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Diabetic retinopathy (DR) is among the common micro-
vascular complications of diabetes mellitus that develop after 
chronic hyperglycemia. Irreversible vision loss occurs in up to 
80% of patients who have been affected with diabetes for 20 
years or more [1,2]. While chronic hyperglycemia increases 
inflammation and causes neuronal and vascular injuries, 
such as loss of ganglion cells and generation of degenerative 
capillaries, the mechanism underlying the pathogenesis of DR 
remains elusive.

Sirtuins (SIRTs) are nicotinamide adenine dinucleotide 
(NAD)-dependent histone deacetylases that play a role in 
inflammation, energy metabolism, stress resistance, and 
cancer [3]. Among them, SIRT6 is localized in the nuclei and 
regulates a variety of biologic processes, including transcrip-
tion, inflammation, carcinogenesis, metabolism, and so forth, 
while affecting numerous pathophysiological conditions such 
as diabetes mellitus and cardiovascular disorders [4,5]. A 
recent study demonstrated that SIRT6 was downregulated in 
human endothelial cells [6]. To date, the precise function of 
SIRT6 in DR and the mechanism underlying the regulation 
of type 2 diabetes mellitus (T2DM)-related metabolism by 
SIRT6 has yet to be determined.

Nicotinamide mononucleotide adenylyltransferase 2 
(NMNAT2) catalyzes NAD synthesis [7]. NMNAT2 can serve 
as a sensor for monitoring intracellular redox equilibrium as 
well as the energy state in cells with high energy demand, 
such as retinal ganglion cells [8]. It has been proven that 
NMNAT2 participates in the regulation of SIRT6 and its 
downstream signaling pathways related to neuroinflamma-
tion [9-12]. Hence, it is hypothesized that NMNAT2/SIRT6 
could exert a regulatory effect on inflammatory reactions 
in DR. Herein, we comprehensively examined the expres-
sion of SIRT6, NMNAT2, and inflammatory cytokines in 
various categories of DR patients and then determined their 
relationships.

METHODS

Patients: In this study, we enrolled consecutive T2DM 
patients as well as nondiabetic subjects who presented to the 
outpatient department of the Zhongshan Ophthalmic Centre, 
China, from January 2021 to July 2022 (Table 1). Diagnosis 
was confirmed in accordance with American Diabetes Asso-
ciation standards (2002) [13].

The study’s exclusion criteria for participation were: 
1) cases complicated by infectious diseases or other disor-
ders such as nephropathy (including stage 3 chronic kidney 
disease, macroalbuminuria, proteinuria, and hemodialysis 
patients); 2) patients who had undergone intraocular proce-
dures, intravitreal treatments, or photocoagulation within 3 
months before the study; 3) patients with a history of uveitis, 
trauma, vitreous hemorrhage, or retinal detachment; and 4) 
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patients taking immuno-suppressive drugs. The assessment 
of DR was performed using fluorescein fundus angiography 
(FF450 fundus camera, Carl Zeiss Meditec AG, Germany). 
Body mass index (BMI) was calculated using the standard 
formula, weight (kg)/height (m2). Diabetics were classified 
into three categories: no clinically apparent retinopathy 
(NDR), non-proliferative diabetic retinopathy (NPDR), and 
proliferative diabetic retinopathy (PDR) [14].

All experiments were approved by our institutional 
ethical committee and conducted in compliance with the 
Declaration of Helsinki. Each participant provided a signed 
informed consent statement.

Demographic data: Age- and sex-matched samples were 
collected from 77 patients with T2DM (39 males and 38 
females) and 27 healthy individuals (14 males and 13 females). 
The median ages of the patients and control subjects were 
63.3 ± 6.7 years and 65.7 ± 7.6 years, respectively (p = 0.135). 
The diagnoses of the 77 diabetic patients were NDR (n = 25), 
NPDR (n = 26), and PDR (n = 26). The male to female ratios 
and mean ages (± SD) of NDR, NPDR, and PDR patients were 
13:12 and 63.3 ± 7.0 years, 14:12 and 62.0 ± 6.2 years, and 
12:14 and 64.7 ± 6.8 years, respectively.

Specimen collection: Twelve mL of whole blood was collected 
from each subject in a test tube with lithium heparin (Vacu-
tainer; BD Biosciences, San Jose, CA) for quantification of 
protein and mRNAs, and venous blood was drawn to measure 
fasting plasma glucose (FPG) and glycated hemoglobin.

