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Abstract
1. Insect populations are changing rapidly, and monitoring these changes is essential 

for understanding the causes and consequences of such shifts. However, large-
scale insect identification projects are time-consuming and expensive when done 
solely by human identifiers. Machine learning offers a possible solution to help 
collect insect data quickly and efficiently.

2. Here, we outline a methodology for training classification models to identify pit-
fall trap-collected insects from image data and then apply the method to identify 
ground beetles (Carabidae). All beetles were collected by the National Ecological 
Observatory Network (NEON), a continental scale ecological monitoring project 
with sites across the United States. We describe the procedures for image collec-
tion, image data extraction, data preparation, and model training, and compare 
the performance of five machine learning algorithms and two classification meth-
ods (hierarchical vs. single-level) identifying ground beetles from the species to 
subfamily level. All models were trained using pre-extracted feature vectors, not 
raw image data. Our methodology allows for data to be extracted from multiple 
individuals within the same image thus enhancing time efficiency, utilizes rela-
tively simple models that allow for direct assessment of model performance, and 
can be performed on relatively small datasets.

3. The best performing algorithm, linear discriminant analysis (LDA), reached an ac-
curacy of 84.6% at the species level when naively identifying species, which was 
further increased to >95% when classifications were limited by known local spe-
cies pools. Model performance was negatively correlated with taxonomic speci-
ficity, with the LDA model reaching an accuracy of ~99% at the subfamily level. 
When classifying carabid species not included in the training dataset at higher 
taxonomic levels species, the models performed significantly better than if clas-
sifications were made randomly. We also observed greater performance when 
classifications were made using the hierarchical classification method compared 
to the single-level classification method at higher taxonomic levels.
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1  | INTRODUC TION

Insects have an irreplaceable role in ecosystem functioning as they 
are key contributors to processes such as nutrient cycling and pol-
lination (Gullan & Cranston, 2014). However, some studies have 
shown recent declines in insect abundance and biomass (Hallmann 
et al., 2017; Tseng et al., 2018; Welti et al., 2020; Wepprich 
et al., 2019). For example, recent estimates suggest global terres-
trial insect populations alone are decreasing by ~9% per decade (van 
Klink et al., 2020). Currently, it remains unclear whether these de-
clines reflect: (a) decreasing insect population sizes, (b) decreasing 
insect diversity, and/or (c) reductions in insect body sizes in response 
to climate change (Angilletta & Dunham, 2003; Tseng et al., 2018). 
However, despite these alarming observations, we continue to lack 
efficient means for surveying, identifying, and monitoring global 
insect populations. Therefore, it is imperative that we invest in im-
proving insect population monitoring techniques so we can better 
understand the causes, potential outcomes, and solutions for insect 
population declines (Thomas et al., 2019).

1.1 | The NEON monitoring network

One project looking to develop long-term monitoring capabilities is 
the National Ecological Observatory Network (NEON), which gath-
ers and provides open access ecological data at a continental scale 
in the United States (Keller et al., 2008). NEON researchers collect 
data on weather, land use, biogeochemistry, ecohydrology, and 
community composition at research stations throughout the entire 
United States including Puerto Rico (Thorpe et al., 2016). NEON’s 
long-term ecological monitoring goals are to understand and fore-
cast the effects of climate change, land-use change, and invasive 
species on ecosystems (Thorpe et al., 2016). As part of their ecologi-
cal monitoring, NEON collects and processes thousands of inverte-
brate specimens every year from an array of pitfall traps that are 
run for 14 days to estimate local abundance and diversity of ground 
beetles (Coleoptera: Carabidae; see Hoekman et al., 2017; Thorpe 
et al., 2016). The current workflow for NEON carabid sampling is for 
a local technician/parataxonomist to collect the samples and then 
separate and identify all adult carabid beetles. Some samples are 

then sent on to expert taxonomists to confirm identifications. This 
data are then uploaded to NEON’s open access data portal for use in 
scientific research (NEON, 2020).

