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Transcriptome and ribosome sequencing have revealed the existence of many non-
canonical transcripts, mainly containing splice variants, ncRNA, sORFs and altORFs.
However, identification and characterization of products that may be translated out of
these remains a challenge. Addressing this, we here report on 552 non-canonical proteins
and splice variants in the model organism C. elegans using tandem mass spectrometry.
Aided by sequencing-based prediction, we generated a custom proteome database
tailored to search for non-canonical translation products of C. elegans. Using this
database, we mined available mass spectrometric resources of C. elegans, from which
51 novel, non-canonical proteins could be identified. Furthermore, we utilized diverse
proteomic and peptidomic strategies to detect 40 novel non-canonical proteins in
C. elegans by LC-TIMS-MS/MS, of which 6 were common with our meta-analysis of
existing resources. Together, this permits us to provide a resource with detailed annotation
of 467 splice variants and 85 novel proteins mapped onto UTRs, non-coding regions and
alternative open reading frames of the C. elegans genome.

Keywords: C. elegans, altORFs, LC-MS/MS, mass spectrometry, timsTOF, MSFragger, PEAKS, sORFs

INTRODUCTION

Translation is a key biochemical process that produces a functional protein out of an open reading
frame (ORF). While alternative definitions of an ORF exist (Sieber et al., 2018; Fermin et al., 2006;
Claverie, 1997), we here use the term to indicate any mature mRNA sequence contained between a
START and a STOP codon. With the advent of high-throughput sequencing and advanced
computation, an ad hoc rule was established to restrict genomic annotation of ORFs to >100
codons unless previously characterised, as the small ORFs <100 codons (sORFs) posed higher
probability of being false positives or biologically meaningless (Basrai et al., 1997). Moreover, most
classical genome annotation pipelines enforce a stringent rule for monocistronic annotation of the
longest possible ORF within an mRNA, further omitting sORFs and alternative ORFs (altORFs)
beyond codon length restriction (Brunet et al., 2018). However, these notions have since been
challenged with increasing evidence of non-canonical translation across eukaryotic life (Crowe et al.,
2006; Kastenmayer et al., 2006; Ladoukakis et al., 2011).

For assignment of sORFs and altORFS, several bioinformatic and machine learning tools have
been developed to predict 3- and 6- frame in-silico translation (Omasits et al., 2017; Brunet et al.,
2018; Guruceaga et al., 2020). In addition, advances in ribosome sequencing have aided accurate
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annotation of codon triplet periodicity and non-AUG start sites,
increasing the potential translatome (Mackowiak et al., 2015; Hao
et al., 2018; Cesnik et al., 2020). Consequently, ORF annotation
has gradually moved from the classical pipeline towards a larger
theoretical premise that includes prediction of non-canonical
translations from high resolution nucleotide sequencing and
efficient signal scoring algorithms. Such ORF annotation
pipelines provide searchable databases for discovery
proteomics, of which databases following the classical pipeline
tend to be more concise than non-canonical sORFs and altORFs
prediction databases.

One of the principal tools in proteomics is mass spectrometry
(MS), which works in conjunction with proteome databases. In
bottom-up proteomics, the mass spectra of (often tryptic)
peptides are matched against their in silico digested
counterparts generated from a database. Under a broader
proteogenomic framework, various computational strategies
have been developed to integrate proteomic data with
(canonical and non-canonical) genomic annotation pipelines
or to generate standalone in silico translation databases for
discovery of novel proteins (Risk et al., 2013; Jagtap et al.,
2014; Mackowiak et al., 2015; Nagaraj et al., 2015; Zickmann
and Renard, 2015; Kolmogorov et al., 2016; Olexiouk et al., 2016;
Brunet et al., 2018; Guillot et al., 2019). At the MS-based
experimental front, various fractionation and small protein
enrichment methods have been employed to successfully
identify novel non-canonical proteins in eukaryotic cell lines
and tissues (Ma et al., 2016a; Li et al., 2017; He et al., 2018;
Cao et al., 2020; Cardon et al., 2020; Kaulich et al., 2020; Cassidy
et al., 2021; Wang et al., 2021). Together, the advances in genome
annotation pipelines and high throughput mass spectrometry
highlight the importance of both computational and technical
approaches to successfully identify novel proteins. With massive
data generated from nucleotide sequencing and mass
spectrometry, refined annotation of model species genomes
has been an ongoing endeavour in upgrading our
understanding of molecular processes and discovering missing
pieces.

C. elegans is an invertebrate model organism widely used for
fundamental biological research (Brenner, 1974). In classical
terms it has a well-annotated genome, yet little is known
about its non-canonical content (Mackowiak et al., 2015;
Casimiro-Soriguer et al., 2020). With more than 1,500
publications annually for the past decade, C. elegans research
nonetheless benefits from extensive resources of sequencing and
mass spectrometry data. The current Ensembl (release 101-
August 2020) C. elegans annotation comprises approximately
61,000 transcripts classified as protein coding (20,000), non-
coding (25,000), or - nonetheless - arising from presumed
pseudogenes (2,000) (Yates et al., 2020). Two evidence-
mapping pipelines utilizing sequencing-based predictions and
C. elegans LC-MS/MS datasets identified 9 novel sORFs
(Mackowiak et al., 2015) and about a 100 alternative ORFs
(Brunet et al., 2018), respectively. However, no dedicated
proteomic investigation has focused on profiling the non-
canonical proteome in C. elegans. To our knowledge, the only
focused research of sORFs in C. elegans originates from an

evolutionary conservation-based genetic screen of intergenic
ORFs wherein the authors identified 82 novel proteins
(Casimiro-Soriguer et al., 2020).

We here report on the identification of 552 novel proteins
within the C. elegans proteome. Combining a meta-analysis of
available data with mass spectrometry-based discovery of protein
extracts prepared especially for this purpose, we present a
repertoire of novel C. elegans proteome members, including
several with orthologs in other model organisms. These results
provide a valuable resource for functional biological research
using model organisms.

MATERIALS AND METHODS

Construction of allORF Database
To identify unannotated novel proteins in the C. elegans
proteome, an allORF database was constructed by
complementing this organism’s reference proteome (Ensembl
version 97, downloaded on August 21, 2019) with its
alternative proteome predicted by two publicly available
repositories, sORFs.org (Olexiouk et al., 2016; Olexiouk et al.,
2018a) and Openprot (Brunet et al., 2019).