Isolation of PBMCs: Isolation of PBMCs from heparinized 
venous blood was performed using Ficoll-Hypaque density 
gradient centrifugation. PBMCs were incubated with lipo-
polysaccharide (100 ng/ml; Sigma-Aldrich Corp.,St Louis, 
MO) for 4 h, followed by incubation in RPMI 1640 medium 
with 1 mM ATP for another 15 min.

Collection of vitreous fluid: Using pars plana vitrectomy, 
0.5 ml of undiluted vitreous fluid was obtained from each 
participant. Samples were stored at −80° C until analysis.

Quantitative real-time PCR: Total RNA was extracted from 
the PBMCs by the Trizol method and reverse-transcribed 
using the Qiagen QuantiFast SYBR Green PCR Kit on 
BioRad LightCycler CFX96 (Hercules, CA). The primers for 
human genes were designed according to the PrimerBank 
public database [15,16]. The following primers were used: 
SIRT6 sense: 5′-GCTGGAGCCCAAGGAGGAATCT- 3′, 
antisense: 5′-AGCCTCACCTCTGGACAACACA −3′ [15]; 
NMNAT2 sense: 5′- CCGCAATTGAAGGATGTTG-3′, anti-
sense: 5′- CTCTGGCTCTTGGGATTCTG −3′; and β-actin 
sense: 5′-GGA CTT CGA GCA AGA GAT GG-3′, antisense: 
5′-AGC ACT GTG TTG GCG TAC AG-3′. β-actin was 
included as a reference gene. Each assay was conducted in 
triplicate. The amplified products were resolved on agarose 
gel electrophoresis. Primer specificity was evaluated by 
melting curve analysis, and the 2-ΔΔCt method was employed 
to measure relative mRNA expression levels.

Western blot analysis: Total protein was isolated from the 
PBMCs. Protein extract (60 μg) was resolved on 12% SDS–
PAGE and then electroblotted to a PVDF membrane. The blot 
was detected with anti-SIRT6 or anti-NMNAT2 antibodies 
(Abcam, Cambridge, UK). The target protein was visualized 
with the Pierce SuperSignal West Pico Substrate Kit. ImageJ 
software was employed to determine the protein band inten-
sity relative to β-Actin.

ELISA: The levels of IL-1β, IL-6, and TNF-α in the vitreous 
f luid samples were determined with an ELISA kit (Sen-
Xiong Company). Each sample, along with the standard, was 
measured three times. Background subtraction was applied to 
determine OD450, and a standard curve was made.

Immunohistochemistry: Surgical removal of fibrovascular 
membranes (FVMs) was performed on 26 PDR patients, and 

Table 1. Clinical and biochemical characteristics of type 2 diabetic patients and healthy control subjects.

Variables      Control 
(n=27)

NDR 
(n=25)

NPDR 
(n=26)

PDR 
(n=26)

p

Sex (m/f) 14/13 13/12 14/12 12/14 0.951
Age (years) 65.7±7.6 63.3±7.0 62.0±6.2 64.7±6.8 0.249
BMI (kg/m2) 22.2±2.5 22.5±2.2 23.6±1.9 25.3±2.6 <0.001*
Diabe t e s  D u r a t ion 
(years) - 7.8±3.5 9.7±3.0 14.3±1.9 <0.001*

FPG (mmol/l) 5.3±0.6 7.8±1.8 9.9±2.1 12.8±1.8 <0.001*
HbAlc (%) 5.1±0.6 7.2±1.6 9.0±1.8 11.6±1.7 <0.001*

DR: diabetic retinopathy; NDR: no apparent retinopathy; NPDR: non-proliferative retinopathy; PDR: proliferative diabetic 
retinopathy;BMI, Body mass index; FPG: fasting plasma glucose; HbA1c, glycated hemoglobin Data are expressed as mean±SD * p≤0.05
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epiretinal membranes (ERMs) were resected from 27 control 
subjects. There were no significant differences in age among 
the groups (Table 1). At the same time, retinas from mice and 
cadaver eyes served as positive controls (Appendix 1).