Although NEON has made this standardized carabid beetle data 
accessible to ecologists, manually sorting, identifying, and count-
ing these specimens is time-consuming, labor-intensive, and costly 
(Karlsson et al., 2020). This can create backlogs of specimens span-
ning years or decades and limit large-scale projects to nations with 
access to the necessary funding (Karlsson et al., 2020). In order for 
insect monitoring data to be useful for making conservation man-
agement decisions, the rate at which we process and analyze sam-
ples must keep up with the rate at which insect populations are 
changing (Lindenmayer et al., 2012). Expanding access of large-scale 
monitoring projects to developing nations will also be required to 
properly make generalizations of global insect population changes 
(van Klink et al., 2020).

1.2 | Developing machine learning models to 
expand monitoring

Machine learning is a tool potentially useful for insect monitoring 
(Thessen, 2016). One of the most common uses of machine learn-
ing in ecology is the identification of organisms (including insects) 
from images (MacLeod et al., 2010), where it can quickly and ac-
curately identify invertebrates to species (Ärje et al., 2020; Ding & 
Taylor, 2016; Marques et al., 2018; Mayo & Watson, 2007). In this 
study, we use NEON’s vouchered carabid collection as a proof-of-
concept to ask whether machine learning can be employed to bet-
ter automate and expedite the identification of invertebrates from 
vouchered community samples while also collecting relevant mor-
phometric data.

Machine learning is not without its own challenges. To be ef-
fective, many algorithms, like those from mobile applications like 
iNaturalist and Plantix, require thousands (if not millions) of images 
(Van Horn et al., 2018). The way these projects currently amass such 
datasets is by utilizing large-scale citizen science efforts, which are 
typically biased toward charismatic species (Chase & Levine, 2016). 
Moreover, machine learning models trained primarily using living 
specimens may not be suitable for identifying dead specimens that 

4. The general methodology outlined here serves as a proof-of-concept for classi-
fying pitfall trap-collected organisms using machine learning algorithms, and the 
image data extraction methodology may be used for nonmachine learning uses. 
We propose that integration of machine learning in large-scale identification pipe-
lines will increase efficiency and lead to a greater flow of insect macroecological 
data, with the potential to be expanded for use with other noninsect taxa.

K E Y W O R D S
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have deteriorated over time. For many researchers who wish to use 
machine learning, these barriers are not possible to overcome.

One solution is to train machine learning classification mod-
els from image feature vectors, not from raw pixel data (Joutsijoki 
et al., 2014; Kho et al., 2017; Larios et al., 2008; Mayo & 
Watson, 2007). Feature vectors are comprised of descriptive vari-
ables such as specimen size, shape, and color that can be extracted 
from open access programs like ImageJ (Schneider et al., 2012). 
Models using pre-extracted feature vectors are a potential improve-
ment over using raw image data, as their mechanisms (e.g., variable 
importance) are more transparent compared to more algorithms like 
convolutional neural networks (Archer & Kimes, 2008). Here, we ex-
pand on previous studies—all of which use images containing a single 
individual only—and increase their utility to monitoring studies by 
generating feature vectors from images of multiple individuals that 

might be caught in a single trapping event. Likewise, rather than focus 
solely on species-level identifications (IDs), which are not required 
nor realistic for many entomological monitoring programs (Lenat & 
Resh, 2001), we use an hierarchical classifier to build vector-trained 
models that incorporate taxonomic resolution (Gordon, 1987). An 
hierarchical classifier exploits the nested nature of evolution to 
identify a specimen at multiple taxonomic levels without the need to 
train additional models. For example, if the base classifier can make 
predictions at the species level, an hierarchical classifier would be 
able to use those predictions to make classifiers at all higher taxo-
nomic levels (i.e., genus, tribe, family, etc.).