To obtain the putative coding sequences according to the
method in sORFs.org, the public ribo-seq datasets (GSE62859
(Arnold et al., 2014), GSE52910 (Hendriks et al., 2014),
GSE67387 (Nedialkova and Leidel, 2015), GSE65948
(Aeschimann et al., 2015)) were downloaded from NCBI Gene
Expression Omnibus or NCBI Sequence Read Archive
(SRA055804 (Stadler and Fire, 2011), SRA049309 (Stadler
et al., 2012)) and processed according to a previously
described pipeline (Olexiouk et al., 2018a) with minor
adaptations. Here, raw reads were aligned using the STAR
splice site aware mapper on the reference genome retrieved
from the iGenomes repository with a P-site pinpointed by
Plastid (Dunn and Weissman, 2016). After quality assessment
with the mQC tool (Verbruggen and Menschaert, 2019),
translation initiation sites were delineated using only the data
of elongating ribosomes (Olexiouk et al., 2018a). Subsequently,
sORFs with a maximum length threshold of 100 codons were
assembled by the previously published sORFs.org pipeline with
minor code modifications (Olexiouk et al., 2018b). To take the
compact genome of C. elegans into account, the noise filtering
settings were set at alpha � 0.2. Only the longest sORF of
candidates which shared a stop site was retained in order to
reduce redundancy. Finally, duplicated sequences were removed
to obtain the final database of predicted putative sequences based
on the sORFs.org method. To reduce the sORF predictions
overlapping with known or predicted proteins longer than 100
amino acids, the sequences of the predicted sORFs (excluding the
first and the last amino acid) were tested for identical overlap with
the protein sequences of the reference Ensembl and the C. elegans
AltProts and Isoforms from the Openprot repository (Brunet
et al., 2019) (release 1.3, downloaded 5th of November 2019) with
an in-house scripting module (written in Python, available upon
request). Finally, the reference Ensembl, the downloaded
OpenProt, and the filtered sORFs.org predictions were
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concatenated with the cRAP database (downloaded on 6th of
November 2019) containing commonly identified contaminants
inMS analysis, and the proteome of E. coli (strain K12, version 45,
downloaded on 6th of November 2019) to account for
contaminants introduced by the feeding conditions to obtain
the final allORF search database.

Evaluation of allORF Database
Characteristics
The features of the proteins present in the different database parts
of the final allORF database were analysed using the Peptides
package (Osorio et al., 2015) in R 4.0.2 (R Core Team, 2020) and
visualized with the ggplot2 package (Wickham, 2016)
(Supplementary Datasheet 5 Figure S1).

The final allORF database was in silico digested by trypsin
allowing one missed cleavage and a mass limit between 600 and
4,000 Da, followed by redundancy clearance using the DBToolkit
2.0 (Martens et al., 2005) (version 4.2.5, downloaded on the
August 11, 2020). Subsequently, only non-redundant peptides
with a length between 7 and 30 amino acids were kept and
mapped against the allORF database to identify the number of
unique in silico peptides per alllORF protein. Finally, the results
were visualized with the ggplot2 package (Wickham, 2016).

Worm Culture
All animals (C. elegans LSC 1918) were cultured at 20 °C on
Nematode Growth Medium plates supplemented with E. coli
OP50 as described previously (Lewis and Fleming, 1995).

Construction of HiBit Strain LSC1918
A nucleotide sequence coding for the 11 amino acid HiBit tag (gtg
agcggctggcgcctgtttaaaaaaattagc) was inserted at the C-terminus of
an 84 amino acid annotated protein R06C1.4.1 (strain: LSC 1917)
and a predicted 59 amino acid altORF on C05C9.3 (Openprot ID:
IP_1,500,296, strain: LSC 1916), using the CRISPR-cas9 system
with the dpy-10 co-CRISPR marker as described previously (Paix
et al., 2017); all oligo sequences can be found in Supplementary
Datasheet 5 Table S1. Briefly, guide RNA was designed based on
sequence scoring (Integrated DNA Technologies CRISPR design
checker tool) and proximity to the R06C1.4.1 and IP_1,500,296
stop codon. The repair template comprised ∼35bpDNA homology
arms with the HiBit nucleotide sequence inserted before the stop
codon. The injection mix comprised 2.5 µL Cas9 enzyme (15 μg/
μL), 2.5 µL tracrRNA (0.17 nmol/μL), 1 µL dpy-10 crRNA
(0.6 nmol/μL), 1 µL R06C1.4.1 or IP_1,500,296 crRNA
(0.6 nmol/μL), 1 µL dpy-10 repair template (0.5 μg/μL), 1 µL
R06C1.4.1 or IP_1,500,296 repair template (1 μg/μL). For LSC
1916, injected hermaphrodites were allowed to lay eggs, F1
offspring were singled out based on the roller phenotype
characteristic of heterozygous insertion of the dpy-10 co-
CRISPR marker and cultured until sufficient F2 progeny were
present. For LSC 1917, injected hermaphrodites were allowed to lay
eggs, F1 offspring were singled out based on the dumpy phenotype
characteristic of homozygous insertion of the dpy-10 co-CRISPR
marker and cultured until sufficient F2 progeny were present. Each
singled out F1 worm from LSC1916 and LSC1917 was then lysed,

and PCR verified for HiBit sequence insertion using digestion of
the PCR product with Mbil (Thermo fisher, FastDigest) as per the
manufacturer’s protocol. The HiBit nucleotide sequence contains
the MbiI target cleavage sequence, hence, successful digestion is a
readout for successful integration of the HiBit repair template.
LSC1916 non-roller progeny (F2) of the HiBit-containing roller F1
were singled out to restore the co-CRISPR locus to its wild type
allele, cultured, and screened for homologous HiBit insertion using
PCR amplification and enzymatic digestion as described above.
LSC1916 HiBit insertion strain with wild-type background was
then crossed (Fay, 2006) with homozygous LSC1917 HiBit insert
with dumpy background and progeny were screened for
homologous HiBit insertion on both locus with restored wild-
type co-CRISPR locus. The resulting LSC1918 strain was verified
by sequencing the genomic region of R06C1.4.1 and C05C9.3
containing the Hibit sequence (Supplementary Datasheet 5
Table S1).

