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A paradigm shift is underway within the methodology of
heterologous protein expression. Specifically, researchers are
moving away from conventional techniques of cloning genes
from cDNA libraries and moving toward the rational design
and de novo synthesis of entire protein-coding sequences from
pre-annealed oligonucleotides (Libertini and Di Donato, 1992;
Gustafsson et al, 2004). It was the invention of polymerase
chain reaction (PCR) that allowed efficient construction of
synthetic genes. Since then, the steadily increasing accuracy
and decreasing cost of oligonucleotide synthesis (now as low
as $0.10 per base; Carlson, 2003; Carr et al, 2004; Kong et al,
2007, see Figure 1) has created a research environment in
which gene synthesis offers three main advantages over
molecular cloning: cost efficiency, scope and flexibility of
redesign (Libertini and Di Donato, 1992). As a result, the
emerging field of synthetic biology is highly motivated to
improve this approach, as it seeks to expand the sophistication
of human-engineered genetic architectures, leading ultimately
to the synthesis of entire genomes (Yount et al, 2000; Smith
et al, 2003).

Current research into synthetic gene construction has
focused largely on improving PCR-based methods. Areas
under active investigation include the following: increasing
the accuracy of gene products by reducing errors in oligo-
nucleotide construction and PCR synthesis/amplification
(Ciccarelli et al, 1991; Young and Dong, 2004), reducing the
relatively high cost of post-synthesis sequencing (Young
and Dong, 2004), increasing the length of genes that can
be synthesized (Kodumal et al, 2004), developing micro-
chip-based technology and/or microfluidic devices that allow
for the simultaneous assembly of multiple genes (Tian et al,
2004; Zhou et al, 2004; Kong et al, 2007), and automating
the whole pipeline from gene design to synthetic gene
screening (Cox et al, 2007). All frontiers show signs of
rapid improvement (e.g., Xiong et al, 2004; Engels, 2005;
Wu et al, 2006a), therefore the current challenges for
gene synthesis are essentially optimizations of existing
concepts.

In stark contrast, it appears that we have much left to
learn when it comes to the conceptual design of gene
sequences. A significant fraction of the biologically and
commercially important genes that have been redesigned
report little or no success in increasing protein expression
(e.g., see Alexeyev and Winkler, 1999; Flick et al, 2004;

Wu et al, 2004; Hillier et al, 2005). More surprising, some of
these ‘improvements’ have led to a direct and observable
reduction in protein production (Griswold et al, 2003).
Even those that do report increased protein yield require
careful scrutiny, because many have not controlled for
altered mRNA levels in their system (e.g., Deng, 1997;
Alexeyev and Winkler, 1999; Feng et al, 2000; Humphreys
et al, 2000; Nalezkova et al, 2005). Thus, although excellent
progress in the practice of gene synthesis enables experimental
implementation of the technique, the scientific community
remains far from a complete understanding of what constitutes
a rational design strategy for a protein-coding gene. Instead,
the very concept of a ‘translationally optimal codon’ has
grown to incorporate dimensions of translational speed,
translational accuracy and sustainability of yield that could
vary from one experiment to another. Meanwhile, we have
learned that a codon’s position within a coding sequence, its
‘neighborhood’ of other codons, its structural role within the
mRNA sequence and the nature of the genomic system in
which it is to be expressed can all influence the effects of
‘synonymous’ codon choices. Given that we can physically
construct any gene, what rules define the appropriate
sequence to manufacture? Here, we examine current progress
and emerging challenges in both theory and practice, showing
how this topic exemplifies the interdisciplinary challenges
of 21st century biology.

Why redesign the coding sequence?

Modern expression vectors have undergone extensive manip-
ulation to maximize mRNA transcription. Yet a relatively weak
correlation can exist between expression levels of mRNA and
those of translated protein products (e.g., Futcher et al, 1999;
Nie et al, 2006). Thus, it is now widely understood that
persistent poor expression of protein product can result from
problems occurring at a post-transcriptional stage, especially
at the point of translation (Kurland and Gallant, 1996;
Gustafsson et al, 2004). The issue here is that the ‘digital’
portrayal of translation found in biology textbooks over-
simplifies a bio-mechanical process in which different
populations of tRNAs essentially compete to translate an
appropriate codon of mRNA within the context of a ribosome
(e.g.,Rodnina et al, 2005). Different organisms can vary
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enough in their relative contents of isoaccepting tNRAs to
change the dynamics of this competition, such that different
choices from a suite of synonymous codons can influence the
speed and accuracy of translation. For this reason it can be
useful to redesign a protein-coding sequence to suit its new
context when moving it between genomes.

What should we build? The theory of synthetic
gene design

The most direct method to find an optimal encoding for
heterologous expression would be to comprehensively screen
all possible alternative sequences. This is however impractical
for sequences of any appreciable length because of the near-
infinite encoding possibilities: approximately 3.7�1021 differ-
ent nucleic acid sequences could encode a single peptide
comprising 150 amino acids, thus top-down screening
procedures must be guided by bottom-up gene design.