Here, we develop a machine learning pipeline to identify batch 
samples of carabid specimens (family: Carabidae) collected by NEON 
pitfall traps. We contrast five machine learning algorithms of vary-
ing levels of complexity, ranging from k-nearest neighbors (KNN) 

F I G U R E  1   Collage of photographs of all Carabidae species used in the training dataset (n = 25). Specimens were cropped from their 
original photographs, and the background was removed. Relative scale of each specimen is conserved
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to artificial neural networks (ANN). Our objective is to present a 
proof-of-concept for developing a machine learning framework to 
identify bulk pitfall trap specimens from image data. We focused on 
the following questions: (a) Can machine learning models be used to 
identify carabid beetles from image data using feature vector meth-
ods? (b) Which models perform best? (c) Do hierarchical classifiers 
perform better than single-level classifiers? and (d) Is machine learn-
ing a practical solution to current issues facing large-scale insect 
monitoring efforts? We feel carabids are a good pilot case to answer 
these questions as they are abundant in the NEON dataset, diverse 
(~551 species identified by NEON to date), and relatively uniform in 
appearance (Figure 1), making them a challenging group to identify. 
Our pipeline is designed to be easily adaptable for other taxa, thus 
providing a possible machine learning solution for researchers that 
might not have access to the resources required for employing ad-
vanced deep learning models.

2  | METHODS

2.1 | Carabid collection

All specimens used in this project were collected by NEON in propyl-
ene glycol filled pitfall traps. For carabid beetle sampling protocols 
and procedures, refer to NEON Doc 014050vJ (Levan et al., 2015). 
All specimens were stored in 95% ethanol-filled, 50 ml centrifuge 
tubes and shipped to our laboratory at the University of Oklahoma 
for imaging. As our goal was to develop these methods without pin-
ning, we used ethanol stored specimens identified at NEON Domain 
Support Offices. We imaged 3,265 individual beetles from 580 
tubes. All were collected in 2016. This represents the entire trap-
ping season for 68 NEON trap arrays from 18 NEON sites (Table S1).

2.2 | Imaging

To extract morphological data, we used a standardized digital im-
aging protocol. Beetles from an entire trapping event were batch-
imaged at the same time from above using an 8-inch by 12-inch 
section (20.3 cm by 30.5 cm) of a square foot nonreflective, white 
ceramic tile (Daltile© from Home Depot) on both their dorsal and 
ventral sides. We used a 50-megapixel camera (Canon EOS 5Ds 
Model DS526521) and a 35 mm lens (Canon EF 35mm f/2 IS USM) 
to take raw images (i.e., in Canon.CR2 format) at a resolution of 27 
pixels per mm. We used a white cloth light diffuser to reduce glare 
with lighting on four sides of the tile to reduce shadow. A total of 
4–500 watt equivalent and 16–100 watt equivalent LED bulbs gave 
a light intensity at the center of the tile of 7,210 lx. The camera was 
mounted on a weighted boom stand (Diagnostic Instruments) and 
was not moved between images. All images were taken using the 
same camera settings (F22, 1/30 s, ISO 500) using a wired connec-
tion between the camera and computer running Canon EOS Utility 
2 (Figure S1). To further standardize color, each image included an 

X-rite ColorChecker Mini Classic (https://xrite photo.com/color 
check er-classic) color reflection chart. Images had between 5 and 
220 individuals (mean = 30.7 individuals), and creating both dorsal 
and ventral images took from 10 to 30 min per image, so we estimate 
less than one minute per individual.

Raw images were opened in Adobe Photoshop CC 2017 using the 
same color settings generated by the X-Rite ColorChecker Passport 
Application (i.e., DNG file). We manually cropped the photograph to 
remove the tile edge and saved that file as an uncompressed.tiff file. 
We manually downscaled this.tiff file to a resolution of 12 pixels per 
mm. Using the FIJI implementation (Schindelin et al., 2012) of ImageJ 
(Schneider et al., 2012), we used two steps of manual color thresh-
olding (Red then Black) to convert the images from color to binary, 
which produced a black/white binary image. Using the FIJI command 
“Analyze Particles,” we took morphological measurements of each 
individual region of interest (ROI, each an individual beetle). We used 
a macro to extract the RGB color values from the downscaled color 
images using the ROI map and the Color Histogram command in FIJI 
(see supplement for color extractor macro). This image postprocess-
ing took approximately 20 min per image and did not vary with the 
number of individuals in the image.