Worm Sampling and Protein Extraction
LSC1918 worms were synchronized by standard hypochlorite
treatment (Porta-De-La-Riva et al., 2012). Following overnight
incubation in S-basal (5.85 g NaCl, 1 g K2 HPO4, 6 g KH2PO4 in
1 L milliQ), L1 arrested animals were cultured on Nematode
Growth Medium plates (Nematode Growth Medium (NGM),
2014) with an E. coli OP50 lawn (∼3,000 worms/plate, 5 plates/
sample), at 20°C for 52 h, which is until the worms had reached
the young adult stage. Worms were washed off the plates with
S-basal and allowed to settle in 15 ml tubes for 10 min at room
temperature. To remove bacteria, the pellet was washed three
times with S-basal while allowing the worms to settle for 5 min
after each wash. After a final wash with ultrapure (Milli-Q) water,
worm pellets were snap frozen in liquid nitrogen and stored at
−80°C until further use.

For protein extraction, the frozen pellet was thawed by adding a
double volume of lysis buffer (8 M urea, 2 M thiourea, 1 mM
dithiothreitol, 1x cOmplete™ protease inhibitor cocktail (Roche)).
The mixture was first homogenised in a Precellys-Cryolys
homogenizer (Bertin Instruments) using an equal volume of
ceramic beads (1.4 mm zirconium oxide, Bertin Technologies)
beaten at 6,800 rpm for 10 cycles of 10 s each, with 20 s pause
between each cycle at a temperature below 4°C. The homogenised
lysate was collected and further sonicated on ice, using a probe
sonicator for 12 cycles (5 s ON, 10 s OFF). The lysate was then spun
at 16,000 g for 30 min at 8°C. The supernatant was collected and
protein concentration of samples was estimated using a standard
Bradford assay (Harlow and Lane, 2006).

Enrichment of Low Molecular Weight
Proteins
Broadly, two strategies were employed for enrichment of low-
molecular weight proteins and peptides, viz. (C8 and C18)
reversed phase chromatography and gel electrophoresis using
Tris-Tricine SDS-PAGE. Enriched fractions were either
enzymatically digested (with trypsin or chymotrypsin) or
loaded undigested onto the mass spectrometer after C18
cleanup. Additionally, 20 µg worm lysate pre-enrichment was
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also digested for assessment of enrichment strategies compared to
a whole-sample shotgun proteomic approach. All experiments
were conducted with four biological replicates.

A) Whole mount digestion: 20 µg worm lysate pre-enrichment
was reduced with 5 mM dithiothreitol at 56°C for 30 min,
alkylated with 25 mM iodoacetamide at room temperature in
the dark for 20 min. The volume was adjusted to 1 M urea
with 50 mM triethyl ammonium bicarbonate and digested
overnight with 1 µg of trypsin (at 37°C) or chymotrpysin (at
RT) (Promega BNL, Netherlands). The reaction was then
stopped by acidifying the samples to 0.1% formic acid.
Following that, the sample was cleaned using C18 spin
columns (Pierce™). Briefly, the column was rinsed with
50% methanol, equilibrated 3 times with 200 µL of 5%
acetonitrile, 0.1% formic acid by spinning at 1,500 g for
1 min. The digested sample was loaded, washed 4 times
with 5% acetonitrile, 0.1% formic acid and eluted in 50 µL
of 30% acetonitrile and 50 µL of 60% acetonitrile with 0.1%
formic acid, and dried using a Savant SpeedVac concentrator.

B) C8 reversed phase enrichment: Bond Elut C8 solid phase
extraction cartridges (Agilent Technologies, United States)
were coupled with a vacuummanifold with the pressure set to
1,000 mbar. The column was first rinsed with 6 ml of 50%
methanol and equilibrated thrice with 6 ml buffer A (20 mM
ammonium acetate in Milli-Q, pH 7.0). 2.5 mg of protein
lysate was diluted 1:7 with buffer A and samples were loaded
onto the equilibrated sorbent at room temperature and left
undisturbed for 4 min. Following that, the sample was
allowed to flow through the sorbent and the column was
washed five times with 6 ml buffer A. Bound proteins and
peptides were eluted with 3 ml of buffer B (75% acetonitrile in
20 mM ammonium acetate pH 7.0). The eluent was dried in a
SpeedVac concentrator (Savant) and redissolved in 100 µL of
50 mM triethyl ammonium bicarbonate. Recovery
concentration was estimated using a Bradford assay
(Harlow and Lane, 2006). 10 µg of sample were reduced
with 5 mM dithiothreitol at 56°C for 30 min and alkylated
with 25 mM iodoacetamide at room temperature in the dark
for 20 min. Samples were then digested overnight with 0.5 µg
of trpysin (at 37°C) or chymotrpysin (at room temperature)
(Promega, Netherlands). The reaction was stopped by
acidifying the samples to 0.1% formic acid. 20 µg of
undigested C8-enriched sample were also acidified to 0.1%
formic acid and cleaned to capture peptides not amenable to
bottom-up proteomics. The cleanup for digested and
undigested peptides was performed as described above (cf.A).

C) Acid precipitation enrichment: for enrichment of peptides
on C18, we adapted the protocol previously published by
Secher et al. (2016). 500 µg of lysate were acidified to 0.5%
acetic acid, vortexed for 1 h at 4°C and spun at 16,000 g for
15 min at 4°C. The supernatant was collected and filtered
through a 10,000 Da (Da) molecular weight cut-off filter for
20 min at 4,000 g at 4°C (Amicon® Ultra-4 centrifuge filters,
Merck Millipore, pre-rinsed twice with 50% methanol). The
flow-through was then cleaned on C18 spin columns as
described above (cf. A).

