration at the C20 position disappeared at
this stage. Finally, Hg-lump irradiation followed by direct
hydrogenation as a deprotection of 32 afforded 1 in 64% yield as
a 3TFA salt. Synthetic 1 showed spectral data (1H and
13C nuclear magnetic resonance (NMR), high-resolution mass
spectra) completely identical to those of natural palau’amine 1 (refs
3,7). Throughout this total synthesis, 1 was obtained in 0.039%
overall yield after 45 steps (78% average yield at each step) from
commercially available cyclopentenenone 10. As a result of the
45-step synthesis, many synthetic intermediates as derivatives of 1
possessing various ring core systems were actually obtained for the
first time. In future studies, we plan to perform activity evaluations
for each deprotected synthetic intermediate, to further elucidate
the pharmacophore.
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Biological test of synthetic palau’amine. Finally, the immuno-
suppressive activity of synthetic palau’amine was examined
(Fig. 6). Lymphocytes derived from a mouse spleen were treated
with various concentrations of an aqueous solution of synthetic
1 for 1 h and then the cells were incubated with phorbol
12-myristate 13-acetate and lectin56. After incubation for 5 h, the
interleukin-2 (IL-2) in the culture supernatant was measured by
using an enzyme-linked immunosorbent assay kit. Thereupon,
the synthetic palau’amine�3TFA salt was confirmed to exhibit
strong immunosuppressive activity, as shown in Fig. 6. The IC50
value was determined to be 45.3 mM, which is a practical level of
activity, as it was for cyclosporine A. Not surprisingly, the
synthetic intermediate 30 as a negative control did not exhibit
immunosuppressive activities, due to the large hydrophobic
protecting groups of all polar functional groups, and it slightly
increased the production of IL-2. Therefore, we confirmed that
not only the spectral data but also the biological properties of
synthetic 1 were identical to those of natural palau’amine.
Recently, Tepe and coworkers10,11 reported that palau’amine 1
and its related natural products inhibit IkBa degradation. On the
other hand, we revealed that the synthetic palau’amine�3TFA salt
inhibited the release of IL-2 from lymphocytes in the same
manner as cyclosporine A, which is known to inhibit the
IkBa degradation and nuclear factor-kB57. Thus, our synthetic
palau’amine�3TFA salt was also expected to exhibit a similar
inhibition of IkBa degradation.

Discussion
In summary, we have achieved the total synthesis of palau’amine
1 via the single-step construction of an ABDE tetracyclic ring
system. In the single-step construction, the chelation effect of
lithium salt forming an eight-membered ring was crucial for the
construction of a trans-bicyclo[3.3.0]octane skeleton (D/E ring
junction) by bringing two reaction points close to each other
at the transannular position. With the establishment of an
efficient method for constructing a tetracyclic basic structure of
palau’amine, various synthetic analogues for structure–activity
relationship study and chemical probes of palau’amine would be
accessible. For example, protected palau’amine 28 might be able
to introduce labeling groups at desired spots on a C-ring, F-ring
or a primary amine of an E-ring. Therefore, the chemistry
described here offers not only a solution to a formidable synthetic
challenge but also an alternative synthetic route to elucidate a
pharmacophore and the mechanistic details of bioactivities of
palau’amine. As our synthetic route is actually too long to develop
1 as a practical immunosuppressive agent at the current stage,
further improvement of the key cascade cyclization reaction and
the development of a shorter route to the cyclization precursors
as a second-generation synthesis are also currently underway in
our laboratory.

Methods
General. All the reaction were carried out in a round-bottomed flask with an
appropriate number of necks and side arms connected to a three-way stopcock
and/or a rubber septum cap under an argon atmosphere. All vessels were first
evacuated by rotary pump and then flushed with argon before use. Solution and
solvent were introduced by hypodermic syringe through a rubber septum. During
the reaction, the vessel was kept under a positive pressure of argon. Dry THF was
freshly prepared by distillation from benzophenone ketyl before use. Anhydrous
CH2Cl2, dimethylformamide, ethanol, MeCN, methanol, pyridine and toluene were
purchased from Kanto Chemical Co. Inc.

Infrared spectra were recorded on JASCO FT/IR-4100 spectrophotometer using
5 mm KBr plate. Wavelengths of maximum absorbance are quoted in cm–1.
1H-NMR spectra were recorded on a JEOL ECA-400 (400 MHz), JEOL ECA-500
(500 MHz) and Bruker AV-500 (500 MHz) in CDCl3, d–MeCN and D2O,
respectively. Chemical shifts are reported in p.p.m. and signals are expressed as
singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m) and broad (br).
13C-NMR spectra were recorded on a JEOL ECA-400 (100 MHz), Bruker AV-400N

(100 MHz) and Bruker AV-500 (125 MHz) in CDCl3, C6D6, CD3CN and D2O.
Chemical shifts are reported in p.p.m. High-resolution mass spectra were recorded
on a Thermo Scientific Exactive, Instrumental Analysis Division, Equipment
Manager Center Creative Research Institution, Hokkaido University and a Waters
SYNAPT-G2 Si HDMS, Tokushima Bunri University. HPLC was recorded on a
HITACHI D-2,500 Chromato-Integrater. Analytical TLC was performed using
0.25 mm E Merck Silica gel (60F-254) plates. Reaction components were visualized
with phosphomolybdic acid or ninhydrin or p-anisaldehyde in 10% sulfuric acid in
ethanol. Kanto Chem. Co. Silica Gel 60N (particle size 0.040–0.050 mm) was used
for column chromatography. Mouse IL-2 ELISA was purchased from Biolegend.

Experimental data. For 1H and 13C NMR spectra of compounds, see
Supplementary Figs 9–48. For the comparisons of 1H and 13C spectra of the natural
and synthetic palau’amine, see Supplementary Figs 49 and 50, and Supplementary
Tables 1 and 2. For the HPLC of synthetic palau’amine, see Supplementary Fig. 51.
For the Cartesian Coordinates from density functional theory calculations (in Å)
of 18, see Supplementary Tables 3–7. For the experimental procedures and
spectroscopic and physical data of compounds and the crystallographic data of
compound 21, see Supplementary Methods.
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