2.3 | Machine learning

The variables of the feature vector extracted using ImageJ fit into 
three broad categories: size, shape, and color. Size variables included 
specimen area, perimeter, width, height, and feret diameter (Ferreira 
& Rasband, 2012). Shape variables included circularity, aspect ratio, 
roundness, and solidity of the specimen (Ferreira & Rasband, 2012). 
Color variables were measured for each RGB color channel and in-
cluded mean value, standard deviation, integrated density, skew-
ness, kurtosis, and min/max value (Ferreira & Rasband, 2012). Each 
individual was photographed on their dorsal and ventral side, result-
ing in two values for each variable. In all, 68 descriptive variables 
were recorded and used for our training data. The variables collected 
through ImageJ greatly differ from what would normally be seen in 
an identification key used by humans. In humans, we tend to focus 
on categorical variables or simple continuous variables for identifi-
cation, such as antennae segments, wing venation, or body length. 
In contrast, here we exclusively feed our models continuous vari-
ables, many of which would never really be used by humans (e.g., red 
color channel kurtosis). Code and raw data are available on the Open 
Science Framework (OSF) (Blair, 2020).

After the specimens had been processed and the image data 
extracted, we introduced the data to the machine learning pipeline 
(Figure S2). All steps in this pipeline were developed using R version 
3.5.3 (R Core Team, 2019). First, species with 30 or fewer observa-
tions were separated from the dataset, as there would not be enough 
data for those species to robustly train the models. The dataset was 
then randomly split into separate training and testing subsets at a 
70:30 ratio. This ratio maximized the amount of data that can be 
used for training while still leaving enough remaining samples to 

https://xritephoto.com/colorchecker-classic
https://xritephoto.com/colorchecker-classic
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get robust measurements of model performance (Kho et al., 2017). 
Dataset splitting was repeated randomly 10 times, resulting in 10 
training and testing subsets each (Figure S2).

After the data were split, it was standardized to meet the as-
sumption of the models that the data are normally distributed 
(Hall, 2016). We standardized the data using the “center” and “scale” 
methods of the preProcess function in the R package caret (Kuhn 
et al., 2018), which normalized the predictor variables by subtracting 
the mean value and dividing by the standard deviation.

After standardizing, the data were ready to be used for train-
ing in a machine learning model. For this project, we decided to 
use five types of machine learning algorithms: K-nearest neighbors 
(KNN; Cover & Hart, 1967), linear discriminant analysis (LDA; Mika 
et al., 1999), naïve Bayes (NB; Mika et al., 1999), random forests (RF; 
Ho, 1995), and artificial neural networks (ANN; Haykin, 2008).

KNN: To train the KNN model, we used the R package nabor 
(Elseberg et al., 2012). The model was trained at all integers of k 
between 1 and 25. The k value resulting in the highest top-1 accu-
racy (Table 1) was used to measure all other performance metrics 
(Table 1, Figure S2).

LDA: To train the LDA model, we used the R packages caret 
(Kuhn et al., 2018) and MASS (Venables & Ripley, 2002). No tuning 
parameters were modified for this model.

NB: To train the NB model, we used the R package e1071 (Meyer 
et al., 2017). No tuning parameters were modified for this model.

RF: To train the RF model, we used the R package randomForest 
(Liaw & Wiener, 2002). The model was trained at all integers of mtry 
(the number of available predictor variables at each node in the deci-
sion tree) between 1 and 10. The mtry value resulting in the highest 
top-1 accuracy was used to measure all other performance metrics 
(Table 1, Figure S2).