D) Tris-tricine SDS PAGE and in-gel digestion: 200 µg of
lysate was run on 16.5% tris-tricine SDS-PAGE
(Criterion™, Biorad) at 150 V for 30 min. The gel was
washed twice with Milli-Q and the unstained gel was cut
using a sterile scalpel to collect the fraction between 2,000 and
12,000 Da according to the Precision Plus Protein™ Dual
Xtra Prestained Protein Standards (Bio-Rad). The gel fraction
was diced into 1 mm3 pieces, washed with 500 µL 50%
acetonitrile in 25 mM ammonium bicarbonate and
dehydrated with 100% acetonitrile by vortexing for 10 min.
The dehydrated gel pieces containing proteins were allowed
to rehydrate in 25 mM ammonium bicarbonate with 5 mM
dithiothreitol and incubated at 56°C for 30 min. Unabsorbed
buffer was removed and replaced with 25 mM iodoacetamide
in 25 mM ammonium bicarbonate and incubated at room
temperature in the dark for 45 min. Following that, the gel
pieces were dehydrated again with 100% acetonitrile and
rehydrated for 30 min on ice with 200 µL 25 mM ammonium
bicarbonate, 10% acetonitrile and 3 µg of trypsin or
chymotrypsin (Promega, Netherlands). 25 µL of 25 mM
ammonium bicarbonate were added to cover the gel
pieces, which were then incubated overnight at 37°C
(trypsin) or room temperature (chymotrypsin). The
following day, the unabsorbed mixture was collected in a
fresh LoBind tube (Eppendorf), and digested peptide was
extracted from the gel pieces by vortexing in 300 µL of 80%
acetonitrile, 5% formic acid for 30 min. The extract was
pooled with the unabsorbed mixture and the sample was
dried using a Savant SpeedVac concentrator. The dried
peptides were redissolved in 5% acetonitrile, 0.1% formic
acid and cleaned as described above (cf. A).

LC-MS/MS
The sample was dissolved in 10 µL of 6% ACN and 0.1% FA and
separated on a ACQUITY UPLCM-Class System (Waters), fitted
with a nanoEase™ M/Z Symmetry C18 trap column (100 Å,
5 μm, 180 μm × 20 mm) and a nanoEase™ M/Z HSS C18 T3
Column (100 Å, 1.8 µm, 75 μm × 250 mm, both from Waters).
The sample was loaded onto the trap column in 2 min at 5 μL/
min in 94% buffer A, 6% buffer B (buffer A is 0.1% FA in MilliQ,
buffer B 0.1% FA in 80% ACN). The flow over the main column
was 0.4 μL/min and the column was heated to 40°C. After an
isocratic flow of 4 min at 6% B, the concentration of B increased
in 36 min–50% B, then to 94% B in 4 min, using linear gradients.
After again an isocratic flow of 4 min at 94% B, the concentration
of B decreased in 4 min–6% which was followed by 15 min of
equilibration at an isocratic flow of 6% B. The column was online
with a timsTOF Pro operating in positive ion mode, coupled with
a CaptiveSpray ion source (both from Bruker Daltonik GmbH,
Bremen). The timsTOF Pro was calibrated according to the
manufacturer’s guidelines. The temperature of the ion transfer
capillary was 180°C. The Parallel Accumulation–Serial
Fragmentation DDA method was used to select precursor ions
for fragmentation with 1 TIMS-MS scan and 10 PASEF MS/MS
scans, as described by Meier et al. (2018). The TIMS-MS survey
scan was acquired between 0.70–1.45 V s/cm2 and 100–1700 m/z
with a ramp time of 166 ms. The 10 PASEF scans contained
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maximum of 12 MS/MS scans per PASEF scan with a collision
energy of 10 eV. Precursors with 1 – 5 charges were selected with
the target value set to 20,000 a. u. and intensity threshold to 2,500
a. u. Precursors were dynamically excluded for 0.4 s. The
timsTOF Pro was controlled by the OtofControl 5.1 software
(Bruker Daltonik GmbH). 10 PASEF scans contained on average
12 MS/MS scans per PASEF scan. Raw data were analysed with
the DataAnalysis 5.1 software (Bruker Daltonik). All mass
spectrometry raw and spectrum files can be downloaded from
MassIVE with identifier MSV000087909.

Data Analysis
For meta-analysis of proteomic datasets of larval, adult and
Stress C. elegans, raw files were accessed from ProteomeXchange
(http://www.proteomexchange.org/) via their respective IDs
(PXD006676 (Xia et al., 2018), PXD004584 (Narayan et al.,
2016), PXD005649 (Edifizi et al., 2017)). The raw files were then
analysed on PEAKS Studio X (Bioinformatics Solutions Inc.,
Canada) with precursor tolerance set to 10 ppm and a fragment
tolerance of 0.02 Da with fully tryptic digestion and 2 allowed
missed cleavages. The fixed and variable modifications were set
according to the information published in the respective
original studies. For experiments conducted in this study
using LC-TIMS-MS/MS, data were analysed using MSFragger
based Fragpipe (Yu et al., 2020a) and PEAKS Online Xpro
(Bioinformatics Solutions Inc., Canada). For C8 enriched, in-gel
digested and whole-sample digests, carbamidomethylation (C,
+57.02) was set as a fixed modification and
carbamidomethylation (DHEK &N-term, +57.02), N-terminal
acetylation (+42.01), oxidation (M, +15.99), pyroglutamation
(N-term E, -18.01), pyroglutamation (N-term Q, -17.02) and
deamidation (NQ, +0.98) were set as variable modifications with
only 3 allowed modifications per peptide. The enzyme (trypsin
or chymotrypsin) was chosen corresponding to the respective
digests, with full specificity. Precursor tolerance was set to
20 ppm and fragment tolerance was set to 0.05 Da. For
undigested samples, variable modifications were N-terminal
acetylation (+42.01), oxidation (M, +15.99), pyroglutamation
(N-term E, -18.01), pyroglutamation (N-term Q, -17.02) and
deamidation (NQ, +0.98) with non-specific cleavage and no
fixed modification. The d raw files were searched against our C.
elegans allORF database (Supplementary Data Sheet 1.FASTA)
on both the search engines and filtered to remove contaminants
and non-razor (subgroup) proteins and only top group proteins
were considered. Protein identifications with at least 1 peptide at
1% FDR were considered and further analysis was performed in
R studio (http://www.rstudio.com/) using custom script for
statistics and visualization. For Figure 3A,B, the data was
fitted into a generalized linear mixed model and significance
calculated with Type II Anova. Pairwise posthoc comparison
was performed with least square means and Benjamini-
Hochberg correction. For interaction statistics for non-
canonical identifications (Figure 4B,D and Supplementary
Datasheet 5 Figures S2B,D), superexact test (Wang et al.,
2015) was performed. Other statistical tests conducted in this
study are mentioned in the respectively text and/or caption
along with resulting p-values.

