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We developed and validated digital twins (DTs) for contrast sensitivity function (CSF) across 12 
prediction tasks using a data-driven, generative model approach based on a hierarchical Bayesian 
model (HBM). For each prediction task, we utilized the HBM to compute the joint distribution of CSF 
hyperparameters and parameters at the population, subject, and test levels. This computation was 
based on a combination of historical data (N = 56), any new data from additional subjects (N = 56), 
and “missing data” from unmeasured conditions. The posterior distributions of the parameters in the 
unmeasured conditions were used as input for the CSF generative model to generate predicted CSFs. 
In addition to their accuracy and precision, these predictions were evaluated for their potential as 
informative priors that enable generation of synthetic quantitative contrast sensitivity function (qCSF) 
data or rescore existing qCSF data. The DTs demonstrated high accuracy in group level predictions 
across all tasks and maintained accuracy at the individual subject level when new data were available, 
with accuracy comparable to and precision lower than the observed data. DT predictions could reduce 
the data collection burden by more than 50% in qCSF testing when using 25 trials. Although further 
research is necessary, this study demonstrates the potential of DTs in vision assessment. Predictions 
from DTs could improve the accuracy, precision, and efficiency of vision assessment and enable 
personalized medicine, offering more efficient and effective patient care solutions.
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The concept of a digital twin (DT) was introduced as an ideal framework for product life cycle management by 
Grieves in 20021, comprising three components: (1) a physical system, (2) a corresponding virtual model, and 
(3) twinning, which is a bidirectional data flow that provides physical-to-virtual (P2V) and virtual-to-physical 
(V2P) connections2,3. The definition was broadened by the American Institute of Aeronautics and Astronautics: 
“A digital twin is a set of virtual information constructs that mimics the structure, context, and behavior of a 
natural, engineered, or social system (or system-of-systems), is dynamically updated with data from its physical 
twin, has a predictive capability, and informs decisions that realize value. The bidirectional interaction between 
the virtual and the physical is central to the digital twin.”4,5. The Committee on Foundational Research Gaps and 
Future Directions for Digital Twins of the National Academies highlighted two central elements of the definition: 
“the phrase predictive capability to emphasize that a digital twin must be able to issue predictions beyond the 
available data to drive decisions that realize value,” and “the bidirectional interaction, which comprises feedback 
flows of information from the physical system to the virtual representation and from the virtual back to the 
physical system to enable decision making, either automatic or with humans in the loop.”6.

Since their inception, DTs have found numerous applications in fields where forecasts and predictions are 
crucial, including atmospheric and climate sciences, business, engineering, finance, and health care6–13. Designed 
to provide timely and actionable information tailored to decision-making4, DTs simulate real world conditions, 
respond to changes, improve operations, and add value. According to McKinsey & Company, investments in DT 
will surpass $48 billion by 202614.

In healthcare, DTs have found applications under the umbrella field of precision medicine2. Proponents 
of precision medicine suggest that DTs can help identify individuals at-risk for disease, which provides the 
opportunity for early intervention to prevent worse outcomes. The prediction of treatment outcomes can also 
enable the development of personalized interventions optimized for each individual patient15–20. In addition, 
both the US food and drug administration (FDA) and the European medicines agency (EMA) have issued 
guidelines for using DTs in randomized controlled trials (TwinRCTs) to mitigate risks in treatment development 
and streamline the evaluation of new technology. Specifically, DTs of patients in a treatment arm can be used as 
virtual patients in a control arm, which increases the effective number of patients through combination with real 
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patients, and can enable faster and smaller trials by enhancing statistical power21. DTs have also been utilized for 
safety assessment in over 500 FDA submissions22.

The scale and modeling methods of DT depend on the nature of the physical system and the desired level of 
detail, fidelity, and functionality3,11,13,23. In healthcare applications, DTs can span a broad spectrum of biological 
scales, encompassing molecular, subcellular, and cellular levels, as well as entire systems (e.g., digestive system), 
functions (e.g., vision), individual humans, populations, and the biosphere2,19,22–27. They can also represent 
medical devices, such as the OCT machine, or healthcare organizations.

Various DT modeling methods have been developed to create sufficiently representative virtual replicas of 
physical entities, processes, or objects, including geometric modeling, physics-based modeling, data-driven 
modeling, physics-informed machine-learning modeling, and systems modeling28. For example, Subramanian29 
created a DT of the liver in homeostasis to show improved phenotypes comparable to clinical trials. Fisher et 
al.30 used existing longitudinal data in cognitive exams and labs from patients with Alzheimer’s disease to create 
DTs and generated synthetic patient data at different time points to simulate natural disease progression; the data 
generated by DTs were statistically indiscernible from real collected data.

In this proof-of-concept study, we employed a data-driven, generative model approach to develop DTs for 
the contrast sensitivity function (CSF), based on a group of human observers tested under different luminance 
conditions.

The CSF characterizes contrast sensitivity (1/threshold) as a function of spatial frequency. As a fundamental 
assay of spatial vision, it is closely related to daily visual activities in both normal and impaired vision31–38. It has 
emerged as an important endpoint for staging eye diseases and assessing treatment efficacy39–66. Importantly, 
the CSF varies not only with stimulus conditions such as retinal luminance67, temporal frequency68,69, and 
eccentricity70,71, but also with disease progression and treatment40–45. Predicting CSF for new observers or 
existing observers in not-yet measured conditions could help predict human performance in new conditions, 
identify potential risks and benefits of interventions, and enable personalized treatment for each individual 
patient. The predictions could also serve as informative priors to reduce test burdens in new measurements. 
Additionally, at the group level, the DTs of clinical study patients in an active arm have potential value as controls 
in TwinRCTs.