ANN: To train the ANN model, we used the neuralnet R package 
(Fritsch et al., 2019). The model was trained at all integers of hid-
den (the number of neurons in each hidden layer) between 1 and 25. 
Only one hidden layer was used. The hidden value resulting in the 
highest top-1 accuracy was used to measure all other performance 
metrics (Table 1, Figure S2).

To measure performance, each model predicted the taxa in the 
testing dataset. Performance was measured using five metrics listed 
in Table 1. In addition to these metrics, site-specific performance was 

also measured using local species pools. We define local accuracy as 
the top-1 accuracy when model classifications are filtered based on 
the known species pool for each sampling location (Figure S8). For 
example, if one site was only known to contain the carabid species 
Chlaenius aestivus and Cyclotrachelus furtivus, model classifications 
would be exclusively limited to those species. Species pools are de-
termined based on occurrence in the NEON dataset. Local classifi-
cations were determined by reranking local species based on their 
original prediction probabilities output by the model. Local accuracy 
is only calculated at the species level.

For each model, we employed two classifiers: an hierarchical 
classifier and a single-level classifier. In the hierarchical classifier, the 
models were trained and tested using the species-level identification 
labels only. After the models were tested and species-level classifi-
cations were made, we recorded performance measurements at all 
taxonomic levels based on the species predictions (Figure S4). For 
example, if the model classified a Pasimachus strenuus as Pasimachus 
californicus, it would be recorded as incorrect at the species level but 
correct at the genus level because both species belong to the genus 
Pasimachus. Likewise, if a Scarites subterraneus was misidentified as 
Cyclotrachelus torvus, it would be recorded as incorrect for every 
tested taxonomic level because they do not belong to the same 
subfamily (the highest taxonomic level used in this study). In the 
single-level classifier, the models were trained and tested at all tax-
onomic levels, using the corresponding labels at each level (e.g., the 
genus-level model was trained using generic names). This resulted in 
separate models that were used to make classifications within each 
respective taxonomic level only (e.g., the genus-level model was only 
used to predict a specimen's genus; Figure S5).

Novel species classification was performed by testing the mod-
els on species that were not abundant enough to be included in the 
training dataset but belong to more common taxonomic clades at 
lower resolution (Figure S6). Due to these species not being included 
in the training dataset, they can be considered “novel” to the mod-
els, as the models will have no way of knowing they exist. For the 
hierarchical classifier, we forced the models to make a species-level 
classification, but only recorded performance measurements at tax-
onomic levels where the novel species belonged to a common clade. 
For example, Pterostichus trinarius was too rare to be included in the 
training dataset but belongs to a common genus. If P. trinarius was 

Measurement Definition

Top−1 accuracy Measured as the accuracy of the model if only the prediction with the 
highest probability is counted.

Top−3 accuracy Measured as the accuracy of the model if any of the predictions with the 
highest three probabilities matched the actual specimen name.

Precision The macroaverage of the number of true positives divided by the number 
of true positives plus false positives for each taxonomic group.

Recall The macroaverage of the number of true positives divided by the number 
of true positives plus false negatives for each taxonomic group.

F1 score The macroaverage of the harmonic mean of precision and recall for each 
taxonomic group.

TA B L E  1   Definitions for the five 
measurements used to measure 
performance of our carabid classification 
models
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classified as Cyclotrachelus furtivus by the hierarchical classifier, per-
formance would not be measured at the species and group levels but 
would be measured at the genus level and above. In this example, 
the classification would be incorrect at the genus level, but correct at 
the subtribe level and above, as both species belong to the subtribe 
Pterostichini.

To compare our models to a successful general classification 
model, we also submitted 25 images (one per species in our training 
dataset) to iNaturalist to be identified using their automatic iden-
tification feature (Figure 1). Accuracy was measured for top-1 and 
top-3 predictions at the species and genus level.

