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Abstract: Platelets are functionally versatile blood cells involved in thrombosis, hemostasis, atheroscle-
rosis, and immune response. Platelet interaction with the immediate microenvironment in blood,
vasculature, and tissues alters platelet morphology. The quantification of platelet morphodynamics
by geometrical parameters (morphometry) can provide important insights into how platelets sense
and respond to stimulatory cues in their vicinity. However, the extraction of platelet shapes from
phase contrast microscopy images by conventional image processing is difficult. Here, we used a
convolutional neural network (CNN) to develop a deep-learning-based approach for the unbiased
extraction of information on platelet morphodynamics by phase contrast microscopy. We then
investigated the effect of normal and oxidized low-density lipoproteins (LDL, oxLDL) on platelet
morphodynamics, spreading, and haptotactic migration. Exposure of platelets to oxLDL led to a
decreased spreading area and rate on fibrinogen, accompanied by increased formation of filopodia
and impaired formation of lamellipodia. Haptotactic platelet migration was affected by both LDL
and oxLDL in terms of decreased migration velocity and reduced directional persistence. Our re-
sults demonstrate the use of deep learning in investigating platelet morphodynamics and reveal
differential effects of LDL and oxLDL on platelet morphology and platelet–matrix interaction.

Keywords: platelet; deep learning; neural network; oxLDL; platelet shape; platelet migration;
atherosclerosis; lipid

1. Introduction

Platelets circulate in the blood in a resting state and constantly monitor changes in
vasculature [1]. They actively engage in hemostasis, wound healing, and immune re-
sponse [2] upon detecting vascular injury, inflammation, or changes inflicted by pathogenic
intrusion. Activated platelets adhere and spread at the site of vessel injury and aggregate
to form a blood clot, thereby closing the damaged vessel wall [3,4]. During spreading,
the platelet-covered area increases owing to rapidly formed filopodia and lamellipodia,
and the platelet shape changes from a discoid to a flat, fully spread shape [5–7]. Platelet
migration in response to chemotactic cues of pathogenic or host origin has been studied for
many years [8–12]. Recently, it has been shown that platelets contribute to innate immune
response by haptotactic migration [13–15]. Platelet morphodynamics during spreading and
migration are therefore significant characteristics of platelet interaction with the immediate
microenvironment, and the quantification of morphodynamics in terms of morphometric
parameters is of high relevance.

A wide variety of techniques have been used to investigate platelet shape, including
optical brightfield [6,16] and fluorescence microscopy [7], electron microscopy [17,18],
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and scanning probe microscopy [16,19–23]. Many of these approaches have drawbacks
such as extensive preparation, additional staining steps, and limited throughput, or re-
quire complex analysis. Deep learning neural networks, benefiting from hugely increased
computational power in recent years, can help to overcome these limitations [24–28]. In
hematology, neural networks have been used for blood cell [29,30] and platelet classifica-
tion [31].

The primary objective of this investigation was to devise an approach for studying
platelet morphodynamics with optical phase contrast microscopy in combination with
U-net, a deep learning convolutional neural network (CNN) developed for cell segmenta-
tion [32]. The CNN is used to binarize phase contrast images of platelets and to separate
platelets from the background, which is a key step for automated shape analysis. We used
images of membrane-stained platelets to semi-automatically generate a large training pool
of images for neural network training. With the trained CNN, it was possible to analyze
platelet shape following a variety of treatments and to investigate time-resolved platelet
morphodynamics during spreading and migration.

