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Vascular endothelial growth factor, VEGF, is essential for endothelial cell differentiation (vasculogenesis)
and for the sprouting of new capillaries from preexisting vessels (angiogenesis). In addition, there is strong
evidence that VEGF is a survival factor allowing the cells to survive and proliferate under conditions of
extreme stress.

Hypoxia is a key regulator of VEGF gene expression. Besides hypoxia, many cytokines, hormones and

growth factors can up-regulate VEGF mRBNA expression in various cell lypes.
VEGF is present in the glomerulus of both the fetal and adult kidney. The VEGF produced by glomerular
epithelial cell may be responsible for maintenance of the fenestrated phenotype of glomerular epithelial’ cells,
thus facilitating the high rate of glomerular ultrafiltration. But there is little known about the role of VEGF in
the tubule.

VEGF is thought to be involved in many kinds of kidney diseases. Whereas VEGF has a beneficial role in
the pathogenesis in some diseases, it does harmful action in others. Because VEGF is known to be
associated with the pathogenesis of some diseases, such as diabetic nephropathy, renal tumor and
polycystic kidney disease, the study about the role of VEGF is going to be a target for disease control. On
the other hand, an attempt at enhancing the role of VEGF has to be made at diseases like several ARF

models and experimental glomerulonephritis.
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INTRODUCTION

Vascular endothelial growth factor, VEGF, also termed
vascular permeability factor, VPF, has been at the center
stage of vascular research for the past 2 decades. These
years witnessed the expansion of the VEGF family of
proteins, elucidation of their functions and attempts at utilizing
these proteins and their respective neutralizing antibodies for
therapeutic purposes, both in experimental animals and in
clinical trials of myocardial and limb revascularization.

Angiogenesis is essential not only for organ development
and differentiation during embryogenesis but also for physio-
logical situations, such as wound healing and reproduclive

functions'. Vascular supply is also thought to be implicated
in the pathogenesis of a variety of disorders, including
proliferative retinopathies, age-related macular degeneration,
umors, rheumatoid arthritis and psornasis. Vascular endo-
thelial growth factor (VEGF) is essential for endothelial cell
differentiation (vasculogenesis) and for the sprouting of new
capillaries from preexisting vessels iangingenesis]z' ¥ In
addition, there is also strong evidence thal VEGF is a survival
factor allowing the cells to survive and proliferate under
conditions of extreme stress, both in vitro and in vivo' ™.
This review will focus on the latest developments in under-
standing the role of VEGF in renal development, function

and dysfunction.
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VEGF family members and
their receptors

VEGF is a distant relative of platelet-derived growth factor
(PDGF] and i1s a member of a family of related growth faclors
that now includes VEGF-B, -C. -D and -E and placenta
growth factor (PIGF)”. In particular, VEGF, referred to also as
VEGF-A, is a major regulator of normal and abnormal
angiogeneasis.,

Alternative splicing of human VEGF mBNA from a single
gene containing eight exons'™ gives rise to at leasl five
different isoforms of 121, 145, 165, 189 and 206 amino acid
residues” * ', Mouse and rat VEGF isolorms are shorter by
one amino acid'> . VEGF» fails to bind to heparin, while
VEGFss is a basic, heparin-hinding protein. VEGF:s and
VEGFxs are more basic and bind to heparin with ever greater
affinity than VEGFes'"". VEGFz, VEGFus and VEGFis are
secreted and readly diffusible. In contrast, VEGFi and
VEGFzx are almost completely sequestrated in the extra-
cellular matrix (ECM)™. Human VEGF s is typically expressed
as a 46-kDa homodimer of 23-kDa monomers and is the
most abundant and the most biclogically aclive form,

Two distant receptor tyrosine kinases (RTKs) have been
identified for VEGF, VEGF-R! (Fli-1) and VEGF-R2 (KDR/
Flk=1), which share -44% amino acid homology with each
other™ ', A third receptor, VEGF-R3 (Fit-4), binds VEGF-C
and -D and does not bind VEGF-A™ ". PIGF and VEGF-B
bind with high affinity only to VEGF-R1 and do not bind to
VEGF-R2. VEGF-E binds with high affinily to VEGF- R2
(Table 1).

