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Nuclear quantum effects (NQEs) are known to impact a number of features associated with
chemical reactivity and physicochemical properties, particularly for light atoms and at low
temperatures. In the imaginary time path integral formalism, each atom is mapped onto a
“ring polymer” whose spread is related to the quantum mechanical uncertainty in the
particle’s position, i.e., its thermal wavelength. A number of metrics have previously been
used to investigate and characterize this spread and explain effects arising from quantum
delocalization, zero-point energy, and tunneling. Many of these shapemetrics consider just
the instantaneous structure of the ring polymers. However, given the significant interest in
methods such as centroid molecular dynamics and ring polymer molecular dynamics that
link the molecular dynamics of these ring polymers to real time properties, there exists
significant opportunity to exploit metrics that also allow for the study of the fluctuations of
the atom delocalization in time. Here we consider the ring polymer delocalization from the
perspective of computational topology, specifically persistent homology, which describes
the 3-dimensional arrangement of point cloud data, (i.e. atomic positions). We employ the
Betti sequence probability distribution to define the ensemble of shapes adopted by the
ring polymer. The Wasserstein distances of Betti sequences adjacent in time are used to
characterize fluctuations in shape, where the Fourier transform and associated principal
components provides added information differentiating atoms with different NQEs based
on their dynamic properties. We demonstrate this methodology on two representative
systems, a glassy system consisting of two atom types with dramatically different de
Broglie thermal wavelengths, and ab initio molecular dynamics simulation of an aqueous
4M HCl solution where the H-atoms are differentiated based on their participation in
proton transfer reactions.
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1 INTRODUCTION

In recent years, path integral (PI) methods have seen significant
application as a means to study nuclear quantum effects
(NQEs), such as those arising from zero-point energy and
tunneling, in chemical systems. In the imaginary time PI
approach, each atom is described as a ring polymer
composed of a set of beads where the adjacent beads
interact via harmonic springs (Feynman and Hibbs, 1963;
Chandler and Wolynes, 1981; Parrinello and Rahman,
1984). As the mass of the nuclei or the temperature of the
system increases, the stiffness of the harmonic spring between
the beads is increased, the polymer shrinks, and the ring
polymer representation of the atom becomes more
“localized”. Conversely, for lower temperatures or for
lighter particles, the weaker coupling between the beads
allows the ring polymer to adopt a range of shapes
reflecting the quantum mechanical delocalization in the
atom’s position. The quantum mechanical uncertainty in
the atom’s position is composed of the distribution of the
centroid position and the ring polymer’s spread.

NQEs have been demonstrated to affect hydrogen bond
strengths, and thus the physicochemical, structural, and
dynamic properties of protic solvents like water (Hardy et al.,
2001; Morrone and Car, 2008; Habershon et al., 2009; Paesani
and Voth, 2009; Pamuk et al., 2012; Harada et al., 2013; Ceriotti
et al., 2016; Kim et al., 2017; Ruiz Pestana et al., 2018). The
structure and dynamics of the species within acidic media has also
received significant attention. For example, NQEs are observed to
increase delocalization within protonated structures and as such
enhance proton transfer within acidic systems (Ivanov et al.,
2015; Marsalek and Markland, 2017; Napoli et al., 2018;
Kawashima et al., 2018).

Several metrics have been proposed to characterize atomic
delocalization in path integral systems. The imaginary-time
mean square displacement (Berne and Thirumalai, 1986)
evaluates a correlation function along the ring polymer. A
set of shape metrics have also been introduced that
characterize the anisotropy of the ring polymer in different
chemical environments. The extension of the ring polymer is
projected along a particular coordinate of interest e.g., in the
case the proton transfer between two oxygen atoms projecting
along the O-O coordinate (Benoit and Marx, 2005; Schran
et al., 2018). By constructing idealized ellipsoid models of the
bead density and their associated principal axes, an
approximate shape of the distribution can be obtained
(cigar-like or disk-like). Complementary, is the construction
and analysis of the radius of gyration (Rg) of the ring polymer,
defined as the average root mean squared distance of the
replicas from the polymer center (or centroid), or related
quantities such as the ratio of Rg values for different atoms,
and gyration tensors (Markland et al., 2011, 2012; Dreschel-
Grau and Marx, 2014; Schran et al., 2018). These shape metrics
thus provide a route to analyze NQEs once a relevant atom has
been identified. However, it leaves open the possibility to
investigate a broader set of shape metrics to capture the
changes in the global shape of the ring polymer and thus

identify a priori atoms undergoing interesting changes in their
“quantumness”. In particular, these methods only utilize the
static information obtained from a path integral molecular
dynamics (PIMD) or path integral Monte Carlo (PIMC)
sampling. While originally the dynamics obtained by PIMD
was introduced purely as a tool to sample the quantum
ensemble (Parrinello and Rahman, 1984; Tuckerman et al.,
1993), methods such as centroid molecular dynamics (Cao and
Voth, 1994; Jang and Voth, 1999) (CMD) and ring polymer
molecular dynamics (Craig and Manolopoulos, 2004;
Habershon et al., 2013) (RPMD) have demonstrated that for
systems where the quantum coherence of the nuclei is rapidly
damped that classical evolution under the imaginary time ring
polymer Hamiltonian can be used to predict the dynamics of a
quantum system. This opens the door to using the specific time
series information of the global ring polymer configurations
generated by these methods to identify quantum events.

Within the last decade, concepts from the mathematical field
of algebraic topology have been combined with computational
methods to characterize the global shape of data (Carlsson, 2009).
Termed computational topology or topological data analysis
(TDA), this field has seen rapid developments (Edelsbrunner
and Harer, 2009). Persistent homology is a TDA method that
produces compact summaries of the global shape and topology of
sets of points in the form of barcodes (Ghrist, 2008). Given a
collection of data sets (ring polymers representing atoms in our
case), persistent homology provides an objective way to quantify
and compare global shapes of the data sets by measuring
distances between their barcodes. Statistical analyses on
collections of such barcode distances may also be used to
distinguish between different distributions. Here we apply
persistent homology to study the time-dependent fluctuations
of the ring polymers arising from RPMD and thermostatted
RPMD (TRPMD) (Rossi et al., 2014) simulations and assess
its ability to detect chemically meaningful information
about NQEs.