Previously, we developed a three-level Hierarchical Bayesian Model (HBM) to comprehensively model an 
entire CSF dataset within a single-factor (luminance), multi-condition (3 luminance conditions), and within-
subject experiment design72. This model utilized trial-by-trial data and employed a log parabola CSF functional 
form with three parameters as the generative model at the test level, in addition to hyperparameters at the 
subject and population levels, incorporating between-and within-subject covariances as well as conditional 
dependencies across levels. The performance of the HBM was evaluated using an existing dataset73 of 112 
subjects tested with quantitative contrast sensitivity function (qCSF)74 across three luminance conditions. By 
leveraging information across subjects and conditions to constrain the estimates, the HBM generated more 
precise estimates of the CSF parameters than the Bayesian inference procedure, which treated data for each 
subject and experimental condition separately. This increased precision improved signal detection (increased d′
) for comparisons in Area Under the Log CSF (AULCSF) and CSF parameters between different experimental 
conditions at the test level for each subject, along with larger statistical differences across subjects. Importantly, 
the HBM also captured strong covariances within and between subjects and luminance conditions.

Here, we expanded the application of the HBM to generate DTs for a population of CSF observers (Fig. 1). 
The trial-by-trial responses from historical data (Fig. 1a), i.e., existing qCSF testing observers (N = 56), were 
used to train a three-level HBM (Fig. 1b)72. This model derives the joint posterior probability distribution of 
CSF hyperparameters and parameters at the population, subject and test levels across conditions (Fig.  1c). 
It incorporates conditional dependencies across the three levels to improve estimates of CSF parameters for 
each test. In the HBM, the population-level distribution of hyperparameters describes the probability of CSF 
parameters across all subjects. The subject-level distributions, which are conditionally dependent on the 
population-level hyperparameters, represent the probability of CSF parameters at the test level. These parameters 
determine trial-by-trial response probabilities in each CSF test using a log-parabola model with three parameters 
and a psychometric function. The generative model allows the DTs to combine the joint posterior distribution 
with newly acquired data to predict CSFs for new observers or for existing observers in unmeasured conditions 
(Fig.  1d). These predictions can also serve as informative priors for subsequent testing in those conditions 
(Fig. 1e).

Our hypothesis is that the DTs created using the HBM can make accurate and relatively precise predictions of 
CSFs for new or existing observers in conditions where data is not available. To test this hypothesis, we conducted 
and assessed 12 prediction tasks (Table 1) using an existing CSF dataset involving 112 subjects tested in low-
luminance (L), medium-luminance (M), and high-luminance (H) conditions73. We divided the subjects into 
two groups. Group I’s data in all three luminance conditions served as historical data, while we aimed to predict 
CSFs for Group II subjects in the 12 prediction tasks (Table 1). In tasks 1 to 3, we utilized the DTs to predict CSFs 
for Group II subjects across all three conditions without incorporating new data, simulating scenarios for new 
observers who have not been previously tested. Subsequently, in tasks 4 to 9, we integrated Group II subjects’ 
CSF data from each luminance condition into the DTs to forecast their CSFs in the other two conditions. Tasks 
10 to 12 involved predicting CSFs for Group II subjects in one of the three conditions by incorporating data from 
the other two conditions. These predictions were then compared against the actual observed data from Group II 
subjects in the corresponding conditions to evaluate the accuracy and reliability of the DTs.

In each prediction task, the dataset included historical data from Group I, any new data available from Group 
II, and “missing data” in the unmeasured conditions. The three-layer HBM72 was utilized to compute the joint 
distribution of the population-, subject- and test- level CSF hyperparameters and parameters from all the data in 
each prediction task (details in Supplementary Materials A). The posterior distributions of the parameters in the 
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unmeasured conditions were utilized as input for the CSF generative model to generate predicted CSFs. Instead 
of applying the HBM solely to historical data and then integrating the resulting joint posterior distributions with 
new data to generate marginal distributions for predictions (Fig. 1), we directly incorporated historical data, new 
data, and “missing” data from unmeasured conditions into the HBM. By framing prediction tasks as a missing 
data problem within the model, we leveraged all available data sources in a unified manner. This approach not 
only enhances the accuracy and precision of predictions but also simplifies the computational process. The 
validation of the DTs involved assessing the accuracy and precision of their predictions by comparing them with 
the observed data. Additionally, the advantages of employing predictions from the DTs as informative priors in 
the qCSF test were evaluated.

Results
It took approximately 9 to18 hours and 120 MB RAM to compute the DT for a single prediction task in this 
study. The computation time varied with the amount of historical and new data. Here we present results based on 
the first 25 qCSF trials of the dataset because that is the typical number of trials used in clinical trials. Findings 
from 50 qCSF trials are generally consistent and reported in Supplementary Materials C.

Task Training data from Group I Training data from Group II Group II predictions

1 L, M, H None L

2 L, M, H None M

3 L, M, H None H

4 L, M, H L M

5 L, M, H L H

6 L, M, H M L

7 L, M, H M H

8 L, M, H H L

9 L, M, H H M

10 L, M, H L, M H

11 L, M, H L, H M

12 L, M, H M, H L

Table 1.  Twelve prediction tasks.