2.4 | Data description

The NEON carabid dataset contained a total of 3,270 individuals 
representing 64 species, 32 genera, 19 tribes, and 8 subfamilies 
(Figure S7). There were 398 trapping events (all in 2016) across 18 
sites (latitudinal range: 29.7–47.2° N) with an average of 8.22 in-
dividuals per trap (Figure S8). The number of specimens collected 
from each of the 18 sites ranged from 10 to 567, with an average 
of 182 (SD = 161). After removing uncommon/unidentified species 
and splitting the entire dataset, training subsets ranged from 2029 
to 2042 individuals and testing subsets ranged from 871 to 884 

individuals. Variation in dataset size was due to the random sampling 
method used when splitting the datasets. The total number of clas-
sification categories in the training datasets ranged from 25 (species) 
to six (subfamily) after removing uncommon species from the NEON 
dataset. Classification categories were further reduced when model 
predictions were filtered using local species pools (Figure S3). The 
number of species in each local pool ranged from one to seven, with 
an average of three species. Sites with only one local species were 
not used when calculating local performance metrics, as they would 
be guaranteed to have perfect accuracy. This resulted in 14 sites 
used for calculating local performance metrics.

3  | RESULTS

3.1 | Performance – hierarchical classifier

The LDA model had the best performance metrics in every category 
across all taxonomic levels and had an average top-1 accuracy of 
84.7% at the species level (Figure 2). Conversely, the KNN models 
generally performed most poorly, recording the lowest scores in 28 
of 35 performance categories across all taxonomic levels (Figure 2). 
Since the model would not be able to identify rare species not in-
cluded in the model at the species level, it can be assumed that our 

F I G U R E  2   Carabidae machine learning 
performance plots for five algorithms 
across all tested taxonomic levels 
(Artificial neural network (ANN); Random 
Forest (RF); Linear discriminant analysis 
(LDA); K-nearest neighbors (KNN); Naïve 
Bayes (NB); Expected performance if the 
model classified everything as the most 
common species (By chance). Results were 
taken as an average of 10 models for each 
algorithm. (a) Top-1 Accuracy; (b) Top-3 
Accuracy; (c) Precision; (d) Recall; (e) F1 
score
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models would have a 0% accuracy when classifying those species. 
This would lower our original top-1 accuracy of the LDA model to 
75.4% when identifying all NEON carabids. Despite this, our models 
perform very well compared to iNaturalist's automatic identifica-
tion feature. When tested on one image of each of our 25 Carabidae 
species, iNaturalist was 16% accurate (4/25) at the species level and 
48% accurate (12/25) at the genus level (Table S2). Given that the 
LDA model delivered the highest performance metrics, we further 
investigated the model's performance sensitivity as a function of 
species prevalence and taxonomic relatedness. The precision recall 
and F1 score of the LDA models at the individual species level were 
positively correlated with species prevalence in the training dataset 
(Figure S9). Incorrect classifications at the species level were usually 
contained within the tribe (Figure 3).

For species-level models, filtering model predictions using local 
species pools increased model accuracy. LDA had the highest local 
pool accuracy at 95.6%, while NB had the largest increase in accu-
racy when the local pool filter was applied (+25%; Figure S10). On 
average, model accuracy increased 16% when the local pool filter 

was applied. Each site had an average of 2.93 Carabidae species that 
were included in our models. The LDA model also reported 100% 
accuracy in species identification at the most sites (5 out of 14) 
(Figure S11).

Species that were removed from the training dataset may still be-
long to a common clade at a higher taxonomic level (e.g., genus). For 
these species, the models performed worse compared to predictions 
on species included in the training dataset (Figure S12). However, 
every algorithm still performed better than expected if predictions 
were made randomly, with naïve Bayes reaching an accuracy of 
49.3% at genus.