To this end, a wealth of software has been developed to help
bench scientists achieve reverse translation (Arentzen and
Ripka, 1984; Mount and Conrad, 1984; Danckaert et al, 1987;
Pesole et al, 1988; Presnell and Benner, 1988; Weiner and
Scheraga, 1989; Bains, 1990; Tamura et al, 1991; Libertini and
Di Donato, 1992; Makarova et al, 1992; Nash, 1993; Raghava
and Sahni, 1994; Withers-Martinez et al, 1999; Hoover and
Lubkowski, 2002; Fuglsang, 2003; Gao et al, 2004; Grote et al,
2005; Jayaraj et al, 2005; Richardson et al, 2006; Villalobos
et al, 2006; Wu et al, 2006b; Puigbo et al, 2007). Broadly
speaking, this software can be divided into two categories
according to algorithmic purpose: one seeking gene designs
that facilitate empirical sequence manipulations, the other
seeking designs that translate well into protein products.
Perhaps the two most salient features of this software are the
diversity of opinion as to what rules will optimize translation

and a general lack of awareness by each software solution that
numerous competitors exist (Figure 2).

So where should we seek guidance as to the rules of optimal
encoding? Up until now, the overwhelming majority of
synthetic genes that have been reported in peer reviewed
literature represent unique attempts to re-engineer different
genes. As a result, their collection into a single database
(Wu et al, 2007) currently presents a ‘broad and shallow’
scatter of isolated points in sequence space. A shift in research
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Figure 1 The cost, per base, of commercial oligonucleotide assembly from
1999 to 2006. The price of gene synthesis has decreased almost 30-fold in the
past 7 years (data for years 1999–2003 are taken from Carlson, 2003). Data for
years 2004–2006 reflect the lowest price found in advertisements placed within
Science magazine).
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Figure 2 The gene design software shown as a network of citations by date of
publication. Each of the 37 nodes represents a specific software application for
gene design; arrows indicate acknowledgements (citations) of pre-existing,
published software. Appropriate web development would alleviate this patchy
awareness of competing efforts, and could eliminate inefficient and needless
duplication of effort. Abbreviations: BBOCUS: BackTranslation Based On Codon
Usage Strategy; BT: BACKTR (Pesole et al, 1988); bt: backtrans (Mount and
Conrad, 1984); CO: Codon Optimizer (Fuglsang, 2003); CODOP: CODon
OPtimization (Withers-Martinez et al, 1999); DB: DNA Builder (Pacific Northwest
National Laboratory); DIROM (Makarova et al, 1992); DW: DNAWorks (Hoover
and Lubkowski, 2002); EB: EasyBack (University of Catania, Italy); G.D:
Gene.Design (Weiner and Scheraga, 1989) G_D: Gene Designer (Villalobos
et al, 2006); G_Dn, GeneDn (Ju et al, 1998); GC: Gene Composer (by Emerald
Biosystems); GD: GeneDesign (Richardson et al, 2006); ged: gene design
(Presnell and Benner, 1988); GeMS: Gene Morphing System (Jayaraj et al,
2005); GF: The Gene Forge (by AptaGen LLC); GMAP (Raghava
and Sahni, 1994); GO: GeneOptimizer (by GeneArt, Germany); IBG: IBG
GeneDesigner (Vogelbacher et al, 2006); JCat: Java Codon Adaptation Tool
(Grote et al, 2005); LBT: Locally Sensitive BackTranslation; Leto (by Entelechon
Inc.) OG: OptGene (by Ocimum Biosolutions); P2D: Protein2DNA (by DNA 2.0
Inc); PGen: PrimerGen (Nash, 1993); PINCERS (Tamura et al, 1991); PO:
Primo Optimum (by Chang Bioscience); RESTRI (Libertini and Di Donato, 1992);
RT: Reverse Translate (Danckaert et al, 1987); SGD: Synthetic Gene Designer
(Wu et al, 2006a, b); SMS: Sequence Manipulation Suite (Stothard, 2000);
THOYO (Bains, 1990); TIP: Traducción Inversa de Proteı́nas/Protein Back-
translation (Moreira and Maass, 2004); U1: unnamed1 (Arentzen and Ripka,
1984); U2: unnamed2 (Danckaert et al, 1987); UpG: UpGene (Gao et al, 2004).
Applications shown in dashed lines indicate software that has never appeared in
peer reviewed scientific literature.
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emphasis is needed to refocus efforts toward a ‘narrow and
deep’ systematic comparison of different recoding strategies
for a few genes. Meanwhile, the nearest we have to such
a dataset are the numerous gene variants produced by
evolution. It has been long recognized that codon usage
frequency appears to be unequal for most synonymous codons
within naturally occurring genomes (Grantham et al, 1980).
Much of this bias is a passive reflection of the mutation biases
at work in a genome (Sharp et al, 1993; Knight et al, 2001),
however it can be tricky to ascertain which features of which
sequences have been shaped by natural selection. Not only do
precise predictions from evolutionary theory rely on para-
meters that we may never know with certainty, but the noise to
signal ratio implicit within any ‘naturally optimized’ sequence
can confound the most careful analyses.

