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Brief Definit ive Report

Glioblastoma (GB) is among the most aggressive 
cancers known. Current treatment options are 
limited and the clinical prognosis is poor. Patients 
diagnosed with GB show a median survival of 
little more than a year despite aggressive surgery, 
radiation therapy, and chemotherapy (Weller  
et al., 2013). Moreover, GBs induce a highly im-
munosuppressive microenvironment, character-
ized by the presence of T reg cells (Grauer et al., 
2007; Jacobs et al., 2010). Given the failure of 
conventional therapy in GBs, the most promis-
ing treatment option may thus rely on the ex-
ploration of immunotherapeutic strategies. IL-12 
is the prototype member of a group of heterodi-
meric cytokines with predominantly proinflam-
matory properties. IL-12 polarizes naive helper 
T cells (TH) to adopt a TH1 phenotype and  

stimulates cytotoxic T cells, NK T (NKT) cells, 
and conventional NK cells. The therapeutic suc-
cess of application of IL-12 in various preclinical 
animal models of cancer is compelling (Colombo 
and Trinchieri, 2002). However, in humans, sys-
temic delivery of IL-12 evoked serious adverse 
events such as leukopenia and thrombocytope-
nia, including fatalities in two patients, at moder-
ately effective doses (Atkins et al., 1997; Leonard 
et al., 1997). Thus, local rather than systemic 
delivery of IL-12 represents the only viable op-
tion for using IL-12 in cancer immunotherapy 
in humans. IL-12 appears to exert its cancer-
suppressive properties through different effector 
cells in a tissue-specific manner. In the B16 
melanoma model, IL-12–mediated suppres-
sion of s.c. tumor growth is mediated by a small 
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Glioblastomas (GBs) are the most aggressive form of primary brain cancer and virtually 
incurable. Accumulation of regulatory T (T reg) cells in GBs is thought to contribute to the 
dampening of antitumor immunity. Using a syngeneic mouse model for GB, we tested 
whether local delivery of cytokines could render the immunosuppressive GB microenviron-
ment conducive to an antitumor immune response. IL-12 but not IL-23 reversed GB-
induced immunosuppression and led to tumor clearance. In contrast to models of skin or 
lung cancer, IL-12–mediated glioma rejection was T cell dependent and elicited potent 
immunological memory. To translate these findings into a clinically relevant setting, we 
allowed for GB progression before initiating therapy. Combined intratumoral IL-12 applica-
tion with systemic blockade of the co-inhibitory receptor CTLA-4 on T cells led to tumor 
eradication even at advanced disease stages where monotherapy with either IL-12 or CTLA-4 
blockade failed. The combination of IL-12 and CTLA-4 blockade acts predominantly on 
CD4+ cells, causing a drastic decrease in FoxP3+ T reg cells and an increase in effector T 
(T eff) cells. Our data provide compelling preclinical findings warranting swift translation 
into clinical trials in GB and represent a promising approach to increase response rates of 
CTLA-4 blockade in solid tumors.
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Noncommercial–Share Alike 3.0 Unported license, as described at http://creative-
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that T cells and NK cells were readily detected within tumors 
2 wk after tumor implantation (unpublished data). To systemat-
ically examine the contribution of specific leukocyte popula-
tions, we challenged a series of mouse mutants with intracranial 
GL-261luc:IL-12. We used mice lacking T and B cells (Rag1/), 
conventional NK cells (Il15ra/), or mice lacking T, B, NK 
cells, as well as ILCs (Rag2/ Il2rg/; Fig. 2 A). Tumor pro-
tection was lost in Rag2/ Il2rg/ and Rag1/ animals, 
whereas Il15ra/ mice were able to control the tumor, sug-
gesting that adaptive lymphocytes are absolutely required for 
IL-12–mediated glioma rejection. The fact that the loss of NK 
cells and ILCs in Rag2/ Il2rg/ mice did not change the 
clinical course compared with Rag1/ mice, combined with 
the ability of Il15ra/ mice to reject GL-261luc:IL-12, dem-
onstrates that NK cells and ILCs were largely dispensable for 
IL-12–mediated tumor rejection. We also investigated the con-
tribution of CD4 and CD8 T cells using MHCII (Ia(b)/)- 
and MHCI (2m/)-deficient mice, respectively. In contrast 
to WT mice, Ia(b)/ mice did not control GL-261luc:IL-12 
tumors, and 2m/ mice succumbed to the gliomas shortly 
thereafter (Fig. 2 B). Although there is precedence for a role of 
NKT cells in IL-12–mediated tumor rejection (Cui et al., 
1997), the effective IL-12–mediated tumor rejection in 
Il15ra/ mice further dismisses a critical role of NK and NKT 
cells because both populations depend on IL-15R signaling 
(Gordy et al., 2011).