We used our deep learning morphometry to investigate the influence of lipoproteins,
which are transport proteins for fat/lipid molecules in the blood, on platelet function. In-
creased blood levels of low-density lipoproteins (LDL) are a risk factor causing atherothrom-
bosis and coronary artery disease [33–35]. Both LDL and oxidized LDL (oxLDL) are ac-
cumulated at the fatty streaks, initiating the formation of an atherosclerotic plaque under
hyperlipidemic conditions, and have distinct prothrombotic effects inducing platelet ac-
tivation. Both LDL and oxLDL activate platelets through overlapping and distinctive
pathways [33,36] downstream of their respective receptors, e.g., ApoER2 for LDL [37] and
CD36, LOX-1, or transmembrane-CXCL16-SR-PS/Ox for oxLDL [38]. OxLDL-mediated
platelet activation through CD36 has been investigated by many groups [39–41]. We
previously showed a dose-dependent effect of LDL and oxLDL on platelet activation,
leading to platelet degranulation, CD62P surface exposure, αIIbβ3-integrin activation,
and platelet adhesion, spreading and aggregation [42]. Moreover, both LDL and oxLDL
increase thrombus formation ex vivo, while the administration of LDL and oxLDL in mice
triggers thrombus formation in the injured carotid artery in vivo [42–44]. Both LDL and
oxLDL can influence the redox status of platelets, prompting the reactive oxygen species
(ROS)-mediated oxidation of LDL in the platelet microenvironment and intraplatelet LDL-
to-oxLDL conversion in activated platelets. These oxidative functions involve the active
participation of NADPH oxidase 2 (NOX2) [45], mitochondrial superoxide generation [42],
and significant intraplatelet ROS formation over the basal state [42]. Capitalizing on such
previous investigations from our group and others, the current investigation was designed
to explore platelet morphodynamics under the influence of LDL and oxLDL, showing that
the treatment of platelets with oxLDL induced the formation of filopodia and retraction of
lamellipodia, led to a decreased spreading area and rate on fibrinogen, and reduced the
ability for haptotactic migration. Employing a novel deep learning approach, we devised a
high-throughput, automated, and unbiased image analysis method. Our results suggest
that platelet activation by LDL and oxLDL can influence the interaction with biological
matrices and platelet functions.

2. Methods
2.1. Platelet Isolation and Serum Preparation

Washed human platelets were isolated from freshly drawn blood of healthy volunteers
mixed with acid citrate dextrose (at a ratio of 1:7) to prevent coagulation. Platelet-rich
plasma (PRP) was obtained from whole blood by centrifugation at 200× g for 20 min.
Tyrode-HEPES buffer (136.89 mM NaCl, 2.81 mM KCl, 11.9 mM NaHCO3, 1 g/L D-glucose,
10 mM HEPES), pH adjusted to 6.5 with HCl, was added to the PRP at a ratio of 3:1.
Then, washed platelets were isolated by centrifugation at 880× g for 10 min and careful
resuspension of the platelet pellet in Tyrode-HEPES buffer, pH 7.4.
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For platelet migration experiments, human serum was prepared from coagulated
blood in serum monovettes (02.1063.001, Sarstedt, Nümbrecht, Germany). After phle-
botomy, blood was allowed to coagulate for 30 min. Then, serum was collected from the
coagulated blood by two centrifugation steps at 2000× g for 15 min each.

2.2. Platelet Activation and Treatment

For platelet spreading experiments, platelets were activated by 0.1 U/mL thrombin
(T6884, Sigma Aldrich, St. Louis, MO, USA), 20 µg/mL oxLDL (770252, Kalen Biomed-
ical, Germantown, MD, USA), 20 µg/mL LDL (770200, Kalen Biomedical), or were left
untreated before spreading onto fibrinogen-coated (F3879, Sigma Aldrich) glass-bottom
dishes (81218, ibidi, Gräfeling, Germany) in Tyrode-HEPES buffer, pH 7.4. From our previ-
ous investigation it was established that 20 µg/mL oxLDL or 20 µg/mL LDL promotes
significant platelet activation and spreading [42]; we therefore continued to employ this
concentration for the present study. Platelets were pretreated for 10 min with oxLDL
before the experiments. For NOX2 inhibition experiments, platelets were incubated with
1 mM apocynin (178385, Sigma Aldrich) prior to treatment with oxLDL (Supplementary
Figure S4c). Unless indicated otherwise, 1 mM calcium was added to the Tyrode-HEPES
buffer used for the experiments.