 

Fig. 1.  Digital twin for a population of CSF observers. The trial-by-trial responses from historical data (a), i.e., 
existing qCSF testing observers (N = 56), were used to train a three-level hierarchical Bayesian model (HBM; 
b) 72. This model derives the joint posterior probability distribution of CSF hyperparameters and parameters 
at the population, subject and test levels across conditions (c). It incorporates conditional dependencies across 
the three levels to improve estimates of CSF parameters for each test. The generative model allows the DTs to 
combine the joint posterior distribution with newly acquired data to predict CSFs for new observers or for 
existing observers in unmeasured conditions (d). These predictions can also serve as informative priors for 
subsequent testing in those conditions (e).
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Correlations in the historical data
Tables 2, 3, and 4 present correlation matrices from the historical data used to train the HBM. Supplementary 
Material B describes the posterior distributions of the CSF hyperparameters and parameters derived from the 
historical data (Group I) using the HBM.

At the population level, the HBM revealed strong positive correlations between peak gains  (PG) across 
luminance conditions (0.398 to 0.529) and strong negative correlations between peak spatial frequency (PF) and 
bandwidth (BW) within each luminance condition (−0.860 to −0.768). Similarly, at the subject level, it identified 
strong negative correlations between PG and PF (−0.501 to −0.402) and strong negative correlations between 
PF and BW within each luminance condition (−0.904 to −0.882). Additionally, at the test level, the model found 
strong negative correlations between PF and BW within each luminance condition (−0.907 to −0.899).

L M H

PG PF BW PG PF BW PG PF BW

L

PG 1 −0.308 0.018

PF −0.308 1 −0.903

BW 0.018 −0.903 1

M

PG 1 −0.202 −0.107

PF −0.202 1 −0.899

BW −0.107 −0.899 1

H

PG 1 −0.314 0.025

PF −0.314 1 −0.907

BW 0.025 −0.907 1

Table 4.  Correlations of CSF parameters at the test level. PG: peak gain, PF: peak spatial frequency, BW: 
bandwidth.

 

L M H

PG PF BW PG PF BW PG PF BW

L

PG 1 −0.482 0.195

PF −0.482 1 −0.885

BW 0.195 −0.885 1

M

PG 1 −0.402 0.062

PF −0.402 1 −0.882

BW 0.062 −0.882 1

H

PG 1 −0.501 0.222

PF −0.501 1 −0.904

BW 0.222 −0.904 1

Table 3.  Within-subject correlations of CSF hyperparameters at the subject level. PG: peak gain, PF: peak 
spatial frequency, BW: bandwidth.

 

L M H

PG PF BW PG PF BW PG PF BW

L

PG 1 −0.082 0.068 0.529 0.115 −0.101 0.398 0.000 0.082

PF −0.082 1 −0.808 0.244 0.363 −0.063 0.306 −0.004 0.156

BW 0.068 −0.808 1 −0.197 −0.268 0.274 −0.209 0.044 −0.002

M

PG 0.529 0.244 −0.197 1 −0.139 0.022 0.523 0.012 0.035

PF 0.115 0.363 −0.268 −0.139 1 −0.768 0.164 0.021 0.021

BW −0.101 −0.063 0.274 0.022 −0.768 1 −0.073 −0.014 0.222

H

PG 0.398 0.306 −0.209 0.523 0.164 −0.073 1 −0.448 0.364

PF 0.000 −0.004 0.044 0.012 0.021 −0.014 −0.448 1 −0.860

BW 0.082 0.156 −0.002 0.035 0.021 0.222 0.364 −0.860 1

Table 2.  Between-subject correlations of CSF hyperparameters at the population level. PG: peak gain, PF: peak 
spatial frequency, BW: bandwidth.
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These robust correlations indicate that CSF hyperparameters and parameters are highly correlated between- 
and within-subjects across conditions at all three levels of the hierarchy. They represent the fundamental 
mathematical properties utilized by the DTs to make predictions.

Individual subject level predictions
In this section, the results of the 12 prediction tasks at the individual subject level are presented. By utilizing 
the observed data from all subjects in Group II, a comparison was made between the predictions and the actual 
observed data. Generally, the alignment between predictions and observations improved as more new data 
became available for computing the predictions, resulting in increased accuracy and precision. For example, 
predictions for the L condition showed improvements from having no new data to having data in either the M 
or H condition, and further improvement with data in both the M and H conditions.

To quantify the similarity between observed and predicted CSF parameter distributions, a linear discriminant 
classifier was used. A p-value of 1.0 indicates complete alignment, while a p-value of 0.0 indicates complete 
separation. Accuracy was measured as the absolute difference between the observed and predicted areas under 
the log CSF (AULCSF), while precision was quantified as the standard deviations (SD) of the predicted AULCSFs.

The first column of Fig. 2 presents the observed posterior distribution of PG and PF, along with the observed 
posterior CSF distribution for a typical subject (#90) in the L condition with 25 qCSF trials. Columns 2 to 5 
display the predicted parameter and CSF distributions under different scenarios: no new data, new data in the 
M, H, and both the M and H conditions, respectively.