To further characterize the T cell–dependent tumor con-
trol, we tested for immunological memory formation in the 
surviving mice that had been previously challenged with 
GL-261luc:IL-12 cells (Fig. 2 C). In contrast to the primary 
challenge, we now injected GL-261luc:Fc cells into the contra-
lateral hemisphere of survivors or naive WT animals. In agree-
ment with earlier studies (Daga et al., 2007; Liu et al., 2002), we 
observed a rapid rejection of the newly implanted tumors 
within days in rechallenged survivors. Whereas BLI at day 1 
after injection suggested identical tumor cell seeding across the 
two groups, only the naive mice exhibited a steadily increasing 
signal (Fig. 2 C), suggesting memory formation.

IL-12 is recognized for its capacity to polarize IFN-–
producing TH1 cells. However, Ifng/ mice rejected GL-
261luc:IL-12 cells (Fig. 2 D) at a similar rate as WT animals, 
suggesting that the mechanism by which IL-12 induces tumor 
rejection is largely independent of IFN-. Conversely, IL-12 
also stimulates the cytotoxic activity of T cells. We analyzed the 
role of perforin, a cytolytic molecule primarily expressed by 
CD8+ CTLs and NK cells. In contrast to Ifng/ mice, Prf1/ 
mice failed to control the tumor (Fig. 2 E). This further shows 
that perforin-mediated T cell cytotoxicity is the major effector 
mechanism of IL-12–mediated glioma rejection.

Previous studies investigated the mechanisms of IL-12 in 
glioma rejection, many of these in a DC vaccination setting 
(Joki et al., 1999; Yamanaka et al., 2002, 2003). A crucial in-
volvement of NK cells and T cells (CD4+ and/or CD8+) in the 
IL-12–mediated rejection of experimental gliomas was de-
scribed (Joki et al., 1999; Yamanaka et al., 2002, 2003). These 
reports present contradictory findings regarding the contribution 

population of IL-12–responsive, Rort-dependent innate 
lymphoid cells (ILCs; Eisenring et al., 2010). On the other 
hand, B16-derived lung tumors are controlled through IL-12–
activated NK cells (Kodama et al., 1999; Eisenring et al., 2010). 
Conversely, IL-12–mediated glioma control has been attrib-
uted to T cells and NK cells, but open questions remain about 
which cell types indeed are the precise cellular targets of IL-12, 
consequently mediating anti-GB immunity (Vetter et al., 
2009; Yamanaka et al., 2002, 2003). IL-23 is another member of 
the IL-12 family and also has potent pro-inflammatory proper-
ties. Several groups reported potent antitumor activity in vari-
ous experimental settings including brain tumors (Lo et al., 
2003; Hu et al., 2006). Others have reported a protumorigenic 
effect of IL-23 (Langowski et al., 2006). The goal of this study 
was to systematically analyze whether and how IL-12 and IL-23 
induce an antitumor immune response in a syngeneic murine 
model of GB.