Custom BLASTp Candidate List
A local BLAST search database was created with the BLAST +
application (Camacho et al., 2009) using the alternative proteome
of four model organisms, namely fruit fly, human, house mouse
and zebrafish, downloaded from Openprot (release 1.3,
downloaded on 6th of September 2018), sORFs.org
(downloaded on 6th of September 2018) and described by
Mackowiak et al. (2015). The BLASTp algorithm was applied
to search the candidate list against the individual search database
of each model organism. For every search, only the hit with the
lowest Expect value (minimum E � 10−10) and highest sequence
identity per model and database was retained by manual
inspection (Supplementary Datasheet 3).

RESULTS

Construction of a C. elegans allORF
Database
In this work, we set out to expand and describe the C. elegans non-
canonical proteome. We built a custom database to provide a
comprehensive proteomic search space, encompassing all
theoretically possible translational outcomes based on available
transcript and ribosome sequencing data. To that end, we used
predictions from Openprot and sORFs.org concatenated with the
Ensembl C. elegans proteome. Openprot predictions comprise
altORFs and isoforms without codon length cut-off, whereas
sORFs.org contributed to prediction of sORFs <100 codons.
The resulting allORF database in total comprises 137,194

FIGURE 1 | Composition of allORF database. The allORF database
combines sequence information from Ensembl, Openprot and sORFs.org.
(From top to bottom: Ensembl (19), Ensembl + sORFs.org (2), OpenProt (40),
OpenProt + sORFs.org (7), sORFs.org (33). OpenProt + Ensembl +
sORFs.org (3 ORFs on a total of 137,166 ORFs) and OpenProt + Ensembl (25
ORFs on a total of 137,166 ORFs) are not shown due to the low number).
Numbers indicate the percentage of ORFs in the allORF database retrieved
from each sequence source.) Second and third bar show the same
information grouped proteins (>100 codons) and small (<100 codons)
ORF types.
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protein sequences (Figure 1 and Supplementary Datasheet 5
Table S2), which for this species is about five times more than
the Ensembl data alone (25,886 protein sequences). Briefly,
about 77% of the allORF database comprises small (<100
codons) ORF predictions from Openprot and sORFs.org,
whereas 2% of the database are sORFs that originate from
Ensembl. Additionally, about 18% of all ORFs are >100 codons
and retrieved from Ensembl, with the remaining 4% also
longer than 100 codons but derived from Openprot and
sORFs.org (Figure 3 and Supplementary Datasheet 5 Table
S2). For allORF database assembly, the calculated median ORF
length within the sORFs.org predictions was 25 codons
whereas for Openprot predictions, this was 45 codons
(Supplementary Datasheet 5 Figure S1). With about 70%
of allORF sequences unique to either one of these two
prediction algorithms, the newly assembled database
efficiently exploits the complementarity of Ensembl,
sORFs.org and Openprot.

The allORF database unveils 385 novel
non-canonical proteins in published
proteomics data of C. elegans
Despite stringent concatenation of redundancy in the allORF
database, we anticipated that the sheer number of entries might
increase false positives in proteomic mapping. To test this, we
utilized available C. elegans raw data from Xia et al. (2018) (larval
- PXD006676), Narayan et al. (2016) (adult - PXD004584) and
Edifizi et al. (2017) (stressed - PXD005649) and re-analysed over
120 raw files of 240 min gradient runs each against our allORF
database using PEAKS. These datasets are interesting from a
discovery perspective because they cover a range of physiological
changes within the worm: the larval dataset contains samples of
all 4 larval stages (L1-L4), the adult dataset includes day 1, day 5
and day 10 adult worms, and stressed samples were subjected to
UV-irradiation or starvation. In total, 10,651 proteins were
identified across all three datasets with at least one unique
peptide at 1% FDR (Supplementary Datasheet 1). This is in
the same range as originally identified in the respective studies,
with minor differences due to differences in database, analysis

pipeline and because for the adult dataset, we only considered one
biological replicate (with 80 LC-MS/MS runs).

About 82.5% of the proteins were identified in the adult-stage
dataset (Figure 2A). Although there is a clear complementarity of
the diverse C. elegans sampling conditions that benefits discovery
of novel proteins, this observation is likely due to technical
differences. The adult dataset comprises five extraction
methods and 80 fractions as compared to a shotgun approach
used for the larval and Stress datasets, increasing the depth of
identification in the adult C. elegans dataset. Of the 10,651
proteins in total, 385 identifications relied on either Openprot
or sORFs.org contributions to the allORF database (Figure 2B).
85% of these non-canonical identifications categorize as non-
canonical isoforms, whereas the remaining 51 novel proteins
originate from genomic regions such as UTRs, ncRNA and
polycistronic mRNA with alternative open reading frames
(Supplementary Datasheet 3).

The experimental data used here were retrieved from studies
that followed well-established bottom-up proteomic sample
preparation strategies with depth achieved mainly by peptide
fractionation (adult dataset) and long liquid chromatographic
separation coupled online with orbitrap-based mass
spectrometric detection. Thus, this meta-analysis of available
data provided an efficient means for testing the efficacy of
ORF predictions in our database, and of existing proteomic
strategies to capture novel proteins.

Enrichment Strategies and Alternative
Cleavage for Shotgun Mass Spectrometry
Analysis Are Complementary to Standard
Proteomic Digest
Most non-canonical predictions reside in the low molecular weight
range, with median length of 25 amino acids for sORFs.org and 45
amino acids for OpenProt predictions (Figure 1 and
Supplementary Datasheet 5 Figure 1). To evaluate whether
enrichment strategies could be beneficial for cost and time-
efficient shotgun identification of novel non-canonical proteins,
we combined eight different strategies with LC-TIMS-MS/MS
(Supplementary Datasheet 5 Table S3). Next to using strategies

FIGURE 2 | Numbers of identified proteins (grouped) in larval Xia et al., 2018, adult Narayan et al., 2016 and stressed Edifizi et al., 2017 C. elegans LC-MS/MS
datasets, with at least 1 unique peptide at 1% FDR. (A) Total number of unique identifications (B) non-canonical proteins as predicted by Openprot and sORFs.org.
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described in literature, viz. Tris-tricine SDS-PAGE (Wang et al.,
2021) and C8-reversed phase (Ma et al., 2016a) enrichments, we
enzymatically digested the whole worm lysate under denaturing
conditions. To further improve the protein sequence coverage and
the expected depth of our analysis, we utilized complementary
cleavage enzymes, trypsin and chymotrypsin, in combination
with the three strategies (conditions named GelT, GelChT, C8T,
C8ChT, WLT, WLChT henceforward). Finally, we also included
undigested peptidome analysis of C8-reversed phase enriched
samples (henceforward 2DRP) and an adaptation of the method
by Secher et al. (2016), which aims at capturing endogenous peptides
and peptides not amenable to enzymatic digestion due to their small
size and lack of cleavage site (henceforward 1DRP).