The p-values obtained from the linear discriminant analysis of the observed and predicted CSF parameter 
distributions were 0.15, 0.31, 0.26, and 0.33 for the four prediction results. These values indicate that the predicted 
CSF parameter distributions were not significantly different from the observed distributions.

Regarding accuracy, the absolute differences between the predicted and observed AULCSFs were 0.343, 
0.098, 0.132, and 0.086 log10 units, respectively. Considering that the SD of the observed AULCSF was 0.045 
log10 units, the predicted AULCSFs were not significantly different from the observed AULCSF when there were 
new data for the prediction. However, the SDs of the predicted AULCSFs were 0.186, 0.143, 0.122, and 0.117 
log10 units, respectively, indicating lower precision compared to the observed AULCSF.

The results for the prediction tasks in the M and H conditions were similar (Figures S5 and S6 in 
Supplementary Materials B). For instance, in the M condition, the p-values between the predicted and observed 
CSF parameter distributions were 0.15, 0.29, 0.50, and 0.39. The absolute differences between the predicted and 
observed AULCSFs were 0.224, 0.043, 0.039, and 0.008 log10 units, while the SDs of the predicted AULCSFs were 
0.141, 0.116, 0.099, and 0.098 log10 units. In comparison, the SD of the observed AULCSF was 0.059 log10 units.

Similarly, in the H condition, the p-values between the predicted and observed CSF parameter distributions 
were 0.15, 0.20, 0.28, and 0.28. The absolute differences between the predicted and observed AULCSFs were 
0.196, 0.043, 0.022, and 0.000 log10 units, while the SDs of the predicted AULCSFs were 0.150, 0.117, 0.125, and 
0.117 log10 units. In comparison, the SD of the observed AULCSF was 0.059 log10 units.

Across all 12 prediction tasks for all 56 subjects in Group II, none of the predicted CSF parameter distributions 
were significantly different from the observed (α = 0.05, with Bonferroni correction). Figure 3 displays scatter 
plots of the predicted and observed AULCSFs for all subjects in the 12 prediction tasks with 25 qCSF trials.

Table 5 present the average absolute differences between the predicted and observed AULCSFs and the 
average SDs of the predicted AULCSFs across all 56 subjects in the 12 prediction tasks, with standard error (SE) 
in parenthesis. The average absolute differences decreased with the amount of new data available, indicating 
improved accuracy. Consistent with results for subject #90, the predicted AULCSFs were not significantly 

Fig. 2.  Predictions for subject #90 in the L condition. Column 1: Posterior distribution of PG and PF (row 1) 
and the CSF (row 2) from the observed data. Columns 2–5: Predicted distributions of PG and PF (row 1) and 
CSF (row 2) with no new data (column 2), new data in the M (column 3), H (column 4), and both the M and H 
(column 5) conditions. Circles and crosses represent correct and incorrect trials from the qCSF test.
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different from the observed when any new data became available. Similarly, precision of the predicted AULCSFs 
also improved with the amount of new data available.

The average SDs of the predicted AULCSFs ranged from 0.186 to 0.114, 0.141 to 0.085 and 0.153 to 0.109 log10 
units for the L, M, and H prediction tasks, respectively. In comparison, the average SDs of the observed AULCSFs 
were 0.056, 0.063, and 0.065 log10 units in the three conditions. On average, the SDs of the predicted AULCSFs 
with data from 0, 1, and 2 luminance conditions were 2.6, 1.8, and 1.7 times those from the observed data 
(Wilcoxon Signed-Rank Test75, all p < 0.01, with Bonferroni correction).

Group level predictions
The predicted parameter and CSF distributions in the 12 prediction tasks at the group level were constructed by 
averaging the corresponding distributions from all 56 subjects in Group II. Figure 4 displays the observed and 
predicted distributions of PG and PF, as well as the corresponding CSF distributions at the group level in the L 
condition. Similar patterns were observed in those in the M and H conditions and were displayed in Figures S7 
and S8 in the Supplementary Materials B.

Number of conditions in the new data

0 1 2

AD

L 0.112 (0.010) 0.066 (0.007) 0.071 (0.007) 0.063 (0.007)

M 0.108 (0.011) 0.070 (0.008) 0.066 (0.008) 0.060 (0.007)

H 0.101 (0.010) 0.069 (0.006) 0.071 (0.008) 0.066 (0.006)

SD

L 0.186 (0.0003) 0.134 (0.0005) 0.122 (0.0004) 0.114 (0.0004)

M 0.141 (0.0002) 0.101 (0.0006) 0.092 (0.0003) 0.085 (0.0004)

H 0.153 (0.0003) 0.115 (0.0004) 0.118 (0.0004) 0.109 (0.0005)

Table 5.  Average absolute difference (AD) and standard deviations (SD).