Neuropiin—-1 (NP-1) was recently identified as a new receplor
for VEGF. NP-1, previously known as a neuronal receptor,
was shown to function also in endothelial cells as an isoform-
specific receptor for VEGFs and as a co-receptor in vitro of
VEGF R2¥,

Table 1. Binding of VEGF family members to the known VEGF
tyrosing kinase receptors
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T VEGF R3

VEGF RI  VEGFR2
i (Fit-1)  (KDR/Fk-1)  (Fit-4)
VEGF-A Yes Yas Mo
VEGF-B Yes No No
VEGF-C NO Yes Yes
VEGF-D No Yes Yes
VEGF-F No Yos No
PIGF Yes No No
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Regulation of VEGF gene expression

Hypoxia

Hypoxia 15 a key regulator of VEGF gene expression,
ooth in vitro and in vivo. Hypoxia induces transcription of
the VEGF gene”" #. In the VEGF gene, a 28 bp hypoxia
response element (HRE) is located approximately 1 kb
upstream of the transcription initiation site™. Transcription
activation of the VEGF gene is mediated by binding of the
hypoxia-inducible factor-1 (HIF-1a/8) to this element in
nypoxic condition, The HIF-1a subunit is the O.—sensitive
partner .

However, transcriptional activation is not the only mecha-
nism leading to VEGF up-regulation in response to hypoxia.
Increased mBNA stability is an important post- transcriptional
component™ *. Hypoxia induces transcription of VEGF gene
and stabilization of VEGF mRNA.

Hormones and cylokines

Many cytokines, hormones and growth factors can
up-regulate VEGF mRNA expression in various cell types.
Epidermal growth factor, TGF-8 or keralinocyte growth factor
result in a marked induction of VEGF gene expression” .
Both interleukin 1a and prostaglandin E2 induce expression
of VEGF in cultured synovial fibroblasts, suggesting the
participation of such inductive mechanisms in inflammatory
angiogenesis™. Insulin-like growth factor 1 has also been
shown to induce VEGF mRNA and protein in cultured
colorectal carcinoma celis™. Thyroid-stimulating  hormones
and ACTH are able to induce VEGF gene expression iIn
wtmm' .

VEGF is up-regulated by renin and angiotensin [
In turn, VEGF Is also known to stimulate expression of
angiotensin-converting enzyme and production of angiotensin
I* ® Although there were many reports showing that
angiotensin Il is a potent stimulator of VEGF expression in
several cell lines™ * * one study showed the opposile
relations between angiotensin Il and VEGF. According to this
latier study, angiotensin Il is a potent inhibitor of VEGF

expression in mTAL cells”"

Distribution of VEGF and
its receptors in the kidney

VEGF is present in the glomerulus of both the fetal and
adult kidney. By immunohistochemistry of the human kidney,
VEGF is expressed in the glomerular matrix and in the
glomerular cells of both the fetal and adult human kidneysﬁ'.
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In the adult rat kidney, VEGF is constitutively expressed in
glomerular podocytes. In addition, consistent with the fact that
glomerular epithelial cells (GECI have been identified as the
site of conslitutive production of VEGF, several reports
showed that VEGF is present in the glomerulus of the kidney™ ™

In the tubule, so far, VEGF expression in the normal
human kidney has been known to be confined to the distal
and collecting duct epithelium™. The expression of VEGF
protein in the distal tubule was also found in the fetal kidney.
VEGF expression in the distal fubule was weaker than in
the glomerulus®".

In the rat, normal kidney showed diffuse expression oOf
VEGF in all tubules of the renal cortex and medulla®.
Proximal tubules in the human kidney exhibit only faint, if any,
abeling of VEGF mRNA and VEGF protein when sludied
by in situ hybridization and immunohistochemistry™ “ But,
recently, some publications reported that human proximal
tubular cells produced VEGF in culture™ **.