Surgically resected FVMs and idiopathic ERMs (3-μm 
thickness) were subjected to fixation with 4% parafor-
maldehyde, followed by paraffin embedding. Thereafter, 
the samples were deparaffinized and exposed to 3% H2O2 
in methanol for 15 min to inhibit endogenous peroxidase 
activity. After being blocked in blocking solution for 10 min, 
the sections were incubated with polyclonal antibodies for 
SIRT6 (1:150; Abcam, Cambridge, USA) or NMNAT2 (1:100; 
Santa Cruz Biotechnology, Inc., Santa Cruz, CA) for 30 min, 
followed by incubation with HRP polymer (Thermo Scien-
tific, Santa Cruz, CA) for 30 min at room temperature. Signal 
detection was performed using the AEC chromogen system 
(Thermo Scientific). Reactions were developed with diamino-
benzidine (DAB), followed by hematoxylin counterstaining. 
Negative controls were isotype-matched. Images were 
captured by an Olympus BX60 microscope and analyzed with 
the use of Image Pro Plus 4.5 software (Media Cybertics). 
The H-score was used to evaluate the intensity of each signal.

Statistics: Statistical analyses were performed using SPSS 
version 19.0. Differences between the patients and control 
subjects were examined using multivariate ANCOVA 
(MANCOVA) or the nonparametric Kruskal–Wallis test 
based on assumptions of normality and homogeneity of 
variance. Mann–Whitney U tests or Student’s t tests were 
performed to determine variations among all groups. The 
study parameters were compared using Spearman’s correla-
tion analysis. GraphPad Prism version 5 was used to draw 
graphs. A p value of less than 0.05 indicated significant 
difference.

RESULTS

Clinical characteristics: The clinical and laboratory 
parameters of the patients are summarized in Table 1. No 
significant differences in age and gender (p = 0.249 and p 
= 0.951, respectively) were observed among the different 
groups. T2DM patients had a significantly higher body mass 
index than the control subjects (p < 0.001). Compared with 
the NPDR and NDR groups, the mean extent of diabetes was 
markedly increased in the PDR group (p < 0.001). Normal 
HbA1c values ranged between 4.27% and 6.07%. Notably, the 
PDR group displayed a significantly higher level of HbA1c 
and fasting glucose than the NPDR and NDR groups (p < 
0.001 for both).

Expression of SIRT6 and NMNAT2 in DR patients: We 
performed qRT-PCR assays to examine the expression levels 

of SIRT6 and NMNAT2 in both the patients and the control 
subjects. As depicted in Figure 1, the mRNA expression of 
NMNAT2 and SIRT6 was markedly decreased in PBMCs of 
NPDR and PDR cases as compared to those of NDR patients 
and control subjects (p < 0.001 for all comparisons).

We next investigated whether SIRT6 and NMNAT2 were 
downregulated at the protein level in DR patients. Western 
blot analysis revealed that the protein levels of SIRT6 and 
NMNAT2 in NPDR and PDR patients were significantly lower 
than those in NDR cases and control subjects (p < 0.001 for 
all comparisons; Figure 2). Collectively, these data indicate 
that the mRNA and protein expression of SIRT6 and NMNAT2 
were significantly decreased in the PBMCs of patients with 
DR.

Concentrations of inflammatory cytokines in vitreous fluid: 
We further analyzed the level of IL-1β, IL-6 and TNF-α to 
determine the inflammatory activity in T2DM patients. 
As shown in Figure 3, elevated production of cytokines 
was evident in PDR and NPDR cases as compared to NDR 
patients and control subjects.

Correlation analysis: Correlation analysis showed a positive 
correlation between protein and mRNA expressions of SIRT6 
and NMNAT2 in DR patients (r = -0.246, p < 0.01).

As shown in Table 2, there was a linear regression 
between the expressions of SIRT6 and NMNAT2 and different 
variables. Moreover, we found that while the expression level 
of SIRT in PBMCs was significantly inversely correlated with 
vitreous concentrations of IL-1β and TNF-α, the expression 
levels of SIRT6 and NMNAT2 were all negatively correlated 
with FPG and HbA1c levels.

Expression of SIRT6 and NMNAT2 in patients with DR: 
We performed immunohistochemical staining to detect the 
expression of SIRT6 and NMNAT2 in the FVMs of PDR 
patients. The stained area for SIRT6 or NMNAT2 was signifi-
cantly reduced in PDR patients compared with the controls 
(p < 0.001 for both), as indicated by computer-assisted image 
analysis (Figure 4).