For platelet migration experiments, glass-bottom dishes (81218, ibidi) were coated
for 5 min with migration buffer consisting of Tyrode-HEPES buffer, pH 7.4, 0.1 mg/mL
fibrinogen (F3879, Sigma Aldrich), 3 µM U-46619 thromboxane (TXa, Cay16450, biomol,
Hamburg, Germany), 20 µM adenosine diphosphate (ADP, A2754, Sigma Aldrich), and
5% human serum. Afterwards, washed platelets were activated for 1 min in migration
buffer, added to the coated glass-bottom dishes, and were allowed to adhere and spread
for 10 min. Then, non-adherent platelets were carefully washed out and migrating platelets
were imaged at 37 ◦C after 30 min. For platelet migration experiments in the presence
of LDL or oxLDL, platelets were treated with 20 µg/mL LDL or 20 µg/mL oxLDL in
migration buffer for 10 min before addition to the glass-bottom dish containing migration
buffer with LDL or oxLDL. As a control, non-migrating platelets were prepared using
migration buffer without human serum and oxLDL.

2.3. Microscopy and Acquisition of Training Data

Phase contrast and fluorescence images were recorded using an inverted microscope
(Ti-E, Nikon, Tokyo, Japan) equipped with a digital camera (Qi-2, Nikon), a stage-top
incubator (10722, ibidi) and a 20× air and 100× oil immersion objective. Time-lapse
imaging was performed by recording phase contrast images every 30 s for migration
experiments and every 10 s for all other experiments.

For the acquisition of training data, washed platelets were stained with 2.5 µM Cell-
Mask Orange (C10045, ThermoFisher, Waltham, Massachusetts, USA) for 10 min at 37 ◦C.
The stained platelets were then added to a fibrinogen-coated (0.1 mg/mL) glass-bottom
Petri dish (81218, ibidi) containing Tyrode-HEPES buffer and 0.1 U/mL thrombin (T6884,
Sigma Aldrich). Then, simultaneous phase contrast and fluorescence images were recorded
while platelets adhered and spread. The fluorescence images were processed by a rolling-
ball background removal algorithm to remove blurry edges for better edge detection.
Afterwards, binary images were created from the processed fluorescence images by apply-
ing a threshold and filling the remaining holes (Supplementary Figure S1). The resulting
ground truth images were examined by eye, and errors were corrected manually.

2.4. Training of the U-Net and Network Predictions

The neural network architecture of the U-net was implemented in TensorFlow (v. 1.12)
with the Python deep learning API Keras (v. 2.2.4). The code for neural network training
and prediction tasks was written in Python (v. 3.6). The U-net architecture was imple-
mented for a resolution of 2048 × 2048 pixels to fully utilize the native resolution of the
digital camera (1608 × 1608). All images were resized by edge reflection padding for the
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use as network input, and the outputs of the network were resized to the native resolution
by cropping. For both magnifications (100× and 20×), separate networks were trained.
The image sets used for network training contained n = 170 and n = 82 phase contrast and
ground truth image pairs with a total of n = 2064 and n = 12,739 platelets for the 100×
and 20×magnifications, respectively. For network training, phase contrast images were
normalized by I′(x, y) = I(x,y)−Imin

Imax−Imin
with minimum and maximum intensities Imin and Imax.

Data augmentation (rotation, flipping, and resizing) was used and the network was trained
until the validation loss coefficient reached a minimum level. The training tasks were
performed at the computational center bwForCluster BinAC on a graphics processing unit
(Tesla K80, Nvidia). The total training duration was 80 h for the 100× and 40 h for the 20×
magnification. Predictions of the trained networks were computed in Python on a personal
computer using padding and normalization as described above.