 

Fig. 3.  Scatter plots of the predicted and observed AULCSFs with 25 qCSF trials. Row 1: The L condition 
with no new data (column 1), new data in the M (column 2), H (column 3), and both the M and H conditions 
(column 4). Row 2: The M condition with no new data (column 1), new data in the L (column 2), H (column 
3), and both the L and H (column 4).  Row 3: The H condition (row 3) with no new data (column 1), new data 
in the L (column 2), M (column 3), and both the L and M (column 4).
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None of the predicted CSF parameter distributions at the group level were significantly different from the 
observed (all p > 0.05). Table 6 present the absolute differences between the predicted and observed AULCSFs 
and SDs of the predicted AULCSFs at the group level. Both the accuracy and precision of the predicted AULCSFs 
improved with the amount of new data available. The absolute difference between the predicted and observed 
AULCSFs ranged from 0.000 to 0.061 log10 units, suggesting that the predicted AULCSFs were very close to the 
observed. The SDs of the predicted AULCSFs ranged from 0.019 to 0.039 log10 units. In comparison, the SDs of 
the observed AULCSFs were 0.009, 0.010, and 0.011 log10 units in the L, M, and H conditions. On average, the 
SDs of the predicted AULCSFs with new data from 0, 1, and 2 luminance conditions were 3.2, 2.4, and 2.2 times 
of the SDs of the observed AULCSFs. This suggests that while they were quite accurate, the predicted AULCSFs 
exhibited greater variabilities compared to the observed data.

Using predicted parameter distributions as informative priors
We evaluated the benefits of using the predicted parameter distributions in the 12 prediction tasks as informative 
priors in the qCSF procedure. First, we used the informative priors to rescore existing data collected with an un-
informative prior and evaluated the number of trials necessary to achieve comparable precision and statistically 
equivalent AULCSFs obtained with 25 qCSF trials. Because the stimulus sequences were not optimized with 
the informative priors in the existing dataset, we additionally used the informative priors in a simulated qCSF 
procedure to further evaluate the number of trials that can be saved when they were incorporated into the qCSF 
procedure directly.

Figure 5 shows the average absolute difference between the rescored and observed AULCSFs across all the 
56 subjects in Group II as functions of the number of qCSF trials used in rescoring, as well as the average SD of 
the rescored AULCSFs. Both the average absolute differences and SDs decreased with the number of trials used 
in rescoring.

Figure  6 depicts histograms of the number of trials needed in rescoring to reach statistically equivalent 
precision as the observed AUCLSFs. On average, 12.3 ± 0.1 trials were necessary. We also determined the 
number of trials needed to obtain estimated AULCSFs that are not significantly different from the observed and 
found that 8.9 ± 0.5 trials on average were required. Combining these results together, we conclude that the 

Number of conditions in 
the new data

0 1 2

AD

L 0.042 0.000 0.042 0.036

M 0.061 0.033 0.026 0.023

H 0.031 0.020 0.000 0.017

SD

L 0.039 0.028 0.026 0.025

M 0.028 0.022 0.021 0.019

H 0.029 0.023 0.024 0.022

Table 6.  Absolute differences (AD) and standard deviations (SD) at the group level.

 

Fig. 4.  Group level predictions in the L condition with 25 qCSF trials. Column 1: Posterior distribution of PG 
and PF (row 1) and the CSF (row 2) from the observed data. Columns 2–5: Predicted distributions of PG and 
PF (row 1) and CSF (row 2) with no new data (column 2), new data in the M (column 3), H (column 4), and 
both the M and H (column 5) conditions. 
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informative priors, even without trial-by-trial optimal stimulus selection, can save about 12.7 trials or 51% of 
the data collection burden in qCSF.

Next, we present results from the simulated qCSF experiment. In this simulation, we incorporated informative 
priors into the data collection process. Each simulation began with the predicted CSF parameter distribution 
as the informative prior. In the first trial, the qCSF algorithm selected the optimal test stimulus based on this 
prior. The simulated observer’s response was generated using the CSF parameters of the observer in the same 
condition and used to update the posterior CSF parameter distribution using Bayes’ rule. This updated posterior 
then served as the prior in the next trial. The process was repeated until we collected 25 trials.

We stimulated the qCSF test for all the 56 subjects in Group II with the informative priors from the 12 
prediction tasks. Figure 7 illustrates the progression of the simulation, showing the average absolute difference 
between the AULCSFs obtained from the simulation and the observed data, along with the average SD of the 
simulated AULCSFs across all subjects. Both measures consistently decreased as the number of trials increased.

Moreover, Fig. 8 provides a histogram depicting the distribution of the number of trials needed to achieve 
statistically equivalent precision as the observed AULCSFs. On average, only 11.0 ± 0.2 trials were necessary. We 
also determined the number of trials needed to obtain estimated AULCSFs that are not significantly different 
from the observed and found that 8.8 ± 0.5 trials on average were required. Combining these results together, 
we conclude that the informative priors, can save about 14.0 trials or 56% of the data collection burden in qCSF.

Discussion
In this proof-of-concept study, DTs were developed and validated for a population of CSF observers using a data-
driven, generative model approach based on a three-level HBM. This HBM captured both between- and within-
subject covariances between CSF hyperparameters and parameters across multiple conditions at all three levels 
of the hierarchy, providing fundamental mathematical properties used by the DTs to make CSF predictions for 
new or existing observers in unmeasured conditions.