In particular, we compare and contrast different shape and
persistent homology metrics for two different chemical systems.
The first system is a Kob–Andersen glass that contains two atom
types of dramatically different quantum mechanical uncertainty.
Not only is persistent homology able to elucidate variations in
ring-polymer shape, but the Wasserstein distance between
adjacent snapshots in time (which measures the change in the
shape of the ring polymer), and its associated Fourier transform
are found to be remarkably different for the two different atom
types. In the second system, we examine the ability of the shape
and persistent homology metrics to identify proton-transferring
(PT) vs. non-PT H-atoms in an ab initio path integral simulation
of an aqueous 4 M HCl solution. Again, a pronounced difference
is observed in the Fourier transform of the Wasserstein distance,
where PT H-atoms have significantly more fluctuation in shape
than their non-PT counterparts. This observation paves the way
for employing persistent homology in the study of a wide variety
of chemical systems where NQEs are relevant, to not only identify
atoms that have different nuclear behavior, but understand the
change in quantum delocalization of an atom over time and along
complex reaction coordinates.
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2 COMPUTATIONAL METHODS

2.1 Static Atomic Uncertainty Metrics
In this work we consider several metrics that reflect the
distribution of the distances of replicas relative to the centroid
of the ring polymer as well as between the replicas themselves.
Results for these quantities are included in the Supplementary
Information for comparison and completeness. For a system of p
replicas of NA atoms, we denote the position of replica k of atom j
as r(k)j and the position of the centroid of atom j as rj. The gyration
radius of atom j for any given configuration of the ring polymer is
defined as the root mean square of the distance between the
centroid and the replicas,

Rg,j �

������������
1
P
∑P
k�1

∣∣∣∣∣∣r(k)j − rj
∣∣∣∣∣∣2

√√
. (1)

This quantity is then most commonly averaged over all
equivalent atoms and over the ensemble sampled by the
simulation. More generally, we can examine the gyration
tensor of atom j defined as

S(j) �
1
P
∑P
k�1

(r(k)j − rj)(r(k)j − rj). (2)

Note that the subscript (j) of the tensor specifies index of the
atom, and not its rank. The tensor can be represented by a
symmetric 3 × 3 matrix whose off-diagonal entries give the xy, yz,
and xz components of the tensor. Diagonalization of the 3 × 3
matrix representing the gyration tensor yields eigenvectors that
describe the principal directions of the distribution of points and
eigenvalues that describe the spread of the distribution in these
directions. If we denote the ordered eigenvalues λ2x , λ

2
y , and λ2z ,

they can be used to obtain the gyration radius as R2
g,j � λ2x + λ2y +

λ2z and additional shape descriptors common in polymer and
macromolecular science as follows (Mattice and Suter, 1994). The
asphericity

b � 3
2
λ2z −

R2
g

2
, (3)

describes the deviation from a fully symmetric distribution (for
which b � 0), whereas the acylindricity

c � λ2y − λ2x, (4)

emphasizes symmetry about any two coordinate axes. Relative
shape anisotropy is defined as

κ2 � 3
2

λ4x + λ4y + λ4z(λ2x + λ2y + λ2z)2 − 1
2
, (5)

where a value of zero only occurs when all points are spherically
symmetric, while a value of one is observed if all points are on a
line. Metrics based on the inter-bead distances could include the
distribution of all centroid to bead distances, or the distribution of
pairwise distances between individual beads within the ring
polymer, {∣∣∣∣∣r(k)j − r(l)j

∣∣∣∣∣ : 1≤ k≤ l ≤ P}. The imaginary time

mean-square displacement (iMSD) is also frequently employed
to study a variety of aspects of path-integral simulations.
Variations in the iMSD are characteristic of the spread of the
ring polymer and also provide information about short-time
dynamics (Tuckerman, 2010). It is calculated as

Δr2(iτ) �〈 1
NAP

∑N
j�1

∑P
k�1

∣∣∣∣∣r(k)j − r(k+l)j

∣∣∣∣∣2〉, (6)

where angle brackets denote averaging over the sampled
ensemble, τ � lβZ/P and replica indices should be taken
modulo p in the ring polymer.

2.2 Dynamic Shape Metrics From Persistent
Homology
As an extension of the methods provided above, it is intriguing to
combine the information contained within shape metrics of the
polymer with its dynamic behavior. Toward this end we consider
homology, the method from classical algebraic topology that
captures how a space is connected. Herein, we first describe
the general principles of homology and persistent homology, as
well as known distance metrics to measure changes in topological
features, as they are both applied to the ring polymer dynamics
trajectories.

2.2.1 Persistent Homology as Metric of Shape
In the setting of homology directly amenable to computation, the
space is modeled as a combinatorial object called the simplicial
complex, which is a collection of vertices, edges, triangles, and
higher order simplices glued together “nicely” (Munkres, 1984).
For instance, a triangular mesh is a 2-dimensional simplicial
complex. The ranks of the homology groups, termed Betti
numbers and denoted by βi in dimension i, have intuitive
interpretations for small dimensions. In particular, β0 counts
the number of connected components in the object or space, β1
counts the number of loops or holes, and β2 counts the number of
enclosed voids. Since we are interested in the global shapes of ring
polymers that naturally form loops, we study the first Betti
number β1.