2.5. Calculation of Shape Parameters

Platelet shape analysis was completed in the analysis software Igor Pro (WaveMetrics,
Portland, OR, USA). The position coordinates and platelet area A, circularity (c = 4πA/P2,
with outline perimeter P), and aspect ratio (e = a/b, with long and short axes a and b of an
ellipse fit to the platelet outline) were calculated using a built-in function. The filopodia-
counting algorithm using length and curvature constraints to determine the endpoints of
individual filopodia was adapted from Sandmann et al. [7]. The platelet curvature was
calculated by point-wise determination of the curvature of the platelet outline, generated
with a contour-tracking algorithm [46]. Platelet spreading was analyzed by calculating
idle time (from adhesion to 15% area increase) and initial spreading rate (during the 2 min
following the end of idle time). The position of migrating platelets was tracked as the
centers of the platelet outlines in subsequent images of an image sequence. Platelets that
could not be tracked over the whole sequence were excluded from analysis. The migration
velocity was calculated as the accumulated distance divided by time. The straightness of
the migrated path was calculated as the Euclidean distance divided by the accumulated
distance. The directional change in a given time interval was calculated as the cosine of
the angle θ between the directions at the start and end of the analyzed time interval; the
average was then determined by averaging over all available time intervals.

2.6. Statistics

Data were analyzed and processed in Igor Pro (WaveMetrics). Data are presented as
medians ± quartiles unless stated otherwise. All results were tested using Dunn’s test for
non-parametric multiple comparisons. Results were considered significantly different for
p-values < 0.001 (***).

3. Results
3.1. Platelet Shape Analysis with U-Net

We used U-net, a deep learning CNN developed for cell image segmentation [32], for
the binarization of phase contrast images into two different regions (Figure 1a): platelets
(black) and non-platelet background (white). These binary images were then used for
subsequent shape analysis. For training and validation, we recorded phase contrast and
fluorescence images of membrane-stained platelets. From the fluorescence images, we
generated binary masks (separating platelets from the background), which served as the
ground truth for the CNN for each phase contrast image (Supplementary Figure S1a).
For validation of the trained network (Supplementary Figure S1b), we examined phase
contrast images not used for training. Platelets of different shapes were recognized by the
CNN with a good match of the prediction with the ground truth (Figure 1b). A pixel-wise
comparison of prediction and ground truth indicated a high ratio of true positive pixels
(96% intersection over union) (Figure 1c). Subsequently, we quantified the platelet shapes
in terms of platelet area, aspect ratio (length/width), circularity (measure of “roundness”;
value of 1: perfect circle), and number of filopodia from the ground truth and from
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the prediction (Figure 1a). The prediction and ground truth shape parameters (n = 226
platelets) were in excellent agreement, as depicted by the Bland–Altman plots showing
the difference of prediction and ground truth parameters plotted against the average for
each single platelet (Figure 1d; solid and dashed lines indicate the mean ± 1.96 × standard
deviation). This excellent agreement goes hand-in-hand with a strong correlation between
the prediction and ground truth shape parameters (Figure 1e). We also trained a separate
CNN using lower-magnification images, which allowed for the determination of platelet
area and aspect ratio with decent accuracy (Supplementary Figure S2), thereby increasing
the throughput in platelet dynamics measurements.
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Figure 1. Platelet detection by convolutional neural network (CNN) and evaluation of platelet shape parameters. (a) Work-
flow for CNN-supported shape analysis. (b) Comparison of ground truth and network prediction for platelets of different
shapes. (c) Amount of true positive, false positive, and false negative pixels (sum of all three is 100%). (d) Bland–Altman
plots for platelet shape parameters gained from the prediction and ground truth images. The solid and dashed lines
indicate the mean ± 1.96 × standard deviation of the difference between prediction and ground truth shape parameters.
(e) Pearson’s correlation coefficient R for the shape parameters in panel d. Scale bars: 5 µm.