The DTs demonstrated high accuracy in group level predictions across all tasks and maintained accuracy 
at the individual subject level when new data were available. Specifically, the absolute difference between the 
predicted and observed AULCSF estimates was comparable to the SD of the observed data, indicating reliable 
performance. However, the precision of the predictions was lower than that of the observed data. When used as 

Fig. 5.  Average absolute difference between the rescored and observed AULCSF (orange solid lines) across all 
the 56 subjects in Group II as functions of the number of qCSF trials used in rescoring and average SD of the 
rescored AULCSFs (blue solid lines) are shown. In row 1, results in L condition are displayed with no new data 
(column 1), new data in the M  (column 2), H  (column 3), and both the M and H conditions (column 4). Row 
2 shows results in the M condition with no new data (column 1), new data in the L  (column 2), H  (column 3), 
and both the L and H conditions (column 4). In row 3, results in the H condition are presented with no new 
data (column 1), new data in the L (column 2), M  (column 3), and both the L and M conditions (column 4). 
The black dashed lines represent the average SDs of the observed AULCSFs with SD (grey shaded area), and 
error bars indicate standard errors.
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informative priors to rescore existing qCSF data and simulate new qCSF tests, the DT predictions could reduce 
the data collection burden in qCSF testing by more than 50%, when using 25 trials, which are typically used in 
clinical settings. Additionally, the new test results could update the HBM in the DTs, establishing a real-time 
feedback loop between human observers and their DTs.

The accuracy and precision of DT predictions are significantly influenced by the quantity and quality of 
both historical and new subject data. In this study, the historical dataset included 56 subjects tested under three 
luminance conditions, which is relatively small compared to most clinical trials in this field. We observed that 
increasing the number of trials within each test in the historical data enhanced both the accuracy and precision 
of DT predictions. Specifically, using 50 qCSF trials from the same 56 subjects, the accuracy improved by 4%, 
22%, and 25%, while precision increased by 2%, 9%, and 10%, compared to using only 25 qCSF trials. These 
improvements were observed in scenarios with no new data, new data in one condition, and new data in two 
conditions, respectively. Additionally, both accuracy and precision of DT predictions were positively correlated 
with the amount of new data available. For instance, with 25 qCSF trials in the historical data, accuracy increased 
by 36% and 41%, and precision improved by 29% and 36% with new data in one and two conditions, respectively, 
compared to the predictions without new data. With 50 trials per condition in the historical data, accuracy 
improved by 48% and 54%, and precision increased by 34% and 41%, in the presence of new data in one and two 
conditions, respectively. We also explored the effect of historical data sample size on DT predictions. When the 
historical dataset was reduced to 28 randomly selected subjects from Group I, each tested with 25 qCSF trials 
across the three luminance conditions, we recalculated the DT predictions for the 12 prediction tasks (see Table 
1). Compared to predictions using the full set of 56 subjects with 25 qCSF trials each (Table 5), reducing the 
sample size resulted in a decrease in accuracy by 27%, 12%, and 9%, and a decrease in precision by 20%, 23%, and 
23%, for scenarios with no new data, new data in one condition, and new data in two conditions, respectively 
(Table 7). These results highlight that a sufficient sample size is crucial for developing effective DTs for CSF, as 
inadequate data can significantly impair prediction performance.

While individual components such as HBM, DTs, and Bayesian methods are well-established, this study 
introduces several key innovations: (1) the development and application of HBM-based DTs within the functional 
vision domain, (2) the novel approach of treating prediction tasks as missing data problems within the HBM 

Fig. 6.  Histograms of the number of trials needed to reach comparable precision as the observed AUCLSFs 
in rescoring. Row 1: results in the L condition with no new data (column 1), new data in the M (column 2), H 
(column 3), and both the M and H (column 4) conditions. Row 2: results in the M condition with no new data 
(column 1), new data in the L (column 2), H (column 3), and both the L and H (column 4) conditions. Row 3: 
results in the H condition with no new data (column 1), new data in the L (column 2), M (column 3), and both 
the L and M (column 4) conditions. The average number of trials with standard error are displayed in each 
condition.
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framework, and (3) the incorporation of DT predictions as informative priors in qCSF testing. Although our 
implementation and validation of DTs were confined to CSF in a single normal vision population under three 
specific luminance conditions—limiting the generalizability of our findings to other populations, conditions, 
or eye diseases—the technical advancements promise significant potential for further exploration and broader 
applications. These include TwinRCT21,22, precision medicine19,76,77, and patient care2,19,25. For instance, if we 
consider the M condition as the baseline, and the H and L conditions as the treatment and control arms in a 
randomized controlled trial, our prediction task 12 effectively emulates a TwinRCT. In this setup, DT predictions 
for the 56 Group II subjects in the L condition (control arm) were derived from their baseline (M) and treatment 
(H) data. Despite a lower precision in quantifying these virtual patients, their inclusion can still notably increase 
the effective sample size in the control arm, thereby enhancing the statistical power of the TwinRCT.

If we regard data in the L condition as the test results of an initial visit and the CSFs in the M and H condition 
as the treatment outcomes at two subsequent visits, our prediction tasks 4 and 5 emulate treatment predictions 
at different time points. This initial prediction can help clinicians choose the initial treatment plan. After the 
treatment starts and with the measurement at the follow-up visit, the conceptual equivalent to the M condition 
data in this study, the prediction for the H condition from the DTs of subjects with data in both the L and M 
conditions (task 10 in Table 1) can evaluate the effectiveness of the current treatment plan and help determine if 
any changes in the treatment are necessary.