Persistent homology (Edelsbrunner et al., 2002) produces a
more comprehensive picture (than simple homology) of the
shape of space by constructing a sequence of growing
simplicial complexes, rather than a single complex. Changes in
βi values are tracked across this sequence, and this information is
presented in a compact form as a barcode (one barcode in each
dimension i). Such persistent homology representations come
with stability guarantees—small changes in input produce only
small changes in the representation (Cohen-Steiner et al., 2007).

Given the collection of beads in a ring polymer, we consider a
ball of radius r centered at each bead (Figure 1). We
systematically grow the radius r from 0 to infinity (in this
study, we measure r in Angstroms). Observe that as the radius
grows, balls centered at beads that are close to each other will

Frontiers in Chemistry | www.frontiersin.org March 2021 | Volume 9 | Article 6249373

Hu et al. Persistent Homology Metrics

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


intersect before those centered at beads that are farther apart. The
intersections of these balls over the entire range of values of r
capture all information about the global shape of the ring
polymer. These intersections are used to define the Vietoris-
Rips (VR) complex (Edelsbrunner and Harer, 2009) of the ring
polymer. When r � 0, the VR complex consists of the individual
points associated with the beads of the ring polymer, as the balls
have no intersections. As r is increased, the intersection of a pair
of balls is captured by adding the edge connecting the points to
the VR complex. Triangles, tetrahedra, and higher order simplices
are added to the VR complex to capture higher order
intersections of balls. As the VR complex grows, small
connected components merge into bigger connected
components, and holes as well as voids appear and disappear.

The top row in Figure 1 displays the construction of a VR
complex for a ring polymer with 11 beads. 2D balls centered at the
points (representing the beads) are shown as circles. At r � 0 (first
figure on the left), none of the balls intersect, and hence the VR
complex consists of individual points representing the beads. At
r � 1

2, edges added to capture pairwise intersections of the balls
form two loops in the VR complex, shown as a square and a
hexagon in the second figure. At r �

�
2

√
2 , balls centered at beads

one to four intersect pairwise, and hence simplices (tetrahedron
1,234, and its component triangles) are added to the VR complex
to fill up the square loop, thus “killing” this feature of the

topology. The barcode in the second row of Figure 1 records
the birth and death of each loop in the VR complex as the radius is
increased. The hexagonal loop formed by beads 3, 2, 5, 6, 7, and 8,
for instance, is born, (i.e. formed) at r � 1

2, and dies, (i.e. is closed
up) at r � 1. The complete β1 barcode is shown in the fourth (last)
figure, with all holes closed up at r � �

2
√

. We can use this barcode
as the representation of the shape of the ring polymer.

2.2.2 Fluctuations in Shape
We could compare the shapes of two ring polymers by comparing
their β1 persistence barcodes. To quantify this comparison, we
want to compute a distance between the barcodes. We are using
the word distance in the mathematical sense: a distance is a
function that accepts two distributions as input, and returns a
nonnegative real number which measures how close the two
distributions are. To this end, we want to convert each barcode to
a vector with the same number of entries, and then compute the
distance between the corresponding vectors. We build a Betti
sequence by sliding a vertical line across each radius value and
keeping track of the intersection of the line and the barcode
(bottom row, Figure 1). For example, a vertical line at r � 1

2
intersects the barcode twice as there are 2 bars at r � 1

2. Thus the
Betti sequence is constructed by recording the number of bars at
each radius. Hence, denoting h(r) to be the number of
intersections at radius r, we define the Betti sequence as

FIGURE 1 | Top Row: A ball of growing radius r (using the units of the coordinate system) is centered at each bead. Middle Row: A β1 barcode records the birth and
death of the holes. Each hole is “represented” by one of its edges, which is listed on the vertical axis ([1, 2], [2, 3], [6,9]). Bottom Row: A Betti sequence is constructed
by sliding a vertical line at each radius and keeping track of the numbers of intersection of the line and the barcode.
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{h(r)}r ∈ [0,1]. The choice of upper bound of r � 1 is motivated by
the observation that for all ring polymers we considered in this
study, the holes were closed well before the radius value of r � 1 in
each chemical system (r � 1 Bohr for the Kob–Andersen glass and
r � 1 Å for the proton transfer example). In other words, h(r) � 0
for r ≥ 1. The resolution at which we cover [0, 1] is guided by the
barcodes—we increment r in steps fine enough to distinguish
births and deaths of each bar. We used 400 steps for the
Kob–Anderson glass system and 1,000 steps for the second
system studying proton transfer.

In the final step, we normalize this Betti sequence to create
the Betti sequence probability distribution indexed by the
number of intersections. We use the maximum number of
intersections observed in any ring polymer as the common
number of intersections used in all cases, thus standardizing
the lengths of all Betti sequence probability distributions.
Each such distribution adds up to a total probability of 1,
by definition. Note that there are other vectorizations of
persistence barcodes or diagrams known, e.g., persistence
landscapes (Bubenik, 2015) and persistence images (Adams
et al., 2017). These constructions are arguably more general
than our Betti sequences. At the same time, we found the Betti
sequences simpler to compute, and they served our purpose in
this study of ring polymers efficiently.

Comparison of two different ring polymer shapes can be
made by calculating the Wasserstein distance (WD) between
the Betti sequence probability distributions. Stability results
have recently been presented for WD of persistent barcodes
(Skraba and Turner, 2020). The Wasserstein distance (Villani,
2009), also termed the Earth Mover’s Distance (Rubner et al.,
2000) is a metric that measures the distance between the two
normalized distributions as the cost of transforming one into
another. We present the definition and then illustrate steps in
the WD computation using Figure 2. More generally, let K �
{K(i)}pi�1 and L � {L(j)}qj�1 be two normalized probability
distributions. Let dij be the distance between the bins i in K
and j in L. In the formal setting of WD, this distance could be
measured in units of length between actual piles of earth.
Subsequently, the WD is also specified in units of length by
default. But more generally, dij could be set as the difference
between probability measures in the corresponding bins i and j,
and hence need not be measured in units of length (vide infra).
We consider all possible transformations of K into L. We
represent such a transformation by the matrix of values [fij]
with fij denoting the mass, (i.e. probability) transferred from
bin i in K to bin j in L. The WD between K and L is given by the
optimal objective function value of the following optimization
problem.