VEGF receptors are predominantly expressed in the glomer-
ular capiilaries‘ﬁ’. To a lesser degree, VEGF receptors are found
in other capillanes and veins by immunohistochemistry, In the
fetal kidney, glomeruli demonsirated strong labeling for fit-1
and KDR mRBNA by in situ hybridization with antisense
rboprobes™. Besides endothelial cells, other cells, such as
mesangial cells™ and tubular cells"”, function as effectosr of
VEGF, although the precise actions on these cells remain
unclear,

Functional role of VEGF in the glomerulus
and tubule of the kidney

The alternative exon splicing of a single VEGF gene gives
rise to 5 isoforms of VEGF. The major known functional
difference among the various VEGF isoforms is their ability to
bind heparin and heparan sulfate protecglycans distributed on
a cellular surface and within the extracellular matrix and
basement membrane,

The fact that the glomerular epithelial cell (GEC) expresses
mRNA for the soluble secretory form VEGF-120 and for the
soluble matrix-associable VEGF-164 and insoluble, heparn-
binding matrix-associated VEGF-188 and VEGF-205 suggests
that the glomerular basement membrane may be the site of
VEGF accumulation and storage. Thus we hypothesized that
VEGF produced by GEC is stored at the basement membrane
and released to the endothelial cells, thus effectively completing
the loop of paracrine action.

VEGF is constitutively expressed in the normal kidney
where it is primarly localized to glomerular podocytes and
tubular cells. Furthermore, the expression of VEGF receptors

on the endothelial cells as an effector system suggests that
VEGF effects may be mediated via its binding to heparan
sulfate proteoglycans, which act to shuttle VEGF across the
basement membrane®.

It has been suggested that VEGF produced by the
glomerular epithelial cell (GEC) may be responsible for
maintenance of the fenestrated phenolype of glomerular
epithelial cells™ ﬂ', thus facilitating the high rate of glomerular
ultrafiitration.  Along these lines, we showed that VEGF acts
on the permeability of endothelial cell monolayers in vitro.
Caveolae, the plausible structures involved in the increase in
endothelial permeability”, became organized into elongated
cell-spanning structures in endothelial cells shortly after
exposure to VEGF. These structures were permeable to high
molecular weight dextran. Two days after addition of VEGF,
endothelial cells exhibited diaphragmed fenestrae™. Thus, it is
conceivable that VEGF elicits a rapid increase in vascular
permeability via mobilization of caveclae and formation of
cell-spanning channels, whereas the long-term effect requires
formation of fenestra (Figure 1),

In contrast to the glomerulus, little is known about the role
of VEGF in the tubule. In the kidney, the peculiar anatomy of
microvasculature is characterized by the first division of
arterioles into glomerular capillaries, which i1s followed by the
“rete mirabile” of the second subdivision of the efferent
arterioles into peritubular capillaries. Both the glomerular
and peritubular capillary endothelium are characterized by
extensive fenestration and high permeability to solutes. This
analogy with the microvasculature of endocrine organs
and tumors provided an impetus for investigation into the
production of VEGF in the different nephron segments of the
kidney”"".

In the remnant kidney model, Kang et al.””’ observed a
strong correlation between the number of peritubular
capillaries and tubular VEGF expressions. Recently, we
investigated the production and role of VEGF in the proximal
tubular and glomerular epithelial cells by using epithelial-
endothelial cell co-cultures™. Qur study showed that proximal
tubular epithelial cells constitutively produce VEGF and VEGF
secreted by proximal tubular epithelial cells supports
angiogenesis in culture. Furthermore, VEGF production is
dramatically up-regulated by hypoxia and by high glucose.
However, the angiogenic response in vitro is limited to the
hypoxic condition only and does not occur under hyper-
glycemia. These data indicate that, while VEGF is necessary
for angiogenesis, it is not sufficient under conditions when
endothelial cells become dysfunctional, like in hyperglycemia.
Collectively, we hypothesize that the regulated production of
VEGF by the proximal tubular epithelium may play a profound
role in the regulation of the peritubular capillary network
(Figure 2).
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Figure 1. Long-term effect of VEGF resulted in the formation of fenestration of endothelial cells. (A) HUVEC were cultured on matrigel for
36 h in the presence of 10 ng/mL VEGF-165. Light microscopic image shows an elaborate capillary-like network formed under these
conditions. (B) Transmission electron micrograph shows diaphragmed fenestrae (arrowheads). (C) and (D) changes in electrical resistance
and capacitance, respectively, in HUVEC treated with 10 ng/mL VEGF-165 (control cells were deprived of VEGF), demonstrating
concomitant decrease in resistance and increase in capacitance compared with control. One-way ANOVA of experimental and control data
in B and C showed that these curves are significantly different at p<0.05. HUVEC: human umbilical endothelial cell. Reprinted with