RESULTS AND DISCUSSION
To determine whether IL-12 and IL-23 are suitable candidates 
to overcome the local immunosuppressive environment in GB 
and to trigger rejection, we expressed either of these two cyto-
kines in C57BL/6 syngeneic GL-261 mouse glioma cells 
(Szatmári et al., 2006). First, we generated a GL-261 line that 
constitutively expressed Photinus pyralis luciferase (hereafter, 
termed GL-261luc) for bioluminescence imaging (BLI). We 
next modified this cell line to continuously release a fusion 
protein of IL-12 or IL-23 joined to the crystallizable fragment 
of mouse IgG3 (IL-12Fc or IL-23Fc) or the IgG fragment 
alone as control (termed GL-261luc:IL-12, GL-261luc:IL-23, 
and GL-261luc:Fc, respectively). Cytokine production and BLI 
were equivalent among transfected cells (unpublished data). 
Expression levels of MHCI and II and proliferation were com-
parable to parental cells (Fig. 1, A and B), as was the median 
survival of animals inoculated with GL-261luc:Fc (Fig. 1 C).

We implanted GL-261luc:IL-12 or GL-261luc:IL-23 intra-
cranially into C57BL/6 mice and compared growth with 
GL-261luc:Fc, monitoring BLI and survival (Fig. 1, D and E). 
While IL-23 secretion appeared to be mildly tumor promot-
ing (Fig. 1 D), IL-12 expression conferred a clear survival  
advantage (Fig. 1 E). This was not a tumor intrinsic effect, as 
GL-261luc:Il-12 displayed progressive growth in Il12rb2/ 
hosts (unpublished data). On day 35 after injection, we detected 
only a residual tumor in some animals injected with GL-261luc: 
IL-12, whereas mice challenged with GL-261luc:IL-23 or 
GL-261luc:Fc showed robust tumor formation when analyzed 
histologically (Fig. 1 G). This contrasts studies on IL-23–in-
duced glioma rejection using neural stemlike cell– or DC-based 
approaches that showed potent antiglioma activity (Hu et al., 
2006; Yuan et al., 2006). However, in various other models of 
solid tumors, it is also becoming increasingly apparent that 
IL-23 has primarily protumorigenic effects (Ngiow et al., 2013). 
Therefore, for the remainder of this study, we focused on the  
effector mechanisms of IL-12–mediated glioma rejection.

Longitudinal analysis via histology and flow cytometry of 
the tumor-infiltrating lymphocyte (TIL) composition revealed 
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CTLA-4 is the prototypic co-inhibitory receptor limiting 
T cell responses and its blockade has been shown to boost anti-
tumor activity in metastatic melanoma in patients (Hodi et al., 
2010; Walker and Sansom, 2011). We observed a slight increase 
in the numbers of CTLA-4–positive CD4+FoxP3 T cells in 
GL-261luc:IL-12 tumors and an increase in the expression lev-
els of CTLA-4 in T reg cells (Fig. 2 G).

Next, we explored the possibility of combining intratu-
moral (i.t.) IL-12 therapy with blockade of cytotoxic CTLA-4. 
For this, we expressed and purified IL-12Fc, which has biologi-
cal activity that is identical to heterodimeric IL-12 (Fig. 3 A; 
Eisenring et al., 2010). Switching to a therapeutic setting, we 
challenged mice with GL-261luc:Fc, and then allowed for 

of NK cells and the TH1 hallmark cytokine IFN- compared 
with a study where IL-12 was produced in situ and mouse mu-
tants were used (Vetter et al., 2009). Some of these studies have 
investigated tumors derived from s.c. injection of glioma cell 
lines (Joki et al., 1999). However, in s.c. tumors, a subpopulation 
of ILCs seems to be crucial for IL-12–mediated tumor control, 
regardless of the tissue origin of the tumor cells used (Eisenring 
et al., 2010). Using an IL-12–expressing syngeneic glioma cell 
line and various genetic mutants, we established T cells as the 
crucial effector cell type of IL-12–mediated glioma rejection. 
Further characterization of the tumor-infiltrating T cells re-
vealed robust expression of cytotoxic T lymphocyte–associated 
antigen 4 (CTLA-4; Fig. 2 F).