Out of the 8 strategies, the undigested fractions (1DRP, 2DRP)
aimed at capturing endogenous peptides led to the least number
of peptide spectrum matches (PSMs), peptides and protein
identifications (Figures 3A–C). In the range of 2.5–12 kDa
proteins, numbers from C8-enrichment and digestion with
trypsin and chymotrypsin (C8T, C8ChT) were superseded by

those of in-gel digestion (GelT, GelChT), indicating that a well-
optimized in-gel digestion method is far more efficient at size
separation of proteins compared to a standard C8 reversed-phase
solid phase extraction (Figures 3A,B, all p-values < 0.001). As
anticipated, the whole worm lysate digest (WLT, WLChT)
yielded maximum identifications in total, whereas relatively
lower numbers of proteins were matched from enriched
samples (Figure 3C, 4A). Compared to whole lysate, the C8
digests, gel digests and undigested samples performed relatively
better at targeting proteins below 150 amino acids (Figure 3D,
pFligner-Killeen: 2e-16). With WL, Gel, C8 and undigested runs
combined, a total of 3,969 proteins groups were identified
(Supplementary Datasheet 2). The WL digest (Tryptic +
Chymotryptic) accounts for >90% of these identifications
(Figure 4A) while only less than 10% were derived uniquely
from enriched and digested samples. However, this ratio is
increased more than 2-fold for non-canonical identifications,
with 22.7% uniquely contributed by the total of all enrichment
methods (Figure 4B). Enriched samples do contribute unique

FIGURE 3 | (A,B) Number of peptide spectrummatches (PSM) and peptides identified for each sample processing method used in this study (p-value <0.001). Error
bars indicate standard deviation between replicates (n � 4). (C) Total number of proteins for all replicates combined, with unique (stripped) peptides >1 (light gray) or � 1 (dark
gray) per condition. (D) Distribution of identified proteins and their length normalized to the total of identifications per group and median markers (pFligner-Killeen: 2e-16).
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identifications, indicating that these methods may add distinctive
complementarities to the WL digests. Our data also suggest that
enzymatic digestion choices may influence peptide identification:
undigested samples uniquely contributed to only 2% and
chymotrypsin-digested to 6.8% of the total number of
identifications, meaning less than 10% of the total went
undetected in their tryptic counterparts (Figure 4C). However,
chymotrypsin-treated and undigested peptidomes accounted for
53 unique identifications of the total 187 novel non-canonical
proteins identified across all groups, underscoring the added
value of experimental diversity in discovery approaches
(Figure 4D). In absolute numbers, the novel non-canonical
proteins identified across all conditions span a wide protein
length range with median close to 200 amino acids for the
total of all enriched samples (Figure 2E), with a significant
distinction in non-canonical proteome coverage depending on
the sample type (Supplementary Datasheet 5 Figure S2E,

pKruskal-Wallis 0.01). Together, enrichment for low molecular
weight proteins and an alternative cleavage strategy
contributed to a quarter of all novel non-canonical proteins
identified in our experiments. Moreover, trypsin - the
workhorse enzyme for bottom-up proteomics - outperforms
chymotrypsin in the number of peptides and protein
identifications across sample processing conditions (Figure
3B,C), but each enzyme also contributes unique
identifications of novel non-canonical peptides to our
resource (Figure 4D). Enrichment strategies facilitated the
identification of an additional 305 proteins (8.4% of total) for
tryptic (Supplementary Datasheet 5 Figure S2A) and 185
proteins (8.1% of total) for chymotryptic (Supplementary
Datasheet 5 Figure S2B) digests, that were missed in their
whole lysate digested counterparts. The advantage of
enrichment with SDS-PAGE and C8-reversed phase is more
prominent for non-canonical identifications, with a distinct

FIGURE 4 | The identification of total proteins (A,C) and non-canonical proteins ((B,D) p-value: <0.001) is influenced by sample processing methods (A,B) and
enzymatic cleavage (C,D). WL: whole lysate, C8: C8-reversed phase enriched, Gel: in-gel digested samples, Undigested: 1DRP + 2DRP. (F) Absolute count of non-
canonical proteins identified in each group and distribution along protein amino acids length with dotted line at 200 amino acids and median represented by a dot.
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complementarity achieved in either case in comparison to whole
lysate digests (Supplementary Datasheet 5 Figures S2C,D).

Alternative Search Engines Further Improve
the Detection of Novel Proteins
Multiple peptide search algorithms exist to aid efficient mapping
of experimental LC-MS/MS data against proteome databases;
however, underlying principles and data training may differ
widely. For example, MSFragger (Kong et al., 2017) employs a
fragment ion indexing method and supports open searches for
mapping peptides onto a database, whereas PEAKS (Zhang et al.,
2012) generates de novo tags from MS data for peptide
identification and prediction of post-translational
modifications. To test whether differences in algorithm would
affect the identification success, hence discovery of novel
peptides, we processed the same raw files (i.e., 32 × 60 min
runs) already analysed via MSFragger (cf. above) with PEAKS
Online Xpro using the same parameters. Across all sample
processing conditions, the number PSMs (Supplementary
Datasheet 5 Figure S3A) and unique peptide sequences
(Supplementary Datasheet 5 Figure S3B) identified by
MSFragger and PEAKS differed slightly. However, MSFragger
consistently identified more proteins across all sample processing

conditions (Figure 5A, Supplementary Datasheet 5 Table S4).
For combined results from all the experiments in this study, the
difference in sheer total number of identified proteins between
the two search engines is 372 (approximately 10%) with relatively
more proteins identified based on only 1 unique peptide by
MSFragger (Figure 5B, dark gray). A huge difference is
observed in distinct protein identifications reported by the two
search algorithms (Figure 5C) with 747 and 1,119 unique
proteins with at least 1 peptide identified by PEAKS vs
MSFragger, respectively. Similarly, 87 unique non-canonical
proteins were added by PEAKS to our previous list of 187
from MSFragger, with 68 common between the two search
algorithms, taking the total count of non-canonical proteins
identified in this study to 274 (Figure 5D). As was the case
for complementary sample processing, a complementarity is
observed in data analysis pipelines as well. Although similar
strategies have been utilized previously and search engines do
perform differently (Shteynberg et al., 2013), the differences
observed in our study amount to nearly 40% of the total
protein identifications that are unique to either of the search
engines. This suggests that efficient spectrum matching
algorithms are yet to be standardized for search engine-wide
consistency and the combination of search engines is likely to be
more informative.