permission from ref. 50.
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Figure 2. VEGF protein expression in GEC and RPTEC (A and B). Immunoprecipitation for VEGF in GEC (A) and RPTEC (B). Both
bands shown are VEGF protein expressions from cell lysate and media, respectively. VEGF was detected using immunoprecipitation with
polyclonal antibody followed by blotting with the monoclonal antibody. (C and D) VEGF expression in GEC (C) and RPTEC (D).

GEC: rat glomerular epithelial cell, RPTEC: human renal proximal tubular epithelial cell; Con: control; D-glu: 30 mM D-glucose for
24 hours; L-glu: 30 mM L-glucose for 24 hours; Hypo: hypoxia for 24 hours; DG+H: 30 mM D-glucose+hypoxia for 24 hours.

*: p<0.01 compared with the control group, " p<0.05 compared with the control group. Reprinted with permission from ref. 44.
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VEGF in renal diseases

1. Acute renal failure

Hypoxia 1s a well-established potent stimulus for VEGF
production in some cells, acting by inducing transcription of
VEGF gene and stabilization of VEGF mRNAZ" % * We also
observed that VEGF production was increased after hypoxic
njury in the glomerular (GEC) and human renal proximal
tubular epithelial cells (RPTEC) in culture™. Interestingly, a
24-hour hypoxia resulted in a 2.4- and 4.9-fold increase in
VEGF mRNA in GEC and RPTEC, respectively, indicating that
VEGF production after hypoxia is more robust in the tubular
cells than in the glomerulus.

The most susceptible region to hypoxia is the outer
medulla™. The tubules in this region are normally in a
borderline hypoxic state due to the countercurrent circulation
and high oxygen demand of the medullary thick ascending
tubule and the S3 segments of the proximal tubule. Thus,
hypoxia can Induce tubular and interstitial cell injury, cell
activation, proliferation, cytokine generation and matrix synthesis
associated with an increased expression of HIF-1 R

There is strong evidence that VEGF is a survival factor for
endothelial cells. VEGF acts as a survival factor by preventing
endothelial cell apoptosis via stimulation of VEGF R-2-
mediated signaling cascade involving PI3K/Akt pathway® ”.
This would be an obvious teleclogic justification for tubular
secrefion of VEGF, since survival of a tubular cell during
hypoxic injury is likely to be cntically dependent on the
survival of the adjacent endothelium and maintenance of the
pertubular blood flow.

One study suggests that the change of VEGF distribution,
rather than an increase in VEGF production, is responsible for
ihe response to hypoxic injury. The authors show that acute
re-distribution of cytoplasmic VEGF to the basolateral aspect
of tubular epithelial cells in response to hypoxic injurz.r""’I can
protect endothelial cells.

Besides ischemic injury, VEGF accelerates renal recovery in
toxin-induced ARF™. VEGF resulted in greater recovery of
microvasculature and better renal function in the TMA
'thrombotic microangiopathy) animal model induced by the
anti-glomerular endothelial cell IgG.

One study shows that peritubular capillary loss is associated
with chronic tubulointerstitial injury (CTI) and the pattern of
VEGF expression has been changed”', VEGF expression
was Increased in the tubule, especially in morphologically
INtact or hyperirophic ones. This supports the postulate on the
rSle of VEGF in chronic ischemic injury.

2. Glomerular diseases
Ihe patterns of VEGF expression in glomerular diseases

are complicated. VEGF has been implicated in the induction
of proteinuria in renal disease™. In addition, the up-regulation
ot VEGF expression in the mesangial cells dunng mesangio-
proliferative disease was described™.