3.2 | Performance – single-level classifier

The inverse relationship between taxonomic resolution and per-
formance was also seen in the single-level classifier whose rela-
tive performance was also consistent across algorithms (i.e., KNN 
performing worst, LDA performing best). However, the hierarchical 

F I G U R E  3   Linear discriminant analysis (LDA) Carabidae classification confusion matrix. Columns represent the actual observed species 
while rows represent what was predicted by the LDA model. The “Actual” row at the bottom of the graph indicates how many (on average) 
individuals of that species were present in the test datasets. The “Predicted” column indicates how many times (on average) each species 
was predicted by the LDA model. Results reflect an average of 10 LDA models. Box shading was applied as a percentage of the actual 
number of observations for each species. The hashed boxes indicate species from a single tribe
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classifier generally outperformed the single-level classifier across 
all algorithms and taxonomic levels between group and subfamily 
(Figure S13).

Results were mixed when comparing the single-level classifier to 
the hierarchical classifier at predicting the common clade of novel 
species. ANN, KNN, and RF generally had higher top-1 accuracy 
when using the single-level classifier, but only RF had an overall 
higher top-3 accuracy when using this classifier (Figure S14).

4  | DISCUSSION

Here, we detail the steps of a general pipeline for training machine 
learning algorithms to identify batch-collected invertebrate speci-
mens. The resulting best model (LDA), tested on a morphologically 
conservative beetle taxon, the carabids, correctly identified species 
85% of the time when trained on a modest dataset of image-based 
vectors. When identifying species included in the training dataset, 
our LDA model surpassed NEON’s commissioning requirements of 
80% accuracy at the species level and approached the genus require-
ments of 95% accuracy. Moreover, if given site location information, 
the LDA model greatly surpasses both commissioning requirements, 
with a top-1 species-level accuracy of 95.6% (Figure S9). However, 
the “real-world” accuracy of our models would be lower than this, 
as these measurements do not account for the error rate that would 
result from our model's inability to detect rare species not included 
in the training dataset. When taking this error rate into account, our 
LDA top-1 accuracy decreases to 75%, while our local pool accuracy 
decreases to 85%. However, these numbers could be improved if we 
had more training data for these rare species, thus allowing them to 
be included in the models. In sum, our pipeline shows promise for de-
veloping accurate monitoring tools from small datasets of vouchered 
images, without considerable programming experience or expensive 
hardware.

Model performance improved with an hierarchical classifier, 
(Figure S13) suggesting that training models to the lowest possi-
ble taxonomic resolution and then working backwards is the op-
timal protocol. When predicting novel species to common clades, 
all models performed better than if classifications were made ran-
domly (Figure S12). Although these models would never be able to 
classify a novel species to the species level, our results show they 
still can be useful at predicting novel species to higher taxonomic 
levels included in the training dataset. Our results comparing hier-
archical versus single-level novel species classification are mixed, as 
there was no consensus among algorithms in favor of either method 
(Figure S14). Given the superior performance and convenience of 
the hierarchical classifier, we see no reason to use a single-level clas-
sifier in favor of an hierarchical classifier.

Incorporating known species ranges improves model predictions, 
but prevents the ability to detect species that have expanded their 
ranges. One solution may be to include contextual metadata as part 
of the image feature vectors (Terry et al., 2020). Contextual meta-
data could include primary metadata such as location and date, as 

well as secondary metadata (if collected from external data sources) 
such as weather and habitat type (Terry et al., 2020). The models 
can then weigh contextual metadata against image features when 
making a prediction. This leaves open the possibility of predicting 
locally novel species while still using location information to improve 
accuracy.