FIGURE 5 | Comparison of PEAKS and MSFragger protein identifications for LC-TIMS-MS/MS data acquired in this study (A) total protein numbers as identified
per condition (B) combined total protein numbers across all conditions for proteins with unique (stripped) peptides >1 (light gray) and >1 (dark gray). (C,D)While there is
certainly overlap, each algorithm contributes unique identifications to the list of total (C) and non-canonical (D) proteins.
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Annotation of Identified Novel Non-Canonical Proteins
Using a custom C. elegans database, existing C. elegans LC-MS/
MS data and experiments aimed at capturing non-canonical
proteins, we report the identification of 552 non-canonical
proteins based on predictions from Openprot and sORFs.org.
324 out of these were identified with more than 1 unique peptide,
42 with 1 unique peptide but across multiple samples, and 186
with only 1 unique peptide. Of the total of non-canonical proteins
identified in this study, 106 identifications were common between
the samples analysed with timsTOF Pro and the meta-analysis
performed on three proteomic datasets (acquired via Orbitrap
platform), while 168 proteins were unique to our experiments and
278 mined from pre-existing C. elegans datasets via our meta-
analysis (Figure 6A). 467 of these proteins correspond to low-
novelty isoforms/splice variants. From the remaining 85, 8 were
mapped onto 5′UTR (uORF) of annotated genes, 1 in 3′UTR, 35
in non-coding RNA (ncRNA), and 41 are alternative
polycistronic translation products from annotated genes (15
sORF and 26 altORF respectively, Supplementary Datasheet
3). This group represents the novel proteins that are crucial
for further investigation and functional annotation. To further
assess the significance of this group from a model organism
perspective, we searched these 85 candidates against the human
and three other model organism proteomes (H. sapiens, M.
musculus, D. melanogaster and D. rerio) via a custom BLASTp
script. 18 out of 85 were found to be conserved across these species
(Supplementary Datasheet 3). Together with the less-conserved
novel proteins and protein variants, these non-canonical proteins
add to the proteogenomic repertoire of interest for functional
genetics research.

DISCUSSION

Protein translation is a major driver of organismal phenotypes
and plasticity, and for decades now, breakthroughs in all

domains of biological sciences have relied on understanding
(differences in) translation - hence, indirectly on genome
annotation. However, genome annotation is mired with
inaccuracies and many genomes, as well as the process of
annotation itself, are iteratively updated based on new
evidence. In recent years, increased interests in non-
canonical translation products such as sORF- and ncRNA-
encoded peptides or proteins have motivated researchers to
revisit the full complexity of functional genome annotation.
Given the anomalous nature of their coding potential and small
size, non-canonical ORFs tend to escape the annotation radar.
This is also true for the otherwise well-annotated genome of the
model organism Caenorhabditis elegans. In an effort towards
unveiling non-canonical translation products in C. elegans, we
therefore combined omics strategies to build a resource of
reliably detectable non-canonical translations. In general, our
efforts acted at three conceptual levels: tailoring searchable
databases towards the needs of non-canonical identification,
diversifying sample preparation in order to capture non-
canonical translations, and high-end mass spectrometric
detection aided by different spectrum matching algorithms to
maximize discovery.

At the database level, we relied on concatenation of
sequencing-based predictions with the C. elegans Ensembl
proteome (Figure 1). As such, and in line with similar
strategies used in other studies (Chu et al., 2015; Ma et al.,
2016b; Budamgunta et al., 2018; Wang et al., 2021), our custom
database provides a less biased search space for downstream
LC-MS/MS peptide mapping than the proteome database
alone, while remaining within reasonable limits of the
genome as determined by the transcriptome. However, the
percentage of positives is likely to be lower as compared to a
well-curated reference proteome such as Ensembl or Uniprot.
The issue of theoretical peptide search space size has been
addressed before (Borges et al., 2013;
NesvizhskiiProteogenomics, 2014; Chatterjee et al., 2016)

FIGURE 6 | (A) Comparison of all 552 non-canonical proteins, including 467 splice variants and 85 novel proteins, identified frommeta-analysis of larval, adult and
Stress proteomic datasets acquired on Orbitrap platform and experiments conducted in this study on timsTOF Pro platform. (B) Annotation of 85 novel proteins
identified either via meta-analysis, timsTOF Pro acquisition of our experiments or both, mapped on C. elegans genome.
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and with machine learning algorithms these are likely to be
circumvented in the near future (Chatterjee et al., 2016;
Bouwmeester et al., 2020).

Our results show that a custom database tailored from
sequencing-based predictions has a significant impact on
novel protein discovery. Using existing C. elegans deep
proteome datasets in combination with our custom allORF
database, we could identify 385 new proteins (Figure 2B)
across larval (Xia et al., 2018), adult (Narayan et al., 2016)
and stressed (Edifizi et al., 2017) datasets. With extensive MS
analysis covering wide physiological stages in C. elegans, the
number of non-canonical proteins identified was only 0.3% of
total predictions, whereas 40% of the Ensembl reference
proteome was identified in our meta-analysis. This highlights
the challenges in proteome coverage for non-canonical
translation products under standard tryptic digest.
Furthermore, based on in silico digest, 20% of the non-
canonical predictions in our allORF database are not
expected to produce unique tryptic peptides. Additionally,
ribosome sequencing is also prone to detecting regulatory
RNA-ribosome interactions that do not correspond to
translation of a functional protein, therefore adding spurious
predictions to our database (Verbruggen et al., 2021; Ingolia,
2016; Raj et al., 2016). Thus, using existing mass spectrometric
tools, standard proteomic sample preparation and a custom
database of non-canonical ORF prediction, it is feasible to
identify novel proteins, and revisiting available data can be a
valuable effort from a discovery perspective.