FIGURE 2 | Illustration of Wasserstein distance computation between two Betti sequence probability distributions. Top row shows two Betti sequences. The
second row shows the corresponding Betti sequence probability distributions P (left) and Q (right). The last row shows the optimal transformation of P into Q, which
consists of three steps: moving the red box from bin 0 to one contributing 0.1 × |0 − 1| � 0.1, the green box from bin three to one contributing 0.1 × |1 − 3| � 0.2, and the
cyan box from bin three to two contributing 0.2 × |2 − 3| � 0.2. Therefore, the Wasserstein distance is 0.1 + 0.2 + 0.2 � 0.5.
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min ∑k
i�1

∑l
j�1

dijfij, (7)

∑l
j�1

fij ≤K(i), i � 1, . . . , k, (8)

∑k
i�1

fij ≤ L(j), j � 1, . . . , l, (9)

∑k
i�1

∑l
j�1

fij � 1, (10)

fij ≥ 0, i � 1, . . . , k, j � 1, . . . , l. (11)

Constraints 8) and 9) specify that we cannot transport more
probability out of a bin than what is available. Equation 10
ensures we transform all of K into L. The Wasserstein distance
can be computed efficiently by solving this optimization problem
as a transportation problem (Ahuja et al., 1993).

We illustrate the Wasserstein distance computation on two
example Betti sequence probability distributions in Figure 2. The
two Betti sequences are presented in the top row of Figure 2 as the
number of intersections with the β1 barcode as a function of the
radius of the balls (used to construct the VR complex). The
middle row of Figure 2 presents the corresponding Betti sequence
probability distributions. Recall that we normalize the Betti
sequence to create the Betti sequence probability distribution
indexed by the number of intersections. Each such distribution
adds up to a total probability of 1, by definition.We then compute
theWasserstein distance to transform the probabilityK on the left
to probability L on the right. The third row of Figure 2 illustrates
the optimal way to redistribute the area associated with the
probability distributions to make the two equal. This
transformation is effected by first moving the f01 � 0.1
probability from intersection 0 to intersection 1 (the red box).
This move contributes 0.1 × |0 − 1| � 0.1 to the overall distance.
In the next step, the f32 � 0.2 probability is moved from
intersection 3 to intersection 2 (the cyan box). This move
contributes 0.2 × |2 − 3| � 0.2 to the total distance. Finally, we
move the f31 � 0.1 probability at intersection 3 to intersection 1
(the green box), which contributes 0.1 × |1 − 3| � 0.2 to the
distance. Hence the Wasserstein distance between the two
Betti sequences is given as 0.1 + 0.2 + 0.2 � 0.5.

2.2.3 Application to Ring Polymers
To study the dynamic fluctuations to ring polymer shape, the β1
barcode for each ring polymer atom representation is determined
at time t and the compared to at time t + 1. In our application to
ring polymer shape comparison, we set k � l � B1. This
corresponds to the largest value observed in any Betti
sequence in the entire data set, i.e., the largest number of bars
in the β1 barcode of any ring polymer (at any radius value). The
Wasserstein distance between time sequential Betti sequence
probability distributions is then determined. For a trajectory
with N snapshots, we compute the Wasserstein distance vector
with N − 1 entries, with the tth entry specifying the Wasserstein
distance between snapshots t and t + 1. The value dij is set
to

∣∣∣∣i − j
∣∣∣∣.

WD � [wd1,2 wd2,3 / wdN−1,N]. (12)

Finally, in recognizing that the Wasserstein distance
vector WD captures the fluctuation in shape over time by
measuring distances between adjacent snapshots, we
performed a Fourier transform of WD, followed by
principal component analysis. We then used the
coefficients for the two largest frequencies for comparing
the characteristic fluctuations in ring polymer shape across
different chemical systems.

FIGURE 3 | (A) The average Betti sequence distribution of all type A and
type B atoms (B) Distribution of Wasserstein distances between adjacent
snapshots in time observed over the entire simulation trajectory (C) Principal
components analysis capturing 90% of the total variance in the datasets
using trajectory windows of ± 20 snapshots (12 ps).
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We have made the Python code and sample data available for the
main calculations in a GitHub repository (Hu et al., 2020).

3 RESULTS AND DISCUSSION

3.1 System 1: The Kob–Andersen Glass
The RPMD simulation of the Kob–Andersen glass forming
system was taken from Markland et al. (2011, 2012) and
contained atoms types A and B with different degrees of
atomic delocalization. This was determined by their respective
de Broglie thermal wavelength Λ �

���
βZ2

m

√
, where the mass for

particle A was a magnitude smaller than particle B and
consequently particle A exhibited more quantum fluctuations
than its counterpart. The cubic box consisted of 172 typeA and 44
type B particles for a total of 216 particles. The path integrals were
discretized into p Trotter slices (beads) with P � 64 for both
particles, with 3,000 ps (5 x 106 steps with 0.6 fs time steps) of
configurations saved every 1,000 steps (0.6 ps) yielding a total of
5,000 snapshots.