3.2. OxLDL Influences Platelet Shape and Interaction with Matrix

Previously, we showed that LDL and oxLDL trigger αIIbβ3–integrin activation and
PAC-1 binding [42]. We therefore investigated the interaction of oxLDL-treated platelets
with fibrinogen. As a comparison, platelets were left untreated or were treated with
thrombin or LDL. OxLDL-treated platelets exhibited an irregular, dendritic shape as com-
pared to untreated, thrombin-treated, or LDL-treated platelets (Figure 2a, Supplementary
Figure S3). OxLDL-treated platelets were able to adhere to fibrinogen in the absence of
extracellular calcium, but they were significantly less spread than in the presence of calcium
(Figure 2a). In the presence of calcium, oxLDL-treated platelets had a significantly lower
spreading area, decreased circularity, and increased number of filopodia compared to
untreated, thrombin-treated, and LDL-treated platelets (Figure 2b). Inhibition of NADPH
oxidase by apocynin [47] led to a decrease in spreading area in oxLDL-treated platelets;
oxLDL-induced changes in platelet circularity or number of filopodia remained unaffected
(Supplementary Figure S4).
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Next, we investigated the spreading dynamics of oxLDL-treated platelets in the
presence of calcium. Thrombin-treated platelets typically reached a spread-out shape
within 5 min after contact with a fibrinogen-coated surface (Figure 3a, Supplementary
Video S1). OxLDL-treated platelets had a dendritic and slowly extending shape with many
filopodia during spreading. Analysis of the platelet area revealed two phases of area
increase for untreated, thrombin-treated, and LDL-treated platelets (Figure 3b, black, blue
and red traces): a phase of fast area increase during the first 5 min after adhesion, followed
by a phase of slower area increase. The first phase was dominated by the formation of
filopodia, which were subsequently retracted during the second phase, leading to an
increase in circularity (Figure 3b, black, blue, and red traces). For oxLDL-treated platelets,
the initiation of spreading was delayed, and a phase of rapid area increase was not observed
(Figure 3b, orange traces). The spreading area increased slowly with a filopodia-dominated
shape and low circularity. OxLDL-treated platelets showed a significantly increased idle
time (Figure 3c) and a significantly decreased initial spreading rate compared to untreated,
thrombin-treated, and LDL-treated platelets (Figure 3d).
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Figure 2. Oxidized low-density lipoprotein (oxLDL) influences platelet shape. (a) Phase contrast images and predictions and
(b) shape parameters of untreated, thrombin-treated (0.1 U/mL), LDL-treated (20 µg/mL), and oxLDL-treated (20 µg/mL)
platelets after spreading on fibrinogen for 30 min. Platelet numbers (no calcium, calcium): Fibrinogen: n = (113, 285),
thrombin: n = (315, 194) (thrombin), LDL: n = (240, 248), oxLDL: n = (395, 342). *** indicates statistically significant difference
(p < 0.001). Scale bars: 5 µm.



Cells 2021, 10, 2932 7 of 13
Cells 2021, 10, x FOR PEER REVIEW 7 of 14 
 

 

 

Figure 3. OxLDL influences platelet spreading. (a) Phase contrast image sequence and predictions of untreated, thrombin-
treated, and oxLDL-treated platelets during spreading on fibrinogen (see also Supplementary Video S1). (b) Shape 
parameters as a function of time for three exemplary untreated, thrombin-, LDL-, and oxLDL-treated platelets each. 
Timepoint of adhesion is at t = 0 min. (c) Idle time (time from adhesion to 15% area increase) and (d) initial spreading rate 
(area increase during the 2 min following the end of idle time) for n = 322 untreated, n = 282 thrombin-treated, n = 161 
LDL-treated, and n = 173 oxLDL-treated platelets. *** indicates statistically significant difference (p < 0.001). Scale bars: 5 
µm. 

3.3. OxLDL Induces Formation of Filopodia and Retraction of Lamellipodia 
We examined the effect of oxLDL on filopodia and lamellipodia formation in 

platelets spread on fibrinogen. After the addition of oxLDL, the platelet edges started to 
become ruffled (Figure 4a), followed by a retraction of the lamellipodium (white arrows) 
and the formation of filopodia (black arrows) (see also Supplementary Video S2). The 
platelet showed a reduction in spreading area and a simultaneous increase in the number 
of filopodia starting at ≈30 min after the addition of oxLDL (Figure 4b). The same results 
were obtained for the averages of many platelets (Figure 4c,d; n = 14 for oxLDL-treated 
and n = 9 for control platelets). 