Another way that our pipeline may be useful is in the simultane-
ous analysis of multiple specimens. Most insect monitoring efforts, 
like NEON, collect insects in bulk. By using high-resolution images 
of a single trapping event, instead of individually imaging each speci-
men as in other such studies (Joutsijoki et al., 2014; Kho et al., 2017; 
Larios et al., 2008; Mayo & Watson, 2007), we achieve similar top-1 
accuracies range from 75% to 95%, with total number of classes 
ranging from 3 to 35. Another study similar to ours (Ärje et al., 2020) 
uses robotics and more complex machine learning algorithms with 
the goal of increasing invertebrate sorting efficiency. While this 
study produced a higher average accuracy than ours (98%), they also 
tested fewer species (9) across a broader taxonomic range (terres-
trial arthropods). Additionally, methods such as those used by Ärje 
et al. may not be suitable for large-scale insect monitoring, as they 
require specialized equipment, have limited throughput (1 specimen 
at a time), and would require far more image data storage (~50 im-
ages per specimen compared to our two images (dorsal and ventral) 
for dozens of specimens), which would become increasingly prob-
lematic the larger a monitoring program gets. Additionally, our use 
of pre-extracted feature vectors allows users to better understand 
which variables are important to our model's performance compared 
to more opaque methods like convolutional neural networks. For al-
gorithms like random forests, such variable importance can be de-
termined using a single function (Liaw & Wiener, 2002). Moreover, 
we show that bulk collections like NEON’s, which may be lower qual-
ity as they amass samples over two weeks in propylene glycol, still 
provide high-resolution IDs using image extracted feature vectors. 
Compared to more traditional, human-exclusive identification pipe-
lines, the imaging process in our pipeline may still present a potential 
bottleneck. However, such a bottleneck may be alleviated using addi-
tional automation such as a conveyor system (Sweeney et al., 2018), 
and the imaging in itself can provide other benefits, such as creating 
a digital biorepository (Nelson & Paul, 2019). Overall, our methods 
show great promise for efficient continental scale insect monitoring.

Finally, we show that building smaller, more specialized mod-
els, especially for noncharismatic insects like carabid beetles, is 
a better option than relying on large-scale citizen science-based 
tools like iNaturalist. The poor performance of iNaturalist's iden-
tification tool (Table S1) is unsurprising, as iNaturalist is designed 
to identify thousands of species with an image database mostly 
crowdsourced from citizen scientists. As such, its models will be 
biased toward charismatic and abundant species that people are 
likely to photograph. This causes less “exciting” but nonetheless 
ecologically important species (like many of our carabids) to go 
ignored by their models. Tools such as iNaturalist serve an import-
ant purpose and do well at achieving their intended functionality. 
However, these tools should not be considered a catch-all solution 
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for species identification problems. We included the iNaturalist 
comparison to illustrate that, when solving a problem using ma-
chine learning, it is important to ensure the selected solution is 
designed to solve the particular problem.

For researchers that wish to adopt our methodology, we see two 
primary use cases. The first use case we envision are researchers 
want to use our models to classify carabid beetles included in this 
study. In this case, researchers should follow our image data collec-
tion and classification protocol, and additional model training may 
not be needed, as they can use our pretrained models (Blair, 2020). 
The other use case we envision is researchers that want to adopt 
our general methodology for a different taxonomic group. In this 
case, our pretrained models would serve no function, but our gen-
eral methodology would still be useful. The versatility of machine 
learning algorithms should allow anyone that follows our image 
data extraction protocols to train their own classification models 
using our training protocols, regardless of what the image subjects 
are. Users of our pipeline may also wish to use machine learning al-
gorithms other than the five chosen for this study. Such a change 
would only require some simple edits to our code, particularly for 
machine learning algorithms included in caret that support multiclass 
classification (Kuhn et al., 2018). Finally, pre-extracted feature vec-
tors result in datasets that contain useful measurements such as size 
and color data that may be used for other analyses beyond machine 
learning classification.

A primary goal of large-scale insect monitoring projects such 
as NEON is to collect reliable occurrence and abundance data. 
However, due to the scale of these projects, it is difficult to collect 
such data in a timely manner. Given the current state of global 
insect populations, it is essential that we collect as much data as 
possible to aid efforts to conserve insect biodiversity (Thomas 
et al., 2019). We propose that the use of machine learning algo-
rithms will increase efficiency of identification pipelines, leading 
to a greater flow of data that can help us understand these mac-
roecological trends.
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