3.1.1 Static Atomic Uncertainty Metrics
For the extreme case of the delocalized type A and highly
localized type B atoms in the Kob–Andersen glass, all metrics
that evaluate shape are highly differentiated (Supplementary
Table S1). In the case of the bead centroid metrics, the radii of
gyration are 0.19 and 0.017 Å for the A and B atoms,
respectively. These values belie distributions in the
individual distances of the polymer beads from the centroid
that are statistically very different and have nominal overlap,
as illustrated in Supplementary Figure S1A. Analysis of the Rg

tensors indicates that the A atoms are much more aspherical
(b � 7.67 · 10− 2, Eq. 3) than B atoms (b � 5.84 · 10− 3), and
similarly more acylindrical (Supplementary Table S1).
Neither atom type is anisotropic, having κ2 values of 10− 4 −
10− 5 (Eq. 5). The pair-wise bead-bead distance distributions
have little overlap for A and B atoms (Supplementary Figure
S1B), which in turn is reflected in the imaginary time mean
square displacement for the A and B atoms as demonstrated in
Supplementary Figure S2.

3.1.2 Homology and Persistent Homology Metrics
The alternative shape metric based on the Betti sequence of all A
and B atoms is presented in Figure 3. The Betti sequence
distribution, which captures the number of intersecting radii as a
function of R, exhibits two distinctly different distributions in this
case. The distribution of Wasserstein distances for the type A and B
atoms are significantly different, where the A atoms explore a much
broader shape space than B (meaning there is more variation in the
Betti sequence distribution from one snapshot to the next for type
A). Further, the magnitude of the Wasserstein distances are much
larger for type A relative to B, meaning that from one snapshot to
the next there are large changes to the shapes that the A ring
polymers adopt. This is further demonstrated by monitoring the
time evolution of Wasserstein distances, as shown in
Supplementary Figure S3. To quantify the fluctuation in
Wasserstein distances, the Fourier transform was studied for

type A and B atoms, followed by principal component analysis.
As illustrated in Figure 3C, the first principal components (PC1) for
both atom types are clearly well separated, and along with PC2, are
able to explain 90% of the variance. The Fourier transform was
examined with different lengths of sampling duration, with no
appreciable changes observed (Supplementary Figure S4). The
Kob–Andersen glass forming system thus represents a proof of
principle that a broader suite of shape metrics may be suitable for
understanding shapes of ring-polymer representations of atoms,
and that persistent homology metrics can reveal identifying
characteristics of atoms with dramatically different quantum
behavior.

3.2 System 2: Aqueous 4M Hydrochloric
Acid
Given the effectiveness of theWasserstein distance and its Fourier
transform in distinguishing atoms in the Kob–Andersen Lennard
Jones system, it is thus pertinent to examine the ability of such
new methods to reveal varying properties of atoms with much
closer nuclear quantum behavior. To test an extreme case, where
normal distance-based shape metrics do not indicate significant
variations in quantum mechanical behavior, we turn to the
identification of proton-transferring H-atoms in a 4 M HCl
aqueous solution.

The TRPMD simulation of the 4MHCl solutionwas taken from
the work of Napoli et al. (2018a). The cubic box of length 14.926 Å
consisted of 102 water molecules, eight excess H+ and Cl−. The path
integrals were discretized into P � 32 Trotter slices for all atoms. A
total of 123 ps of path integral simulations using the revPBE0-D3
hybrid functional (Adamo and Barone, 1999; Grimme et al., 2010;
Goerigk and Grimme, 2011) with a 2 fs time step and sampling
frequency were analyzed for a total of 61,555 snapshots. Analysis of
topological properties of the ring polymers focused on the H-atoms,
where they were split into two primary groups based on whether or
not they underwent proton transfer during the course of the
trajectory. To identify transferring H-atoms, a sequential
filtration process was employed. First, the centroids of all O-
and H-atoms were examined, wherein zundel cations were
identified by employing an O–H distance criterion of 1.3 Å
(Napoli et al., 2018; Schran et al., 2018). Within this set, time
windows of 40–200 fs were then examined and any changes to the
connectivity of the H-atom to different O-atoms were examined.
Changes to O-atoms bonded to the H-atomwas then identified, (i.e.
anH-atom is connected toO1, then forms a zundel with theH-atom
shared between O1 and O2, and then the H-atom forms a single
bond with O2), and subsequently the connectivity of each bead of
the H-atom ring polymer was analyzed to understand the timescale
associated with all 32 beads changing O-atom partners. An average
time of 40 fs was observed for the complete proton transfer (PT) of
all 32 beads. Using this criterion (that all 32 beads must change
O-atom partners) within a 40 fs time window (+ 20 fs relative to the
center of the time window) a total of 2,283 proton transfer events
were identified during the simulation trajectory. Non-PT H-atoms
were identified as those wherein the 32 beads did not change their
covalent connectivity during a 40 fs time window. In total, there are
1,267 windows of time where H-atoms do not undergo pT. This
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yields a total of 98,638 snapshots and is comparable to the 2,283 ×
40 � 91,320 snapshots in the proton-transferring dataset.

3.2.1 Shape Metrics
Comparison of the Rg of H-atoms undergoing PT and those
chemically inert H-atoms yields nearly identical values of
0.1211 Å and 0.1206 Å, respectively (Supplementary Table
S3). This is in good agreement with prior observations of
nearly identical Rg in other room-temperature proton
transferring H-atoms in formic acid (Ivanov et al., 2015).
Similarly there is little discrimination in shape factors, with
the shape anisotropy only being slightly larger for proton
transferring atoms (κ2 of 1.36 · 10− 2) relative to non-
transferring counterparts (κ2 of 8.03 · 10− 3; Supplementary
Table S2). Analysis of the underlying distribution of distances
between all beads and the centroid reveals significant overlap
(Supplementary Figure S5), and indeed, applications of
Student’s t-test reveal the centroid distance distributions to be
statistically equivalent (Supplementary Table S3).

Interestingly, a slightly better identification of PT and non-PT
H-atoms is obtained using the bead–bead pairwise distance

distribution, which passes the student t-test, however, the
average values are still nearly identical, at 0.2155 Å and
0.2151 Å. A more clear delineation is further obtained in the
distributions of the Betti sequences of the H-atoms undergoing
proton transfer relative to the unreactive atoms (Supplementary
Figure S5), where the average distances for reactive and
unreactive atoms is 0.1286 vs. 0.1263, respectively, also being
statistically significant and passing Student’s t-test
(Supplementary Table S3). This suggests that the Betti
sequence distribution, which contains more information about
the ring-polymer shape, is a more sensitive shape metric than the
methods based on distances within the ring polymer.