Recently, one study showed that the addition of VEGF to
cultured human mesangial cells induced their proliferation and
that VEGF receptors are present in human mesangial cells™.
Mesangial cell proliferation is a common response of the
glomerulus to diverse injuries in both human and experimental
glomerular disease, and several growth factors have been
implicated in this process. There are several potential sources
of glomerular VEGF. VEGF can be released by glomerular
cells and by infiltrating T lymphocytes™ or monocytes®”. Among
resident glomerular cells, epithelia™ and mesangial cells®”
produce VEGF in vitro. VEGF production is up- regulated by
several growth factors, inflammatory cytokines and vasoactive
agents in the kidney. Thus, a series of stimuli involved In
glomerular injury can induce both VEGF and modulate the
expression of its receptor.

On the other hand, many studies have shown the beneficial
role of VEGF In the pathogenesis of glomerular diseases. In
the experimental anti-Thy-1.1 glomerulonephritis, VEGF may
participate in the healing of glomerular lesions™. Another
study showed that systemic administration of VEGF induced
glomerular repair and resolution of glomerulonephritis in the
experimentally induced glr:}meruinnenhritism*. The authors
discovered that the recovery was associated with stimulation
of angiogenesis, vascular remodeling and angiogenic capillary
repair, all playing an important role in recovery from severe
glomerular damage. Difierent from one report as mentioned
above™, proliferation andfor activation of mesangial cells,
even in rats treated with VEGF, was significantly decreased
compared to the control group. The authors suggested that
the dose of VEGF determined whether the proliferation and
activation of mesangial cells developed. As impaired capillary
regeneration in severely damaged regions relates to the
continuation of mesangial cell proliferation and activation,
capillary regeneration can influence the suppression of
mesangial cell proliferation and activation. In addition, recent
studies suggested that VEGF does not affect the development
of proteinuria in renal diseases™ ®.

There are two studies suggestive of the relation between
VEGF and several glomerular diseases. One study tested
the urinary VEGF levels in patients with several glomerular
diseases™. It appeared that normal subjects had deteclable
unnary VEGF excretion and, compared with them, the excretion
was unchanged in minimal change disease (MCD}, but was
elevated in patients with FSGS and necrotizing glomerulone-
phritis. In contrast, MGN (membranous glomerulonephritis)
was associated with the significantly suppressed urinary
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excretion of VEGF, while decreasing clinical activity (reduction
in proteinuria) was associated with recovery of unnary VEGF
excretion toward the levels observed in the healthy subjects.
The other study evaluated kidney tissue from 4/ patients
with a variety of renal diseases using immunohistochemistry
and in situ hybridization™”. The authors observed that VEGF
expression was decreased or absent in sclerotic glomerull,
glomeruli compressed by crescents, glomeruli with a marked
hypercellularity (SLE) and in areas occupied by matrix nodules
(diabetic nephropathy).

Abnormal glycosylation of serum IgA has been shown
in lgA nephropathy. A significant down-regulation of VEGF
mBNA and protein in human mesangial cells was developed
after incubation with aberrantly glycosylated igA™. Depressed
VEGF synthesis may play a role in the aberrant vascular
repair and favor sclerosis in IgA nephropathy.

Collectively, VEGF expression seems to be associated with
the nature and pattern of glomerular diseases, and less so
with the disease itseli. VEGF expression was decreased in
the regions with sclerosis and impaired capillary density. One
possible explanation is that VEGF expression is decreased In
chronic renal lesions. Though it is not certain whether VEGF
expression in glomerular diseases is playing a causative role
or just results from the disease process, it appears that the
beneficial effect of VEGF supplementation may have patho-
physiclogical ground.

3. Diabetic Nephropathy

Several studies show that high glucose increases the
production of VEGF in a variety of cell types™ "". The
expression of VEGF mRNA and protein was enhanced after
exposure lo high glucose in both glomerular and tubular
epithelial cells of the kidney™ ™. In addition, the up-regulation
of VEFG and its receptors was demonstrated in the kidney
of diabetic rats™ ™. In the study in OLETF rats described
above, renal VEGF mBNA and glomerular VEGF immuno-
reactivity were reported to be increased over the duration of 9
to 68 weeks.

