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EDITORIAL COMMENT
Deep Image Segmentation for
Cardiomyocyte Proliferation*

Md Abul Hassan Samee, PHD,a James F. Martin, MD, PHDa,b,c,d
T he adult mammalian heart has limited regen-
erative capacity, which derives from the
long-lived nature of adult cardiomyocytes

(CMs). Indeed, CM renewal occurs at a minimal, albeit
measurable, level in the adult human heart.1 Investi-
gating whether CM renewal is associated with other
measures of improved cardiovascular outcomes is
challenged by the technical difficulty in accurately
quantifying CM cell division. Current methods for
counting CMs, although rigorous in the right hands,
are technically challenging and error prone. In mice,
the technical challenges are helped by advanced
transgenic fate-mapping techniques, which enable
more precise tracking and quantification of CM divi-
sion but are obviously unavailable to human samples.

Manual curation can compromise sensitivity;
introduce potential bias; and, unsurprisingly, lead to
substantial interlaboratory discrepancies in CM
cycling estimates. One solution to these challenges
lies at the intersection of cardiovascular biology and
machine learning. The exponential growth in
computational power and advancements in deep
learning–based image analysis have catalyzed the
adoption of automated image segmentation tech-
niques, propelling the field toward more rapid,
reproducible, and unbiased analyses. In this issue of
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have demonstrated some significant advances in this
direction.

Karpurapu et al2 focused on the dynamics of
myovascular cells, specifically CMs and cardiac
endothelial cells (CECs), in human heart failure and
after mechanical unloading by a ventricular assist
device.2 The authors developed CardioCount, a deep
learning–based pipeline for identifying nuclei from
antibody-labeled fluorescent images and colocalizing
nuclear objects from multiple image channels. Car-
dioCount leverages the U-Net architecture3 with a
ResNet50 backbone.4 Briefly, the U-Net is an
“encoder-decoder” architecture. First, an input image
is gradually down-sampled (reducing the spatial res-
olution) while maintaining necessary contextual in-
formation. This part of the model is called an encoder.
Next, from reduced images, a decoder restores the
spatial resolution and combines features newly
discovered by the encoder to produce a “segmenta-
tion mask.” U-Net is a classical and widely adopted
convolutional neural network architecture for
biomedical image segmentation. Residual networks
have also been shown to work well for U-Nets. Thus,
CardioCount’s success is intuitive. As training data,
the authors manually curated the segmentation
masks in about 1,000 images. These images used
specific markers to identify CM and CEC nuclei and
Ki67 to mark nuclei in the cell cycle. They applied the
trained model on w368,000 images obtained from the
Duke Human Heart Repository.

Karpurapu et al2 found an interesting coupling
between CMs and CECs in the adult human heart,
suggesting that the dynamics of these cell types are
inter-related in the heart failure samples. They found
that CM and CEC nuclear density in the failing heart
decrease proportionately, suggesting a biologic link
between vascular rarefaction and CM hypertrophy.
Furthermore, in failing hearts exhibiting cell cycling,
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individuals with higher levels of CM cycling also had
higher levels of CEC cycling, supporting a coordinated
growth dynamic between CMs and CECs in the adult
human heart.

Overall, CardioCount is an impressive feat and an
important addition to the list of tools deploying deep
learning methods in cardiovascular research. Further
advancements will require addressing a few aspects
of the methodological approach and selecting best
practices. First, as the authors noted, manual cura-
tion is a source of bias, yet they started with manually
curated “ground truth” images. When multiple hu-
man annotators perform curation, which is preferred
to a single annotator, unavoidable variations are
introduced into the model. Uncertainty-aware
Bayesian segmentation approaches could help build
a more rigorous model in these cases. Another
approach to minimize the variability is “scribble
segmentation.”5 Rather than drawing precise bound-
aries, human annotators draw small scribbles within
the objects of interest, and the model identifies
boundaries. However, we acknowledge that address-
ing these issues is difficult, and an optimal approach
probably does not currently exist.

We think the field essentially needs “human-in-
the-loop artificial intelligence” in which human ex-
perts remain and iteratively improve models like
CardioCount. An initial model is trained using the
best available options and resources, but groups of
human experts continue providing feedback to the
model, and the model is retrained to incorporate that
feedback. Building a supportive framework for the
CardioCount user community will be crucial for the
tool’s success.

Another methodological concern is the limited
training data size, but in the future, researchers
following up on CardioCount can use generative
adversarial networks-based approaches.6 Thirdly, in
the current work, the authors could have offered a
more careful inspection of the cases in which Car-
dioCount “makes mistakes.” The model’s precision,
recall, and F1 score are satisfactory, but it is a missed
opportunity not to ask how the accuracy metrics
could be improved. Inspecting a model’s mistakes is
often a rewarding experience. It reveals the model’s
limitation and indicates if there is any fundamentally
challenging aspect of the data that requires a
different type of model. Finally, although there is a
strong rationale for using U-Net, we think it is another
missed opportunity not to try alternative methods
such as Mask R-CNN.7 Benchmarking multiple
methods can reveal the relative strengths and weak-
nesses of the primarily chosen method and lead to a
better solution.

In conclusion, the community welcomes tools like
CardioCount. These tools can open new avenues for
therapeutic intervention and offer unprecedented
insights into the development and regeneration of
the human heart. Future studies will incorporate
improved statistical and machine learning method-
ologies and validate the findings of these tools.
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