Figure 1.  Intratumoral expression of IL-12 but not IL-23 leads to rejection of experimental gliomas. (A and B) In vitro analysis of GL-261, 
GL-261luc:Fc, GL-261luc:IL-12 and GL-261luc:IL-23 cells; data representative of ≥3 independent experiments: (A) MHCI (H-2D(b)) and MHCII (I-A(b)) 
expression. (B) 3[H]-Thymidine incorporation of GL-261 cells/well, error bars represent SD, one-way ANOVA with Bonferroni post-test; *, P < 0.05; **, P < 0.01; 
***, P < 0.001. (C–E) GL-261 cells were injected into the right striatum of WT animals. (left) BLI emitted from a circular region of interest (ROI) around the 
tumor site, each trace represents BLI of an individual animal; (right) survival plot of the same experiment, two independent experiments pooled; Log-Rank 
test; *, P < 0.05; **, P < 0.01; ***, P < 0.001. (C) Survival of mice challenged with GL-261 or GL-261luc:Fc (n ≥ 8/group), with GL-261luc:Fc or GL-261luc:IL-23 
cells (D; n ≥ 10/group, P = 0.0432) or GL-261luc:Fc or GL-261luc:IL-12 cells (E; n = 12/group, P = 0.0002). (F) Largest cross-section of representative tumors  
(n = 6/group) at day 35, brown: F4/80 immunoreactivity; counterstained with hematoxylin, arrow head: GL-261luc:IL-12 tumor. Bar, 2 mm.
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PBS/CTLA-4–treated tumors, but decreased considerably 
upon IL-12Fc treatment (Fig. 3, D and E). This observation 
was confirmed by flow cytometry (Fig. 4 A). The drop in NK 
cells suggests that initially reacting NK cells may subsequently 
be replaced by T eff cells.

FACS quantification further revealed an increase in total 
CD4+ T cells between days 21 and 35 after injection (Fig. 4 A). 
Most importantly, there was a strong increase in the frequency 
of CD4+ T cells producing IFN-, but a profound reduction 
of FoxP3+ cells (Fig. 4 A). This was also reflected in the ratios of 
CD8+ per CD4+FoxP3+ cells and especially CD4+IFN-+ 
per CD4+FoxP3+ cells, revealing a significant difference be-
tween IL-12Fc monotherapy and IL-12Fc/CTLA-4 com
bination therapy (Fig. 4 B). The fact that accumulation of 
T reg cells is a key feature of human GB and correlates with 
outcome (Jacobs et al., 2010) underlines the clinical signifi-
cance of the treatment approach used here. During and after 
treatment, we did not observe any overt symptoms of auto-
immunity such as weight loss or paralysis (data not shown). 
Still, 91 d after tumor inoculation, histological assessment 
of the brain tissue of surviving animals did show residual  
infiltrates consisting mainly of CD4+ T cells and NK cells 
(Fig. 3, C and D).

tumor growth until day 21. At this time point, the cerebral 
tumor was clearly visible and comparable among the groups as 
quantified by BLI (Fig. 3, B and C). We implanted osmotic 
minipumps to deliver purified IL-12Fc over a 28-d period 
directly into the bulk tumor. Local IL-12Fc treatment was 
combined with systemic administration of antibodies against 
CTLA-4. Monotherapies with i.t. application of IL-12Fc or 
systemic anti–CTLA-4 alone conferred only a minor or no 
survival advantage, respectively (Fig. 3 B). Strikingly, local 
IL-12Fc administration directly into the tumor site in combi-
nation with systemic CTLA-4 blockade led to a full remission 
in most mice. We observed similar survival rates treating 
GL-261luc:Fc- or GL-261-derived tumors with this combina-
tion therapy (unpublished data), indicating its effectiveness in-
dependent of luciferase as xeno/neo antigen.