Figure 3. OxLDL influences platelet spreading. (a) Phase contrast image sequence and predictions of untreated, thrombin-
treated, and oxLDL-treated platelets during spreading on fibrinogen (see also Supplementary Video S1). (b) Shape
parameters as a function of time for three exemplary untreated, thrombin-, LDL-, and oxLDL-treated platelets each.
Timepoint of adhesion is at t = 0 min. (c) Idle time (time from adhesion to 15% area increase) and (d) initial spreading rate
(area increase during the 2 min following the end of idle time) for n = 322 untreated, n = 282 thrombin-treated, n = 161
LDL-treated, and n = 173 oxLDL-treated platelets. *** indicates statistically significant difference (p < 0.001). Scale bars:
5 µm.

3.3. OxLDL Induces Formation of Filopodia and Retraction of Lamellipodia

We examined the effect of oxLDL on filopodia and lamellipodia formation in platelets
spread on fibrinogen. After the addition of oxLDL, the platelet edges started to become
ruffled (Figure 4a), followed by a retraction of the lamellipodium (white arrows) and the
formation of filopodia (black arrows) (see also Supplementary Video S2). The platelet
showed a reduction in spreading area and a simultaneous increase in the number of
filopodia starting at ≈30 min after the addition of oxLDL (Figure 4b). The same results
were obtained for the averages of many platelets (Figure 4c,d; n = 14 for oxLDL-treated
and n = 9 for control platelets).
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during the addition of oxLDL (20 µg/mL) showing the retraction of lamellipodia (white arrows) and the formation of
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areas indicate mean ± standard deviation. Scale bar: 5 µm.

3.4. OxLDL Impairs Haptotactic Platelet Migration

We further investigated platelets in a microenvironment favoring haptotactic migra-
tion (Figure 5). Migrating platelets showed typical indicators of migration: an elongated,
polarized shape with a ruffled membrane (Figure 5a) [13]. OxLDL-treated migrating
platelets had a similar appearance but with prominent filopodia (Figure 5a, right), a sig-
nificantly decreased spreading area, increased aspect ratio, decreased circularity, and
increased number of filopodia (Figure 5b). Despite the different shape, oxLDL-treated
platelets were able to migrate (Figure 5c, Supplementary Video S3). Addition of oxLDL
to untreated migrating platelets increased their aspect ratio within the first 30 min after
addition (Figure 5d)—this timescale is similar to the retraction of lamellipodia described in
Figure 4.

Untreated migrating platelets covered a Euclidean distance of up to 80 µm within
120 min and mostly followed their initial direction (aligned in +y direction, Figure 5e).
During the same time, both LDL- and oxLDL-treated platelets covered a smaller Euclidean
distance (up to 30 µm and 10 µm, respectively). The migration velocity (migrated distance
divided by time) for oxLDL-treated platelets was smaller than for untreated or LDL-
treated migrating platelets, but still larger than for non-migrating platelets (Figure 5f).
Additionally, oxLDL- and LDL-treated migrating platelets followed a less straight migration
path (Figure 5g) and were more likely to change their direction (Figure 5h).
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Figure 5. OxLDL alters the dynamics of haptotactic platelet migration. (a) Images and (b) shape parameters of n = 319
non-migrating, n = 384 migrating, n = 305 LDL-treated (20 µg/mL), and n = 632 oxLDL-treated (20 µg/mL) migrating
platelets. For the corresponding predictions see Supplementary Figure S5b. (c) Image sequence of untreated, LDL-
treated (20 µg/mL), and oxLDL-treated (20 µg/mL) migrating platelets (see also Supplementary Video S3). (d) Aspect ratio
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of migrating platelets as a function of time with and without (control) the addition of oxLDL. The solid lines and shaded
areas indicate mean± standard deviation. (e) Migration paths of non-migrating, untreated, LDL-treated, and oxLDL-treated
migrating platelets. The initial direction of migration was aligned along the positive y-axis. (f) Migration velocities of n = 169
non-migrating, n = 246 untreated, n = 264 LDL-treated, and n = 590 oxLDL-treated migrating platelets. (g) Straightness
of the migrated paths (Euclidean distance / accumulated distance). A value of 1 indicates a perfectly straight movement.
(h) Average directional change as a function of time, quantified by the average cosine of the angle θ between the directions
at the start and at the end of the analyzed time interval (straight movement: <cosθ> = 1, random movement: <cosθ> =
0). The solid lines and shaded areas indicate mean ± standard deviation. *** indicates statistically significant difference
(p < 0.001). Scale bars: 5 µm.