3.2.2 Persistent Homology Metrics
As in the Kob–Andersen glass, the Wasserstein distances between
PT and non-PT H-atoms in adjacent frames were then examined to
identify the fluctuation in shape from one snapshot in the trajectory
to another. Unlike the ensemble shape distributions for these atoms,
the distribution of the Wasserstein distances for the two sets of
H-atoms is very well-separated (Figure 4A). The PT atoms exhibit a
larger range of accessible shapes, (i.e. the distribution broad), and the
fluctuation in shape (which leads to a large cost for changing the
Betti distribution from one snapshot to the next) is significantly
larger than in the case of non-PT atoms, sampled within a similar
40 fs time window. The fluctuations themselves are illustrated in
Supplementary Figure S6. This illustrates that the time dependent
fluctuations in shape may be an alternative metric for identifying
variations in nuclear quantum behavior between atom sets. Perhaps
just as important is the observation that the NQEs may manifest
themselves differently for the static vs. dynamic features of ring
polymers. The Fourier transform of the Wasserstein distances was
then performed and the two dominant principal components plotted
in Figure 4B. In contrast to the Kob–Andersen glass system, the
correlation between the first and second principal components is
much higher, however they are still clearly differentiated for the PT
vs. non-PT atoms. In combination, these data demonstrate that
metrics based upon the fluctuation of atom delocalization in time are
highly sensitive to quantum behavior, being able identify such
phenomena when traditional ensemble averaged shape metrics
based upon distance criterion (like the gyration radius) are
inadequate.

4 CONCLUSION

As the pervasiveness of path integral methods increases within the
applied computational chemistry community, new tools are
needed to identify atoms where NQEs may be relevant and
understand the role of NQEs in reactive processes. While a few
metrics exist that identify variations in atomic position uncertainty,
they are optimal for systems where the difference in uncertainty is
large between different atom types. This work expands the set of
available tools to study the shape of the delocalization of atomic
positions, the uncertainty associated with NQEs, using persistent
homology. Further, the chemical information associated with the
time evolution of shape has not been investigated previously. Here,
we demonstrate that compared to static distributions the time-

FIGURE 4 | Analysis of the Wasserstein distance characteristics of
adjacent t and t + 1 snapshots for proton transferring (PT) and non-PT H-atom
ring polymers (A) The distribution of Wasserstein distances observed over all
PT and non-PT ring polymers (B) Principle component analysis of the PT
and non-PT H-atoms capturing 90% of the total variance in the datasets.
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dependent persistent homology metrics can provide a clearer way
to identify atoms where NQEs are important and to distinguish
atoms of different kinds or in different chemical environments.
Reactive hydrogen atoms during proton transfer exhibit much
larger fluctuations in time of their ring polymer shape than non-
reactive counterparts. We believe that the utility of metrics that
capture the fluctuations of the atom delocalization in time is
generalizable to other reactive chemical systems, and in turn
that this provides a means to extract information on reactivity
from the quantum behavior of the system, a topic that has not
received consideration within the literature.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

AC conceived the project, oversaw research and supported
manuscript drafting, revisions, and final edits. BK oversaw

research and supported manuscript drafting, revisions, and
final edits. YH performed persistent homology analysis and
supported manuscript drafting. PO performed parsing of
HCl data for persistent homology analysis and supported
manuscript drafting. OM and TM performed the RPMD
simulations and participated in manuscript revisions and
final edits.

FUNDING

This work was supported by the Department of Energy, Office of
Basic Energy Sciences CTC and CPIMS programs, under Award
Number DE-SC0014437. BK acknowledges funding from the
National Science Foundation through grants DBI-1661348 and
DMS-1819229.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fchem.2021.624937/
full#supplementary-material.

REFERENCES

Adamo, C., and Barone, V. (1999). Toward reliable density functional methods
without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170.
doi:10.1063/1.478522

Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., et al.
(2017). Persistence images: a stable vector representation of persistent
homology. J. Machine Learn. Res. 18, 1–35.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network flows: theory,
algorithms, and applications. London, United Kingdom: Pearson.

Benoit, M., and Marx, D. (2005). The shapes of protons in hydrogen bonds depend
on the bond length. Chemphyschem 6, 1738–4110. doi:10.1002/cphc.200400533

Berne, B. J., and Thirumalai, D. (1986). On the simulation of quantum systems:
path integral methods. Annu. Rev. Phys. Chem. 37, 401. doi:10.1146/annurev.
pc.37.100186.002153

Bubenik, P. (2015). Statistical topological data analysis using persistence
landscapes. J. Machine Learn. Res. 16, 77–102.

Cao, J., and Voth, G. A. (1994). The formulation of quantum statistical mechanics
based on the Feynman path centroid density.V.quantum instantaneous normal
mode theory of liquids. J. Chem. Phys. 101, 6184. doi:10.1063/1.468400

Carlsson, G. (2009). Topology and data. Bull. Amer. Math. Soc. 46, 255–308. doi:10.
1090/s0273-0979-09-01249-x

Ceriotti, M., Fang, W., Kusalik, P. G., McKenzie, R. H., Michaelides, A., Morales,
M. A., et al. (2016). Nuclear quantum effects in water and aqueous systems:
experiment, theory, and current challenges. Chem. Rev. 116, 7529–7550. doi:10.
1021/acs.chemrev.5b00674

Cohen-Steiner, D., Edelsbrunner, H., and Harer, J. (2007). Stability of persistence
diagrams. Discrete Comput. Geom. 37, 103–120. doi:10.1007/s00454-006-
1276-5

Craig, I. R., and Manolopoulos, D. E. (2004). Quantum statistics and classical
mechanics: real time correlation functions from ring polymer molecular
dynamics. J. Chem. Phys. 121, 3368. doi:10.1063/1.1777575

Dreschel-Grau, C., and Marx, D. (2014). Quantum simulation of collective proton
tunneling in hexagonal ice crystals. Phys. Rev. Lett. 112, 148302.