2 wk after the start of treatment (day 35 after injection), 
signs of a successful antitumor immune response were visible 
for IL-12Fc/PBS and IL-12Fc/CTLA-4 treated animals in 
histological overviews (Fig. 3 C). Further analysis revealed a 
dramatic increase in CD4+ T cells upon IL-12Fc treatment, 
whereas CD8+ T cells increased, especially upon concomi
tant anti–CTLA-4 treatment (Fig. 3, D and E). In contrast to  
T cells, NK cells were present in high numbers in PBS/PBS- or 

Figure 2.  T cell dependency of IL-12–mediated glioma rejection. (A, B and D, E) GL-261luc:IL-12 cells were implanted i.c. into various immunodefi-
cient mouse strains. Animals were monitored for up to 91 d; Log-Rank test; *, P < 0.05; **, P < 0.01; ***, P < 0.001. (A) Survival of WT, Rag2/Il2rg/, 
Rag1/, and Il15ra/ mice (n ≥ 13/group); p(Rag2/Il2rg/ vs. WT), p(Rag1/ vs. WT), p(Rag2/Il2rg/ vs. Il15ra/) and p(Rag1/ vs. Il15ra/)  
< 0.0001. (B) Survival of WT, 2m/ and Ia(b)/ mice (n ≥ 12/group); p(2m/ vs. WT) = 0.0052, p(Ia(b)/ vs. WT) < 0.0001. (C) Rechallenge of naive  
WT animals and survivors (that had been previously challenged with GL-261luc:IL-12 in the contralateral hemisphere) with GL-261luc:Fc cells; (left) rep-
resentative BLI at days 1, 7, and 21; (right) BLI quantification (n ≥ 7/group). (D) Survival of WT and Ifng/ mice (n ≥ 10/group) injected with GL-261luc:IL-12 (E) 
Survival of WT and Prf1/ mice (n ≥ 13/group); p(Prf1/ vs. WT) = 0.0005. (F and G) WT mice were implanted i.c. with GL-261luc:Fc or GL-261luc:IL-12 and 
analyzed for TILs at day 21 using flow cytometry. (F) Representative contour plot (GL-261luc:Fc TILs gated on live CD45hi/CD11b/NK1.1 cells). (G) Number 
(left) of CTLA-4 positive cells and CTLA-4 mean fluorescent intensity (MFI, right) for live CD4+FoxP3+, CD4+FoxP3, or CD8+ T cells (n ≥ 8/group). One-way 
ANOVA with Bonferroni post-test; pooled data from two to three independent experiments each; *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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Figure 3.  Local administration of IL-12Fc in established GB in combination with systemic CTLA-4 blockade induces tumor clearance. (A) IFN- 
production of WT or Il12rb2/ splenocytes stimulated with anti-CD3 and anti-CD28 mAbs and increasing amounts of heterodimeric IL-12 (rIL-12) or IL-12Fc; 
one out of three experiments shown. (B) WT mice were injected i.c. with GL-261luc:Fc cells. On day 21 after injection, osmotic minipumps delivering IL-12Fc or 
PBS intratumorally (i.t.) were implanted as indicated by a horizontal line above graphs. In addition, animals received i.p. injections with CTLA-4 mAbs or PBS, 
indicated by vertical tick marks; n = 7–12/group; three independent experiments pooled. Log-rank test; *, P < 0.05; **, P < 0.01; ***, P < 0.001; p(IL-12Fc/PBS 
vs. IL-12Fc/CTLA-4) = 0.0061, p(PBS/PBS vs. IL-12Fc/PBS) = 0.0160, p(PBS/PBS vs. IL-12Fc/CTLA-4), and p(PBS/CTLA-4 vs. IL-12Fc/CTLA-4) < 0.0001.  
(C–E) Histological analysis of GL-261luc:Fc tumors at day 21, 2 wk after initiation of treatment (day 35) and at the end of the experiment (day 91). (C) Overviews, 
arrowhead indicates former tumor center. Bar, 2 mm. (D) Higher magnification, sections show CD4, CD8, and asialo GM1 immunoreactivity (red); tumor margin is 
indicated (dotted line. Bar, 200 µm. (E) Quantification of TILs/tumor area on histological sections, each dot represents mean of a single animal; one-way ANOVA 
with Bonferroni post-test; one of two independent experiments shown; *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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Figure 4.  Combination treatment leads to a shift from T reg to T eff cells within the tumor. (A–D) TILs of tumor-bearing brains  
were analyzed by flow cytometry at days 21 and 35, 2 wk after initiation of treatment; two independent experiments pooled, one-way ANOVA 
with Bonferroni post-test; *, P < 0.05; **, P < 0.01; ***, P < 0.001. (A) Total number of NK and T cells, pregated on CD45hi/CD11b cells. (B) Ratio  
of CD8+ and CD4+IFN-+ T cells per CD4+FoxP3+ T cells; n ≥ 5/group; (C) BrdU and Ki67 labeling of T reg and T eff cells (pregated on 
CD45+CD11bNK1.1) in percent positive cells and (D) ratio of total numbers of T reg versus T eff cells; n ≥ 6/group; (E) Perforin-1 gene ex-
pression in TILs sorted from treated animals (n = 3/group). Shown is the normalized fold expression (CT) in relation to HPRT expression; error 
bars are the SEM of replicate wells. Individual samples were pooled before sorting, which precluded statistical assessment. VM/Dk or B6 WT 
mice were injected i.c. with SMA-560 cells (n ≥ 7/group; F) and B16-F10 melanoma cells (n ≥ 10/group; G), respectively. Arrows show initiation 
of treatment. Osmotic minipumps delivered IL-12Fc or PBS i.t. as indicated by a horizontal line above graph. In addition, animals received  
i.p. injections with CTLA-4 mAbs or PBS, indicated by vertical tick marks; two independent experiments pooled. Survival statistics according 
to Log-rank test; *, P < 0.05; **, P < 0.01; ***, P < 0.001. (F) p(PBS/PBS vs. IL-12Fc/CTLA-4) = 0.0182, p(IL-12Fc/PBS vs. IL-12Fc/CTLA-4) = 
0.0155, p(PBS/CTLA-4 vs. IL-12Fc/CTLA-4) = 0.0177. (G) p(PBS/PBS vs. IL-12Fc/CTLA-4) = 0.0174. Histology below survival curves shows 
tumor burden at initiation of treatment, overview pictures. and higher magnification pictures of the indicated regions (arrowheads). Bars:  
100 µm (F); 200 µm (G).
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consisting of systemic checkpoint blockade and local admin-
istration of IL-12 is a highly promising candidate for swift 
clinical translation in GB.