4. Discussion

We developed a neural-network-based approach for the binarization of platelet phase
contrast images with subsequent shape analysis (Figure 1) using the deep learning CNN
U-net, which was introduced by Ronneberger et al., and which has been applied to cell
segmentation, counting, and morphometry in microscopy and medical imaging [32,48]. The
binarization of microscopy images, that is, the separation of cells from the background, is a
key step for cell shape analysis. Our approach allows for a fast and unbiased binarization
that is independent of filters, thresholds, or manual masking. The predictions of the CNN
and the extracted shape parameters showed an excellent agreement and strong correlation
with the ground truth (Figure 1), consistent with previous applications of U-net on cells [32].

We used our deep learning neural network approach to investigate the effect of
oxLDL on platelet morphodynamics during spreading and migration with high-resolution
and high-throughput readout. The spreading of platelets on fibrinogen was calcium-
dependent [49,50], and oxLDL-treated platelets showed an irregular dendritic shape during
spreading with an increased formation of filopodia (Figures 2 and 3), which is indicative of
significant platelet activation in early stages of spreading [7]. The scavenging of ROS by
the NADPH oxidase inhibitor apocynin led to a reduced spreading area of oxLDL-treated
platelets, showing the significance of intracellular ROS generation for oxLDL-induced
platelet activation. Furthermore, oxLDL led to a decreased spreading rate on fibrinogen.
Unlike untreated, thrombin-treated, or LDL-treated platelets, which have two distinct
phases of fast and slow spreading [6], oxLDL-treated platelets showed a slowly, gradually
increasing area during spreading, accompanied by the formation of filopodia. In spread
platelets, oxLDL induced the retraction of lamellipodia (Figure 4). The interplay of lamel-
lipodia and filopodia formation, which is crucial for complete spreading on fibrinogen [7],
seems to be impaired in oxLDL-treated platelets. OxLDL is known to activate platelets and
lead to platelet aggregation and thrombus formation [41–44], depending on the degree of
oxidation [51,52]. An increased formation of filopodia in oxLDL-treated platelets has been
observed in previous work [42]. Lamellipodia are not crucial for aggregation and thrombus
formation [53,54], but do affect platelet migration [15]. An impairing effect of oxLDL on the
formation of lamellipodia has also been shown for macrophages, where it leads to a loss of
cell polarity and locomotion [55] and increased formation of filopodia by increased actin
polymerization [56]. In our experiments, the ability of platelets for haptotactic migration
was not completely inhibited by oxLDL, but the migration velocity and the directional
persistence were reduced. Our observations suggest that platelet activation with oxLDL
influences platelet interaction with fibrinogen and haptotactic migration. Such LDL- and
oxLDL-driven changes are executed through respective receptors (e.g., ApoER2 for LDL
and CD36, LOX-1, or CXCL16-SR-PS/Ox for oxLDL). A thorough, in-depth investigation is
called for to ascertain the relative contribution of these receptors to LDL- and oxLDL-driven
alterations in platelet morphodynamics by employing pharmacological receptor antago-
nists or mouse lines genetically deficient in these receptors. Moreover, as hyperlipidemia is
a prominent cardiovascular risk factor, morphodynamic analysis of platelets from obese
and hyperlipidemic patients as compared to age-matched normolipidemic subjects would
potentially reveal the clinical significance of the current explorative observations.
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