Additionally, the DT predictions can serve as informative priors in adaptive testing for returning patients 
at their follow-up visits, reducing testing burden and improving patient care while reducing financial costs. 
The probabilistic predictions from the DT can 'close-the-loop’ in adaptive testing, acting as priors that further 
enhance test efficiencies and significantly decrease testing burden. Previously, we developed the hierarchical 
adaptive design optimization (HADO) framework to improve test efficiency with informative priors for new 
patients based on their disease categories78,79. While HADO uses new patients’ disease categories to improve 
test efficiency with informative prior tailored to specific diseases, the current HBM leverages the within-patient 
covariance across conditions. The combination of the two leads to informative priors based on both group 
membership (e.g., diseases) and within-subject relationships across modalities, conditions, and timepoints in 
one HBM-based DT. Therefore, although we demonstrated DTs in a single normal vision population under three 

Fig. 7.  Average absolute difference between the AULCSFs from the simulated and observed data (orange solid 
lines) across all the 56 subjects in Group II as functions of the number of qCSF trials used in the simulation 
and average SDs of the simulated AULCSFs (blue solid lines) are shown. In row 1, results in the L condition are 
displayed with no new data (column 1), new data in the M (column 2), H (column 3), and both the M and H 
conditions (column 4). Row 2 shows results in the M condition with no new data (column 1), new data in the 
L (column 2), H (column 3), and both the L and H conditions (column 4). In row 3, results in the H condition 
are presented with no new data (column 1), new data in the L (column 2), M (column 3), and both the L and 
M conditions (column 4). The black dashed lines represent the average SDs of the observed AULCSFs with 
SD (grey shade area), and error bars indicate standard errors.
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specific luminance conditions, to account for variations across different diseases and populations, DTs can be 
integrated with HADO.

The informative priors generated by DTs without any new data (tasks 1 to 3 in Table 1) for the to-be-measured 
subjects in our study utilize only the between-subject relationship and are the same for all patients with the 
same group membership. In contrast, the informative priors by DTs with data from one (tasks 4 to 9 in Table 
1) and two (tasks 10 to 12 in Table 1) conditions use both between- and within-subject relationships and are 
individualized for each subject and test at each time point. Since we have demonstrated that the performance 
of informative priors increases with the amount of data available for the to-be-measured subjects, the DT can 
enhance HADO by incorporating within-subject information in addition to the between-subject relationship.

Furthermore, the bidirectional information flow between real patients and their DTs enables better sequential 
testing over time, as predictions from DTs based on previous testing serve as informative priors for current 
tests, resulting in higher accuracy, precision, and efficiency. While the qCSF uses only weakly informative priors 

Number of conditions in the new data

0 1 2

AD

L 0.134 (0.011) 0.067 (0.007) 0.070 (0.007) 0.062 (0.007)

M 0.138 (0.012) 0.085 (0.008) 0.082 (0.009) 0.073 (0.008)

H 0.135 (0.012) 0.072 (0.007) 0.086 (0.009) 0.070 (0.007)

SD

L 0.218 (0.0003) 0.156 (0.0005) 0.144(0.0009) 0.132 (0.0009)

M 0.160 (0.0003) 0.118 (0.0006) 0.108 (0.0004) 0.100 (0.0004)

H 0.196 (0.0005) 0.157 (0.0008) 0.155 (0.0006) 0.145 (0.0007)

Table 7.  Average AD and SD with 28 subjects in the historical dataset.

 

Fig. 8.  Histograms of the number of trials needed to reach comparable precision as the observed AUCLSFs 
in the simulation experiment. Row 1: results in the L condition with no new data (column 1), new data in the 
M (column 2), H (column 3), and both the M and H (column 4) conditions. Row 2: results in the M condition 
with no new data (column 1), new data in the L (column 2), H (column 3), and both the L and H (column 4) 
conditions. Row 3: results in the H condition with no new data (column 1), new data in the L (column 2), M 
(column 3), and both the L and M (column 4) conditions. The average number of trials with standard error are 
displayed in each condition.
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and HADO uses the same informative prior for all patients with the same group membership, the DT offers a 
blueprint for personalized adaptive testing.

The DTs developed in this study are based on the hierarchical Bayesian modeling framework. Although 
only one test modality in three luminance conditions in a single normal vision population was modeled in this 
study, we have previously developed hierarchical Bayesian joint models (HBJM)80 to model data from multiple 
test modalities, including functional vision tests such as visual acuity, CSF, and perimetry, and structural vision 
tests such as optical coherence tomography (OCT)81, fundus imaging, across different patient populations and 
different stages of diseases over multiple time points. The key in the current development is the quantification 
of the between- and within-subject/condition relationships with covariance hyperparameters at the population 
and subject levels with the HBM. With the HBJM, the DTs can be extended to incorporate both functional and 
structural vision assessments to further improve the accuracy and precision of disease staging and predictions 
for treatment outcomes of individual patients in precision medicine. Furthermore, DTs can also be developed 
to quantify relationships between multiple assessments over time with additional covariances and thus make 
predictions for disease progression or treatment outcome.

The DTs in this study cannot make prediction outside the scope of the existing data because the HBM 
only captures relationships among CSF parameters within the historical dataset. To extend predictions to new 
conditions, there are two main approaches: (1) expanding the historical data to include a broader range of 
conditions, (2) replacing the covariance matrix in the HBM with a function or process (e.g., Gaussian Process82) 
that models the covariance as a function of conditions or time. In most practical applications of DTs in vision 
assessment, expanding the data is essential for establishing credibility and confidence. Even if the second 
approach is considered, the covariance matrix in the HBM remains crucial for identifying the appropriate 
functional form, particularly since we often lack prior knowledge of suitable functional forms.