MATERIALS AND METHODS
Animals. C57BL/6 mice were obtained from Janvier; b2m/, Ia(b)/, 
Il12rb2/, Rag1/, Rag2/Il2rg/, Prf1/, and Ifng/ mice were ob-
tained from The Jackson Laboratory. Il15ra/ mice were provided by S. Bul-
fone-Paus (Forschungszentrum Borstel, Borstel, Germany) and VM/Dk mice 
are bred in our laboratory. All animals were kept in house according to institu-
tional guidelines under specific pathogen–free conditions at a 12-h light/dark 
cycle with food and water provided ad libitum. All animal experiments were 
performed according to institutional guidelines and approved by the Swiss  
cantonary veterinary office (licenses 16/2009; 65/2012).

Murine tumor cell lines. GL-261 cells (provided by A. Fontana, Experimen-
tal Immunology, University of Zurich, Zurich, Switzerland), which are syn-
geneic in C57BL/6 mice, were stably transfected with pGl3-ctrl and pGK- 
Puro (Promega) and selected with puromycin (Sigma-Aldrich) to generate 
luciferase-stable GL-261 cells. A single clone was isolated by limiting dilution 
and passaged in vivo by intracranial tumor inoculation. Subsequently, cells were 
transfected with pCEP4-mIgG3, pCEP4-mIl-12mIgG3, or pCEP4-mIl-
23mIgG3, and cytokine production was detected by ELISA and RT-PCR, as 
previously described (Eisenring et al., 2010). SMA-560 spontaneous murine 
astrocytoma cells were characterized previously (Uhl et al., 2004). B16-F10 
C57BL/6 murine melanoma cells were purchased from American Type Cul-
ture Collection.