Edelsbrunner, H., and Harer, J. L. (2009). Computational topology an introduction.
Providence, RI, United States: American Mathematical Society.

Edelsbrunner, H., Letscher, D., and Zomorodian, A. (2002). Topological
persistence and simplification. Discrete Comput. Geom. 28, 511–533. doi:10.
1007/s00454-002-2885-2

Fernández-Serra, M., and Rahman, A. (1984). Study of an F center in molten KCl.
J. Chem. Phys. 80, 860. doi:10.1063/1.446740

Feynman, R. P., and Hibbs, A. R. (1963). Quantum mechanics and path integrals. 1
edn. New York, NY, United States: McGraw-Hill.

Ghrist, R. (2007). Barcodes: the persistent topology of data. Bull. Amer. Math. Soc.
45, 61–76. doi:10.1090/S0273-0979-07-01191-3

Goerigk, L., and Grimme, S. (2011). A thorough benchmark of density functional
methods for general main group thermochemistry, kinetics, and noncovalent
interactions. Phys. Chem. Chem. Phys. 13, 6670–6688. doi:10.1039/C0CP02984J

Grimme, S., Antony, J., Ehrlich, S., and Krieg, H. (2010). A consistent and accurate
ab initio parametrization of density functional dispersion correction (DFT-D)
for the 94 elements H-Pu. J. Chem. Phys. 132, 154104. doi:10.1063/1.3382344

Habershon, S., Markland, T. E., and Manolopoulos, D. E. (2009). Competing
quantum effects in the dynamics of a flexible water model. J. Chem. Phys. 131,
024501. doi:10.1063/1.3167790

Habershon, S., Manolopoulos, D. E., Markland, T. E., and Miller, T. F. (2013).
Ring-polymer molecular dynamics: quantum effects in chemical dynamics
from classical trajectories in an extended phase space. Annu. Rev. Phys.
Chem. 64, 387–413. doi:10.1146/annurev-physchem-040412-110122

Harada, Y., Tokushima, T., Horikawa, Y., Takahashi, O., Niwa, H., Kobayashi, M.,
et al. (2013). Selective probing of the OH or OD stretch vibration in liquid water
using resonant inelastic soft-x-ray scattering. Phys. Rev. Lett. 111, 193001.
doi:10.1103/PhysRevLett.111.193001

Ivanov, S. D., Grant, I. M., and Marx, D. (2015). Quantum free energy landscapes
from ab initio path integral metadynamics: double proton transfer in the formic
acid dimer is concerted but not correlated. J. Chem. Phys. 143, 124304. doi:10.
1063/1.4931052

Jang, S., and Voth, G. A. (1999). A derivation of centroid molecular dynamics and
other approximate time evolution methods for path integral centroid variables.
J. Chem. Phys. 111, 2371. doi:10.1063/1.479515

Kawashima, Y., Sawada, K., Nakajima, T., and Tachikawa, M. (2018). A path
integral molecular dynamics study on intermolecular hydrogen bond of acetic
acid-arsenic acid anion and acetic acid-phosphoric acid anion clusters.
J. Comput. Chem. 40, 172–180. doi:10.1002/jcc.25562

Frontiers in Chemistry | www.frontiersin.org March 2021 | Volume 9 | Article 6249379

Hu et al. Persistent Homology Metrics

https://www.frontiersin.org/articles/10.3389/fchem.2021.624937/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fchem.2021.624937/full#supplementary-material
https://doi.org/10.1063/1.478522
https://doi.org/10.1002/cphc.200400533
https://doi.org/10.1146/annurev.pc.37.100186.002153
https://doi.org/10.1146/annurev.pc.37.100186.002153
https://doi.org/10.1063/1.468400
https://doi.org/10.1090/s0273-0979-09-01249-x
https://doi.org/10.1090/s0273-0979-09-01249-x
https://doi.org/10.1021/acs.chemrev.5b00674
https://doi.org/10.1021/acs.chemrev.5b00674
https://doi.org/10.1007/s00454-006-1276-5
https://doi.org/10.1007/s00454-006-1276-5
https://doi.org/10.1063/1.1777575
https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.1063/1.446740
https://doi.org/10.1090/S0273-0979-07-01191-3
https://doi.org/10.1039/C0CP02984J
https://doi.org/10.1063/1.3382344
https://doi.org/10.1063/1.3167790
https://doi.org/10.1146/annurev-physchem-040412-110122
https://doi.org/10.1103/PhysRevLett.111.193001
https://doi.org/10.1063/1.4931052
https://doi.org/10.1063/1.4931052
https://doi.org/10.1063/1.479515
https://doi.org/10.1002/jcc.25562
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Kim, K. H., Pathak, H., Spah, A., Perakis, F., Mariedahl, D., Sellberg, J. A., et al.
(2017). Nuclear quantum effects in water. PRL 119, 075502. doi:10.1103/
physrevlett.119.075502

Markland, D., and Wolynes, P. G. (1981). Exploiting the isomorphism between
quantum theory and classical statistical mechanics of polyatomic fluids.
J. Chem. Phys. 74, 4078. doi:10.1063/1.441588

Markland, T. E., Morrone, J. A., Berne, B. J., Miyazaki, K., Rabani, E., and
Reichman, D. R. (2011). Quantum fluctuations can promote or inhibit glass
formation. Nat. Phys. 7, 134–137. doi:10.1038/nphys1865

Markland, T. E., Morrone, J. A., Miyazaki, K., Berne, B. J., Reichman, D., and
Rabani, E. (2012). Theory and simulations of quantum glass forming liquids.
J. Chem. Phys. 136, 074511. doi:10.1063/1.3684881

Marsalek, O., and Markland, T. E. (2017). Quantum dynamics and spectroscopy of
ab initio liquid water: the interplay of nuclear and electronic quantum effects.
J. Phys. Chem. Lett. 8, 1545–1551. doi:10.1021/acs.jpclett.7b00391

Mattice, W. L., and Suter, U. W. (1994). Conformational theory of large molecules.
Hoboken, NJ, United States: Wiley-Interscience.