DISCUSSION

As a progressive, chronic microvascular complication of 
T2DM, DR can cause visual impairment and legal blindness 
[17]. Although inflammatory cytokines and nitric oxide 
have been found to be involved in DR pathogenesis, the 
exact mechanism remains to be addressed [18,19]. Herein, 
we comparatively examined the expression of SIRT6 and 
NMNAT2 at both protein and mRNA levels in DR patients 
and healthy controls. We found that the expression of the 
two factors was markedly downregulated in the patients (p 
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< 0.01). Moreover, immunofluorescent staining revealed a 
decreased expression of the two factors in PDR. Notably, we 
identified an association between the decreased expression 
of the two factors and the elevated level of inflammatory 
cytokines in DR (p < 0.05).

The SIRT family of histone deacetylases plays a role in 
controlling numerous cellular functions, including prolifera-
tion, differentiation, programmed cell death, metabolism, and 
aging [20,21]. SIRT6, a NAD+-dependent deacylase capable 
of regulating glucose metabolism, has recently been demon-
strated to be critically involved in the physiopathological 
processes of T2DM [4,22]. High expression of SIRT6 has 
also been found in the retina, while SIRT6 retinal levels 
were significantly decreased in non-obese diabetic (NOD) 
mice compared to NOD normoglycemic littermates [23]. In 
line with this finding, decreased SIRT6 levels in pancreatic 
islets from diabetic mice [24] and in the carotid plaques of 
asymptomatic diabetic patients [25] have also been observed. 
Moreover, SIRT6-overexpressing mice were found to be 
protected from developing high caloric diet-induced hyper-
glycemia and glucose intolerance [26], and SIRT6 deficiency 
results in major defects in retinal transmission, while altering 
the expression of glucose homeostasis-related genes and 
glutamate receptors [23,27]. All these observations led us 
to propose that hyperglycemia may elicit downregulation of 
SIRT6 and upregulation of inflammatory cytokines [23].

SIRT6 protein and mRNA expression levels have been 
found to be significantly reduced in colorectal cancer tissues; 
it was previously demonstrated that deletion of SIRT6 may 
activate an energy metabolism program that promotes 
tumorigenesis [28]. However, SIRT6’s roles as a metabolic 
enzyme and a potential regulator of cancer cell metabolism 
remain to be investigated. It has been established that main-
taining intracellular NAD levels is crucial for several biologic 
processes, such as energy metabolism and the activity of 
SIRTs [29-31]. It was also reported that NMNAT2 mRNA 
was mainly expressed in high energy consumption organs, 
including the brain, heart, and skeletal muscle, while there 
was nearly no NMNAT2 detected in kidney, lung, spleen, 
and testis [32]. Emerging evidence suggests that a decline in 
redox factor NAD+ is a hallmark of aging and neurodegen-
erative diseases [12,33]. NMNAT2 is significantly decreased 
in glaucomatous retinal ganglion cells [28,34]. A decrease in 
the expression of NMNAT2 and SIRT6 was also observed in 
the spinal cord of amyotrophic lateral sclerosis patients [33]. 
Given the critical role of NMNAT2 in cellular metabolism, 
its expression may be downregulated in endothelial cells in 
DR [32,35]. In this study, we found that NMNAT2 expression 
was significantly reduced in DR patients. Other studies have 
revealed that decreased NMNAT2 expression was markedly 
correlated with downregulation of SIRT6 expression in DR. 
It has been reported that high glucose-induced endothelial 
damage is related to NAD depletion in cells [36]. A study on 

Figure 1. The mRNA levels of SIRT6 and NMNAT2 were downregulated in DR patients. The mRNA expression of SIRT6 and NMNAT2 in 
the PBMCs was quantified by real-time PCR and normalized to the level of β-actin. (PDR, n = 26; NPDR, n = 26; NDR, n = 25; controls, n 
= 27). Values are presented as fold-changes when compared with the controls. *p < 0.05, **p < 0.01, and ***p < 0.001.
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cardiac hypertrophy showed that SIRT6 participated in the 
anti-hypertrophic signals of NMNAT2 overexpression, which 
suggested that upon activation of SIRT6 via intracellular 
NAD, the protein level and enzymatic activity of NMNAT2 
were dramatically reduced [9]. Low SIRT/NMNAT2 pathway 
expression in adipose tissue of BMI-discordant monozygotic 
twins was reported [12], which highlights a strong relation-
ship of reduced SIRT/NMNAT2 pathway expression with 
insulin resistance and inflammation. Immunohistochemical 
studies have provided data suggesting an association between 
decreased NMNAT2 expression and SIRT6 downregulation in 
PDR. Validation of the association of SIRT6 with NMNAT2 in 

DR may help to determine how DR’s progression is inhibited 
by modulating the metabolism of retinal cells.