Besides the increased VEGF expression in hyperglycemia,
there is evidence suggesting a potential pathophysiologic
role of VEGF in DM nephropathy. High glucose induces
VEGF gene and protein expression in several types of cells
via protein kinase C, which is increasingly recognized as
one of the central mediators of the damaging effects of
hyperglycemia™ ™ ™. PKC inhibitor and PKC down-regulation
inhibited glucose~ induced increases in VEGF production™. In
addition, a link between PKC and VEGF is further suggested
by studies with an orally active PKC 8 inhibitor’™ ™. PKC B
inhibition was associated not only with reduced VEGF-
induced retinal permeability but also with retardation of the

development of albuminuria in streptozotocin-induced diabetic
rats.

Another potentially important subject is the relation between
VEGF and NO. VEGF exerts its angiogenic, vascular permea-
bility and hemodynamic effects via activation and upregulation
of eNOS in endothelial cells™®". The action of NO as a
downstream mediator of VEGF is commensurate with the
up-regulation of the NO system in early diabetes and is
implicated in the pathogenesis of early renal dysfunction. NOS
blockade substantially reduces or even completely eliminates
the hyperfiltration in experimental diabetes™ *'. VEGF blockade
prevented the up-regulation of eNOS in the diabetic glomeruli,
thus supporting the contention that VEGF binds to its receptors
on glomerular capillary endothelial cells and increases eNOS
expression in these cells™. Along with this, interference with
the VEGF-NO axis was shown to prevent microvascular
dysfunction induced by high glucose level in experimental
rats®

The expression of VEGF in the diabetic kidney may depend
not only on the effects of hyperglycemia but on the effects of
advanced glycated end products (AGEs) that accumulate in
diabetic tissues over weeks and months”’, These AGFs have
been shown to activate VEGF expression in vivo and in vitro.
Various other factors relevant to the pathogenesis of diabetic
nephropathy have also been shown to promote VEGF
expression, including stretch™, angiotensin I™®, and a number
of cytokines”™ . Recently, one study showed that anti-VEGF
antibody improved early renal dysfunction such as, hyper-
ﬂ!traﬁan. albuminuria and glomerular hypertrophy in diabetic
rats™.

4. Renal Tumors

Since Folkman's proposal in 1971 that inhibition of angio-
genesis may be a vald stralegy for the trealment of solid
tumors™, extensive research has been dedicated to the identi-
fication and characterization of tumor angiogenesis factors.
Many studies have demonstrated that VEGF is markedly
up-regulaied in the vast majorty of human tumors so far
examined, including lung, breast, gastrointestinal tract, bladder,
ovary™.

In the kidney, VEGF has been known as a major tumor
angiogenic factor. Increased serum levels of VEGF in patients
with renal cell carcinoma (RCC) have been reported and
these levels were also increased in the affected kidney of
patients with RCC”"". Furthermore, VEGF expression in RCG
correlated positively with the grade and size of the tumor™ *'
Therefore, VEGF expression is a potentially significant
independent predictor of the outcome. Besides the RCC,
angiogenesis in Wilm’'s tumor is also driven by VEGF™,
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5. Other Diseases

The VEGF mRBNA and protein expression are enhanced in
the experimental chronic cyclosporine (CsA) nephrotoxicity
model™. CsA also increases the expression of VEGF receptor
mRNA. Since chronic low-grade tissue hypoxia iIs believed to
be important in the development of chronic CsA nephro-
IEJKICI'[‘_-,F%]_. CsA may cause injury o the endothelium, which
may then up-regulate VEGF production as an adaptive
mechanism directed toward repair and maintainance of the
damaged endothelium. Actually, VEGF administration blunted
the development of salt-sensitive hyperlension and nephro-
pathy after CsA exposure’ .

VEGF protein expression was shown to be up-regulated
in the kidney of patients with chronic renal allograft rejection,
a renal disease with histologic similarities to chronic CsA
nephrotoxicity™. Inhibition of VEGF by topically applied neu-
tralizing antibody markedly suppresses acute rejection of rat
comeal allografts, indicating a contributory role for VEGF in
the pathogenesis of rejection™’. Recently, one study showed
that VEGF gene polymorphism is associated with acute renal
allograft rejection and may be a useful marker of the risk for
rejection'™. It is suggested that increased VEGF production
enhances endothelial permeability and augments leukocyte
infiltration of the allograft, which may promote a clinically
recognizable rejection episode. However, the exact mecha-
nism (s) and role of VEGF in the allograft rejection remain 1o
be determined.