To test whether the technical pitfalls of standard proteomic
workflow could be overcome, we investigated prominent low-
MW protein enrichment strategies and alternative digestion
against standard tryptic digest (cf. Results). Since the median
length for predicted sORFs (which comprises approximately
40% of our allORF database) was 25 amino acids
(Supplementary Datasheet 5 Figure S1), we expected our
own samples relying on endogenous peptidome enrichment
strategies (1DRP,2DRP) to yield maximum novel
identifications. However, only 24 non-canonical proteins
were identified (Figures 4D,E) with a varying length
distribution (Supplementary Datasheet 5 Figure S2E)
instead of expected <25 amino acids enrichment. Overall, the
data from peptidome analysis points towards three possibilities;
1) sORF-encoded peptides <25 amino acids might be labile, 2)
low abundant and/or 3) the extraction and enrichment of this
group of peptides begs further investigation.

From a discovery perspective, combining different sample
preparation methods with enzymatic digestion worked well in
our hands. For digested samples, we observed comparatively
higher number of PSMs, peptides and proteins identified with
tryptic digests (Figure 3A–C, Figure 4C). However,
chymotryptic digests identified 42 unique non-canonical
proteins that were missed in tryptic digests (Figure 4D).
Although more non-canonical proteins are identified in
standard digests (WL) as compared to enrichments aimed at
targeting 2–12 kDa proteins, a clear advantage is observed with
SDS-PAGE and C8-SPE enrichment with unique identifications
(Figure 4B), highlighting the complementarity of different

sample processing approaches. The non-canonical proteins
identified in all sample processing methods span a wide
protein length range (Figure 4E, Supplementary Datasheet 5
Figure S2E) although, 96% of the Openprot and sORFs.org
predictions are below 100 amino acids (Figure 1). Moreover,
we also identified non-canonical proteins of higher MW in the
low-MW enriched samples (Figure 4E, Supplementary
Datasheet 5 Figure S2E), which could be due to protein
instability in vitro or in vivo. In all, our data supports that
alternative approaches for sample processing are
complementary to classical tryptic digest in the detection of
novel proteins, however, efficient enrichment of endogenous
polypeptides below 100 amino acids remains a challenge for
the bulk of predicted sORF and altORF annotations. Some
studies have used extensive sample fractionation strategies and
top-down mass spectrometry (Cardon et al., 2020; Cassidy et al.,
2021) to detect non-canonical proteins, however, that is likely to
raise the experimental cost and duration by multiple folds. To
further chisel the enrichment of low-MW proteins for cost-
efficient shotgun proteomics, we generated a strain (LSC 1918)
with two HiBit-tag (Schwinn et al., 2020) knock-ins, one at the
C-terminus of R06C1.4.1 (84 + 11 amino acids) and one at the
predicted C05C9.3 altORF IP_1,500,296 (59 + 11 amino acids).
This strain was used for shotgun experiments in this study, and
we envision it to be resourceful for further optimization of
enrichment for low-MW proteins in the future. Using a
blotting system in combination with this strain, sample
preparation strategies may be compared for their performance
in the low-MW range prior to moving towards LC-MS/MS for
unbiased discovery and identification.

Protein identifications are also influenced by the instrumentation
and downstream analysis pipeline, and this was the third conceptual
level of interest in our current study. Previous work by Shteynberg
et al. already highlighted the advantages of combining multiple
search algorithms to improve total peptide spectral matches
(Shteynberg et al., 2013). Moreover, the recent development of
trapped ion mobility coupled with parallel accumulation serial
fragmentation on timsTOF platforms (used in this study) have
also extended the sensitivity and depth of mass spectrometric
data multifold (Meier et al., 2018). However, the downstream
analysis pipelines are yet to catch up with the instrumental
advances and, to our knowledge, only three analysis pipelines can
process the raw files generated by LC-TIMS-MS/MS proteomic
experiments (Yu et al., 2020b). We utilized PEAKS and
MSFragger to analyse the same data acquired on a timsTOF Pro
platform and observed substantial differences in protein
identifications (Figure 5). This could be due to various factors, as
the underlying algorithms of both search engines differ considerably,
however, in combination, that gives an advantage for identification
of peptides that might be missed otherwise.

In conclusion, thanks to optimisations at the database, peptide
extraction and analysis levels of an omics-based discovery strategy,
we can provide mass spectrometric evidence of 467 putative splice
variants and 85 novel proteins in C. elegans. 18 of these novel
proteins were found to be conserved across vertebrates, of which 14
are annotated as ncRNA, 2 mapped onto 5′UTR (uORFs) and 2 are
in alternative ORFs in C. elegans (Supplementary Datasheet 3,
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WormBase release WS280). This highlights how genomic
annotation can be improved with proteogenomic strategies. These
18 proteins have annotated paralogs in C. elegans, indicative of a
shared genetic ancestry, however, their functional relevance remains
to be investigated. Utilization of sequencing (RNA and Ribosome) in
conjunction with proteomics/peptidomics as presented here is likely
to further contribute to species-wide genome annotation and our
understanding of genetic divergence and compensation.
Interestingly, a total of 8 novel proteins belong to uORFs, a
regulatory class of proteins (Chew et al., 2016; Johnstone et al.,
2016; Zhang et al., 2019) that we propose to define as PEU family
(Proteins Encoded in uORFs) for C. elegans. Question remains
whether living systems tend to follow the robust canonical
translation and the non-canonical translations, for large part, are
mere slips through reading frames (Verheggen et al., 2017; Chen
et al., 2020). However, based on some noteworthy discoveries (Pauli
et al., 2014; Anderson et al., 2015; Makarewich et al., 2018; Rathore
et al., 2018; Chu et al., 2019; Na et al., 2020), it is certainly clear that
nature does not always conform to canonical rules, with discrete
prevalence of non-canonical translations, either camouflaged as
isoforms/splice variants or anomalous translation of presumed
ncRNA, UTRs and polycistronic alternative ORFs. Based on
resources like the one presented here, the coming years will
certainly witness an increase in functional research into non-
canonical translation products and their contribution to
organismal phenotypes and plasticity.
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