We have developed and validated a two-step approach in an orientation identification perceptual learning 
study83,84. In the first step83, we used a non-parametric HBM to estimate thresholds every ten trials, enhancing 
the temporal resolution of the estimated learning curving, which typically derived from threshold estimates 
based on many trials. This finer temporal resolution enabled identification of a functional form with three 
component processes in addition to general learning: between-session forgetting, and rapid relearning and 
adaptation within sessions. In the second step84, we developed a parametric HBM using the multi-component 
functional form identified in the first step. This model estimates the trial-by-trial learning curve and can predict 
thresholds for any trial, even those outside the historical data scope.

We chose the HBM for constructing the generative model of trial-by-trial CSF data in the DT because it 
incorporates a well-established functional form of the CSF74,85. Instead of using machine learning to re-learn the 
optimal functional form for the CSF from the trial-by-trial data, we utilized a functional form based on domain-
specific expertise developed through decades of research86. This approach is advantageous because it leverages 
well-established knowledge rather than relying solely on artificial intelligence to determine the functional form. 
In addition, traditional statistical models in this domain are based on point estimate of CSF parameters. They 
do not use all the information in the trial-by-trial data to generate posterior probability distribution that are 
essential in the predictions of CSF with estimated uncertainty in unmeasured conditions.

On the Dell computer with an Intel Xeon W-2145 @ 3.70 GHz CPU (8 cores and 16 threads) and 64 GB of 
installed memory (RAM), it took approximately 9 to 18 h and 120 MB RAM to compute the DT for a single 
prediction task in this study. Although 18 h is still within practical time limits, scaling up the DTs to include 
more historical data, additional conditions, more new data, or more predictions may require more efficient 
computation methods. We are exploring pre-computed likelihood functions87, Gaussian Process modeling82, 
and newly developed parallel MCMC algorithms to address this88.

In conclusion, this study introduces DTs developed through a hierarchical Bayesian modeling approach for 
predicting the CSF . The DTs accurately predict CSF patterns, reducing testing burden and facilitating treatment 
evaluation in precision medicine. They emulate TwinRCTs, enhancing sample size and statistical power, and aid 
in treatment predictions over time. Additionally, DTs serve as informative priors in adaptive testing, improving 
patient care by incorporating both between- and within-subject relationships. The scalability of DTs extends 
beyond CSF, offering personalized disease staging and treatment outcome predictions. While effective for CSF 
data, alternative machine learning technologies may be needed for projections beyond existing data. Although 
further research is necessary, this study demonstrate the potential of DTs in vision assessment. Reliable 
predictions from DTs could improve the accuracy, precision, and efficiency of vision assessment and enable 
personalized medicine, offering more efficient and effective patient care solutions.

Methods
Data
The dataset used in this study comprised 112 college-aged subjects with normal or corrected-to-normal vision. 
They were tested with qCSF under low (2.62 cd/m2), medium (20.4 cd/m2), and high (95.4 cd/m2) background 
luminance conditions73. Each trial presented three filtered letters of the same size, randomly sampled with 
replacement from 10 SLOAN letters (C, D, H, K, N, O, R, S, V, and Z), with the center spatial frequency and 
contrasts of the letters determined by the qCSF algorithm73,74. A total of 50 trials were conducted under each 
luminance conditions. Subjects were required to verbally report the identities of the letters displayed on the 
screen. Written consent was obtained from all participants, and the study protocol adhered to the principles 
outlined in the Declaration of Helsinki, approved by the Institutional Review Board of human subject research 
of the Ohio State University.
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Apparatus
All analysis was conducted on a Dell computer with Intel Xeon W-2145 @ 3.70  GHz CPU (8 cores and 16 
threads) and 64 GB installed memory (RAM). The HBM was implemented in JAGS89 in R90.

Data analytics procedures
Supplementary Materials A provides detailed descriptions of the DTs, including their HBM core, evaluation 
procedures for the DT predictions, and methods for incorporating DT predictions as informative priors in qCSF 
testing. It also outlines procedures for quantifying the accuracy and precision of DT predictions and using them 
as informative priors to rescore existing data and simulate the qCSF procedure.

In the HBM, the priors for the mean of the CSF hyperparameters at the population level are uniform 
distributions covering the same range of CSF parameters used in the qCSF test, which has been effectively 
applied across various clinical populations46,47,51,53,55,56,59,62,91–93. We employed the Bayesian inference procedure 
(BIP) to estimate the posterior distribution of CSF parameter for each test independently.

The weakly informative prior distribution of the covariance at the population level in the HBM was defined 
by a 9× 9 precision matrix with a Wishart distribution, degrees of freedom of 9, and an expected mean based 
on the covariance of estimated CSF parameters across all subjects and conditions from the BIP. For the subject-
level covariance in each condition, the prior was defined by a 3× 3 precision matrix with a Wishart distribution, 
degrees of freedom of 3, and an expected mean based on the average covariance of the posterior distribution of 
the estimated CSF parameters across all subjects in that condition from the BIP. These weakly informative priors 
are critical for the HBM to converge within practical time limits.

In our previous study72, using these weakly informative covariance priors, the HBM took 54 h to converge 
and generate 10,000 effective samples. In contrast, using a diagonal covariance prior resulted in a 18% increase 
in computational time (63.5 h) to generate the same number of effective samples. Our findings align with other 
studies on the impact of priors on covariance estimation94,95.

Data availability
The datasets analyzed during the current study are available from the corresponding author upon reasonable 
request.
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