Elevated production of IL-1β, IL-6 and TNF-α has been 
found to be correlated with decreased expression of SIRT6 and 
NMNAT2 in PDR and NPDR patients. In rat models, SIRT6 
functions as an immune regulatory factor responding to 
renal injury in diabetic nephropathy [37]. It has also been 
shown that low expression of SIRT6 and high expression 
of NF-κB are linked to the inflammatory pathway in the 
abdominal subcutaneous fat of obese and pre-DM patients 
[38]. In central nervous system conditionally deleted SIRT6 
knockout mice, increased vascular endothelial growth factor 

Figure 2. The protein expression of SIRT6 and NMNAT2 was decreased in DR patients (PDR, n = 26; NPDR, n = 26; NDR, n = 25; controls, 
n = 27). Western blot analysis (lane 1, the control; lane 2, NDR; lane 3, NPDR; lane 4, PDR) and quantification of SIRT6 and NMNAT2 
expression in PBMCs. β-actin was included as a reference. *p < 0.05, **p < 0.01, and ***p < 0.001.
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levels, decreased brain-derived neurotrophic factor levels 
in retinas, and a significant reduction in the whole retinal 
thickness were observed [23]. Taken together, the findings 
in the present study demonstrate that decreased expression 
of SIRT6 may aggravate the proinflammatory response in the 
progression of PDR [39].

The present study suggests that HbA1c levels are nega-
tively correlated with the levels of SIRT6 and NMNAT2 in 
cases of DR. Given that the above correlation has also been 

observed in previous studies on animal models, we conclude 
that glycemic control is vital for the immune response of 
diabetic patients.

There are certain limitations in the current study. First, 
this study was a preliminary attempt that needs to be verified. 
Second, potential confoundment of the reported splice variant 
of SIRT6 should be considered for future study, although 
whether this variant can be translated to protein and func-
tion needs to be identified experimentally [40]. Last, further 

Figure 3. Concentrations of IL-1β, IL-6, and TNF-α in the vitreous fluid of T2DM patients and non-diabetic controls (PDR, n = 26; NPDR, n 
= 26; NDR, n = 25; controls, n = 27). The comparison was made by the Kruskal–Wallis test with Dunn’s multiple comparison test. *p < 0.001.
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studies with a larger sample of DR patients from more diverse 
populations are required.

In conclusion, we found downregulation of SIRT6 and 
NMNAT2 in patients with PDR. These findings indicate the 
role of SIRT6 and NMNAT2 in the pathogenesis of PDR. 
Moreover, downregulation of SIRT6 and NMNAT2 may lead 
to an increase in the expression of inflammatory cytokines. 
Future studies will be directed at investigating the potential of 
NMNAT2 and SIRT6 as diagnostic and prognostic indicators, 
as well as therapeutic targets for PDR.

APPENDIX 1. THE POSITIVE CONTROL FOR 

THE IMMUNOHISTOCHEMISTRY STAINING OF 

SIRT6 AND NMNAT2 IN RETINAS FROM MOUSE 

AND CADAVER EYES (×400).

To access the data, click or select the words “Appendix 1.” 

(Top) Positive SIRT6 and NMNAT2 expression in cadaver 

retina with negative control; (Bottom) Positive SIRT6 and 

NMNAT2 expression in retina from mouse along with nega-

tive control.

Table 2. Spearman’s correlation between the expression levels of the studied genes 
in the PBMCs and clinical characteristics of the studied groups.

Studied 
gene

mRNA/
protein 
level

SIRT6 
mRNA

SIRT6 
protein

NMNAT2 
mRNA

NMNAT2 
protein

IL-1β 
Vitreous

IL-6 
Vitreous

TNF-α 
Vitreous

FBG HbA1c

SIRT6 mRNA - 0.732*** 0.377*** - −0.742*** −0.666*** −0.749*** −0.801*** −0.792***
 protein 0.732*** - - 0.593*** −0.694*** −0.736*** −0.829*** −0.767*** −0.770***
NMNAT2 mRNA 0.377*** - - 0.334*** −0.511*** −0.507*** −0.512*** −0.487*** −0.523***
 protein - 0.593*** 0.334*** - −0.607*** −0.567*** −0.649*** −0.645*** −0.632***

***p<0.001

Figure 4. Immunohistochemistry staining reveals a significantly reduced expression of SIRT6 and NMNAT2 in FVMs of PDR patients (×200) 
compared with the epiretinal membrane subjects (control group). *p < 0.001.
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