Where to next? Specific objectives for future
progress

Although the major unknowns of synthetic gene technology
are mostly those of design theory, the current problem is an
excess, and not deficit, of ideas. Major progress thus seems
poised to occur when empirical studies start to compare these
ideas systematically.

An important step would be to standardize experimental
protocols and reports so that the emerging patchwork of
results can be examined as a coherent whole. Specifically,
experiments must standardize their measurement of mRNA
expression levels for the target genes (as a baseline for
interpreting protein yields), and measure protein production
in absolute rather than relative terms (e.g., mg/l or percentage
of total protein rather than ‘n-fold increase/decrease’) if they
are to be compared.

A further step would be to identify one or more standardized
(model) experimental systems for use by any and all research
groups that are willing to share information. An ideal
expression system would not be pre-engineered in any way
that could confound interpretation of results (e.g., by contain-
ing enriched tRNA pools), it would employ a protein product
that is amenable to clear, quantitative assay and could include
an internal control (such as a dual reporter system in which
only one gene has been redesigned) to add further confidence
to measurements of protein yields.

The idea of standardization extends into the philosophy of
bioinformatics software that predicts gene design. Current
software typically requires a combination of logically inde-
pendent gene optimizing steps as a mandatory, pre-packaged
whole. This renders the comparison of results difficult and
suggests the need for secondary design algorithms designed to
isolate specific gene features (e.g., changing codons while
maintaining overall GC content, or varying GC content while
maintaining RNA structural motifs).

It is noteworthy that the underlying nature of all gene design
software is similar and simple: a user must input a protein
sequence and a genetic code. The protein sequence is then
reverse translated into a nucleotide sequence using one or
more algorithms, and the resulting nucleotide sequence is
returned to the user. Independent applications must duplicate
at least this much functionality. A promising direction of future
software development in this field would be an emphasis on

integration into a unified, distributed, modular web service for
synthetic gene design. Specifically, programmers could take
advantage of purpose-built web technologies, such as XML
(a data sharing language) and SOAP (a language for wrapping
independent applications), to facilitate interconnection of
disparate, pre-existing software. New algorithms could be
added as pathways through which a synthetic gene might
travel en route to final design. This would provide users with a
common interface through which they could choose the
specific algorithm(s) to use at each step of synthetic gene
design. Far from restricting the diversity of independent ideas
for design services offered by different groups (on different
web-servers), this type of coordination through a common
interface would focus attention where it belongs: on the
overlapping (and sometimes directly competing) concepts of
how to design genes for optimal expression.

Critical assessment

Our suggested shift in research emphasis toward standardized
protocols and integration of competing design strategies would
create a foundation with potential that exceeds the capabilities
of any one group or traditional collaboration. How then can the
diverse interests of those interested in synthetic gene design be
harnessed into a common framework for progress?

We advocate the introduction of a competitive model,
similar to the CASP approach that has been used within the
protein folding research community (Moult, 2005). Given a
standardized experimental protocol, it would be possible to
pick genes of major research interest that are proving
problematic for heterologous expression. For example, a
recent study of Plasmodium falciparum, the causative agent
of the most deadly form of malaria, reported that ‘12 targets,
which did not express in Escherichia coli from the native gene
sequence were codon-optimized through whole gene synth-
esis, resulting in the expression of three of these proteins’
(Mehlin et al, 2006). Presumably, malaria researchers would
be motivated to call for theoretical predictions of redesign that
could help their situation. Theorists and software developers
should in turn be motivated to demonstrate their algorithms’
worth as the marketplace of redesign ideas becomes increas-
ingly saturated, and those who research the optimization of
gene assembly protocols (regardless of sequence content)
would be motivated to absorb a significant fraction of the effort
required for synthesizing these predictions. The net result
would be a distributed (community wide) version of the direct
screening approach favored by early pioneers of synthetic gene
technology (Stemmer et al, 1993; Humphreys et al, 2000), in
which each segment of the community directly benefits from a
united focus. If all designs were deposited within the SGDB
(Synthetic Gene Database) (Wu et al, 2007), then this could
quickly transform the knowledge base for synthetic gene
technology. Fortunately, recent advancement in multiplex
gene synthesis technology has implied the feasibility of
simultaneous synthesis of thousands of genes for large-scale
experimental tests (Tian et al, 2004; Zhou et al, 2004; Cox et al,
2007; Kong et al, 2007), so the potential for large-scale
comparison of predictions may be nearer than we think.

This is an ambitious vision, but the motivation is strong.
Current synthetic gene technology offers the potential to
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become a foundational tool of systems biology. However, until
we know how to optimize coding sequences, we cannot
construct a single synthetic gene with confidence, let alone
produce a whole synthetic genome.
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