One recent study discovered increased angiogenesis and
VEGF expression in the renal cysts in patients with adult
polycystic kidney disease (ADPKD)"™". The epithelial cells of
some cysts and enlarged tubules in more preserved areas
express VEGF, and some capillaries surrounding the cysts
express VEGF R-2. It can be suggested that cyst devel-
opment is associated with the local enhancement of the
microvascular network which, in turn, may facilitate or promote
fluid secretion into the cysts. The postulated molecular
mechanism of this process involves VEGF secretion and
stimulation of neovascularization.

Pharmacological tools to modulate
VEGF in the kidney

1. Suppressing effects of VEGF

First of all, many attempts using the angiogenic effect of
VEGF have been made at anti-tumor therapy. There is an
extensive body of evidence documenting the fact that
nhibition of VEGF activity results in suppression of the growth
of a wide variety of tumor cell lines in murine models'™".
Furthermore, clinical frials in cancer patienis are under way

with several VEGF inhibitors, including a humanized monoclonal
antibody and various small molecules, inhibiting VEGF signal
transduction'™. In the kidney, some reports show that
anti-VEGF antibody alone or in combinalion with other
anti-angiogenic drugs Is effective in suppressing the growth of
Wilm's tumor™ ™. Though not as well documented as the
therapy of Wilm's tumor, there is a report that anti-angiogenic
agents inhibit the expression of VEGF™ in renal cell
carcinoma. But, so far, there was no report about the direct
relation between VEGF and renal cell carcinoma growth.

Based on the thought that an enhanced renal VEGF
system is responsible for diabetes—associated renal changes,
one report using anti-VEGF monoclonal neutralizing antibody
in diabetic rats has recently been published™. Anti-VEGF
antibody treatment decreased hyperfiltration, albuminuria and
glomerular hypertrophy in streptozotocin-induced diabetes In
rats. In an animal model of type Il diabetes'”, it was shown
that long-term AGEs-inhibitor treatment abolished the enhanced
renal VEGF expression and afforded a renoprotective effect by
reducing diabetes-induced renal collagen IV accumulation to
normal levels and reducing the albumin excretion rate.

So far, the use of anti-VEGF agents in ADPKD and renal
allograft rejection has not been explored. However, since 1t IS
possible that VEGF is associated with the pathogenesis of
ADPKD and chronic renal allograft rejection™ ", anti-VEGF
treatment has a polential for beneficial effects In those
diseases.

2. Enhancing effects of VEGF

There have been numerous studies into the role of VEGF
in renal failure. One study shows that VEGF blockade with an
aptamer results in the inhibition of the capillary repair and
leads to progressive renal damage'™. In the model of
experimental thrombotic microangiopathy, VEGF is capable of
increasing pentubular capillary density, and this is associated
with the amelioration of fibrosis and better preservation of
renal function™ "™, Interestingly, while glomerular capiliaries
were repaired dramatically, peritubular capillary endothelilum
did not recover compietely, and this was associaled with a
loss of VEGF from the tubular cells. VEGF can reduce the
fibrosis and stabilize the renal function in the remnant kidney
model™. In addtion, in the CsA nephropathy, which is
thought to be associated with chronic low-grade hypoxia,
VEGF improves CsA-induced hypertension and nephro-
pathy”".

Masuda et al. demonstrated that angiogenic capillary repair
plays an important role in recovery from severe glomerular
damage In rats with experimentally Iinduced glomerul-
nnephr'rtism'. Systemic administration of VEGF after acute
glomerular injury successiully induced glomerular repair and
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resolution of glomerulonephritis, associated with stimulation of
angiogenesis and vascular remodeling. The use of VEGF as
an angiogenic factor, therefore, could be potentially clinically
useful for the treatment of glomerulonephritis accompanied by
severe endothelial injury and capillary destruction.
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