Morrone, J. A., and Car, R. (2008). Nuclear quantum effects in water. Phys. Rev.
Lett. 101, 017801. doi:10.1103/PhysRevLett.101.017801

Munkres, J. R. (1984). Elements of algebraic topology. Menlo Park, CA,
United States: Addison–Wesley Publishing Company.

Napoli, J. A., Marsalek, O., andMarkland, T. E. (2018). Decoding the spectroscopic
features and time scales of aqueous proton defects. J. Chem. Phys. 148, 222833.
doi:10.1063/1.5023704

Paesani, F., and Voth, G. A. (2009). The properties of water: insights from quantum
simulations. J. Phys. Chem. B. 113, 5702. doi:10.1021/jp810590c

Pamuk, B., Soler, J. M., Ramírez, R., Herrero, C. P., Stephens, P. W., Allen, P. B.,
et al. (2012). Anomalous nuclear quantum effects in ice. Phys. Rev. Lett. 108,
193003. doi:10.1103/PhysRevLett.108.193003

Rossi, M., Ceriotti, M., and Manolopoulos, D. E. (2014). How to remove the
spurious resonances from ring polymer molecular dynamics. J. Chem. Phys.
140, 234116. doi:10.1063/1.4883861

Rubner, Y., Tomasi, C., andGuibas, L. J. (2000). The EarthMover’s Distance as ametric
for image retrieval. Int. J. Comput. Vis. 40, 99–121. doi:10.1023/A:1026543900054

Ruiz Pestana, L., Marsalek, O., Markland, T. E., and Head-Gordon, T. (2018). The
quest for accurate liquid water properties from first principles. J. Phys. Chem.
Lett. 9, 5009–5016. doi:10.1021/acs.jpclett.8b02400

Schran, C., Brieuc, F., and Marx, D. (2018). Converged colored noise path integral
molecular dynamics study of the zundel cation down to ultralow temperatures
at coupled cluster accuracy. J. Chem. Theor. Comput. 14, 5068–5078. doi:10.
1021/acs.jctc.8b00705

Sacher, Y., Krishnamoorthy, B., and Clark, A. (2020). Persistent homology
computations on atom ring polymers. https://gitlab.com/aurora-clark-public/
pershomol_ringpolymers.

Shin, E. H., Zygar, A., and Zeidler, M. D. (2001). Isotope effect on the translational
and rotational motion in liquid water and ammonia. J. Chem. Phys. 114, 3174.
doi:10.1063/1.1340584

Skraba, P., and Turner, K. (2020). Wasserstein stability for persistence diagrams,
arXiv. 2006. 16824.

Tuckerman, M. E., Berne, B. J., Martyna, G. J., and Klein, M. L. (1993). Efficient
molecular dynamics and hybrid Monte Carlo algorithms for path integrals.
J. Chem. Phys. 99, 2796. doi:10.1063/1.465188

Tuckerman, M. E. (2010). Statistical mechanics: theory and molecular simulation.
Oxford, United Kingdom: Oxford Graduate Texts (Oxford University Press.

Villani, C. (2009). Optimal transport old and new. Berlin, Germany: Springer-
Verlag Berlin Heidelberg.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Hu, Ounkham, Marsalek, Markland, Krishmoorthy and Clark.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Chemistry | www.frontiersin.org March 2021 | Volume 9 | Article 62493710

Hu et al. Persistent Homology Metrics

https://doi.org/10.1103/physrevlett.119.075502
https://doi.org/10.1103/physrevlett.119.075502
https://doi.org/10.1063/1.441588
https://doi.org/10.1038/nphys1865
https://doi.org/10.1063/1.3684881
https://doi.org/10.1021/acs.jpclett.7b00391
https://doi.org/10.1103/PhysRevLett.101.017801
https://doi.org/10.1063/1.5023704
https://doi.org/10.1021/jp810590c
https://doi.org/10.1103/PhysRevLett.108.193003
https://doi.org/10.1063/1.4883861
https://doi.org/10.1023/A:1026543900054
https://doi.org/10.1021/acs.jpclett.8b02400
https://doi.org/10.1021/acs.jctc.8b00705
https://doi.org/10.1021/acs.jctc.8b00705
https://gitlab.com/aurora-clark-public/pershomol_ringpolymers
https://gitlab.com/aurora-clark-public/pershomol_ringpolymers
https://doi.org/10.1063/1.1340584
https://doi.org/10.1063/1.465188
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

	Persistent Homology Metrics Reveal Quantum Fluctuations and Reactive Atoms in Path Integral Dynamics
	1 Introduction
	2 Computational Methods
	2.1 Static Atomic Uncertainty Metrics
	2.2 Dynamic Shape Metrics From Persistent Homology
	2.2.1 Persistent Homology as Metric of Shape
	2.2.2 Fluctuations in Shape
	2.2.3 Application to Ring Polymers


	3 Results and Discussion
	3.1 System 1: The Kob–Andersen Glass
	3.1.1 Static Atomic Uncertainty Metrics
	3.1.2 Homology and Persistent Homology Metrics

	3.2 System 2: Aqueous 4 M Hydrochloric Acid
	3.2.1 Shape Metrics
	3.2.2 Persistent Homology Metrics


	4 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