Proliferation assay. 5,000 cells/well were plated into a 96-well plate in 
triplicates. Medium containing 0.5 mCi/ml of [3H]thymidine was added, 
and 4 d later the incorporation was assessed using a Filtermate Collector (Ap-
plied Biosystems) and a scintillation counter (MicroBeta Trilux 1450; Wallac).

Expression and purification of IL-12Fc. IL-12Fc was expressed in 293T 
cells. The protein was purified from supernatant over a protein G column (1 ml; 
HiTrap; GE Healthcare) and eluted with 0.1 M glycine, pH 2.0, using a purifier 
(ÄktaPrime) and dialyzed overnight in PBS, pH 7.4. Concentration and purity 
of IL-12Fc were measured by ELISA (OptEIA mouse IL-12/23p40; BD) and 
SDS-PAGE (silver staining and immunoblotting). IL-12Fc was detected with a 
rat anti–mouse IL-12p40 antibody (C17.8; BioExpress) and a goat anti–rat 
HRP coupled antibody (Jackson ImmunoResearch Laboratories).

Functional characterization of IL-12Fc. Splenocytes isolated from 
WT or Il12rb2/ animals were plated in duplicates at a density of 105 cells/
well in RPMI medium (GIBCO BRL Invitrogen) supplemented with 10% 
fetal calf serum in 96-well plates and stimulated with either recombinant 
murine IL-12 (PeproTech) or IL-12Fc. Splenocytes were cultured in the 
presence of 0.5 µg/ml of anti-mouse CD3 (2C11, BioExpress) and anti-
CD28 antibodies (37N, BioExpress). After two days of culture supernatant 
was harvested and IFN- detected with an anti-mouse IFN- ELISA kit 
(OptEIA mouse IFN- BD).

Orthotopic glioma inoculation. In brief, 6–10-wk-old mice were i.p. in-
jected with fluniximin (Biokema; 5 mg/kg body weight) before being anes-
thetized with 3–5% Isoflurane (Minrad) in an induction chamber. Anesthesia 
on the stereotactic frame (David Kopf Instruments) was maintained at 3% Iso-
flurane delivered through a nose adaptor, A blunt-ended syringe (Hamilton; 
75N, 26s/2”/2, 5 µl) was placed 1.5 mm lateral and 1 mm frontal of bregma. 
The needle was lowered into the burr hole to a depth of 4 mm below the dura 
surface and retracted 1 mm to form a small reservoir. Using a microinjection 
pump (UMP-3; World precision Instruments Inc.), 2 × 104 GL-261 (500 
SMA-560 or 50 B16-F10) cells were injected in a volume of 2 µl at 1 µl/min. 
After leaving the needle in place for 2 min, it was retracted at 1 mm/min. The 
burr hole was closed with bone wax (Aesculap; Braun) and the scalp wound 
was sealed with tissue glue (Indermil; Henkel).

To understand the mechanism by which IL-12Fc/CTLA-4 
combination therapy alters the composition of TILs, most no-
tably the drop in T reg cells and increase in T eff cells, we ana-
lyzed proliferation of TILs upon treatment. By assessing BrdU 
incorporation and Ki67 labeling, we found that IL-12Fc, as 
well as IL-12Fc/CTLA-4 combination therapy led to a selec-
tive drop of BrdU+ T reg cells during the second week of treat-
ment. At day 35, the T eff cell population did however display 
a higher percentage of Ki67-positive cells (Fig. 4 C), resulting 
in a significant increase in the ratio of FoxP3 versus FoxP3+ 
CD4 T cells regarding BrdU incorporation and Ki67 label
ing (Fig. 4 D). We did not observe significant differences in 
Annexin V labeling, a marker for apoptosis, most likely due to 
the fact that apoptotic cells are rapidly cleared by phagocytes 
in vivo (unpublished data). The mechanism by which CTLA-4 
blockade inhibits T reg cell function remains a subject of in-
tense debate (Walker and Sansom, 2011). Recent studies dem-
onstrate that selective opsonization of T reg cells with CTLA-4 
antibodies can elicit potent antibody-dependent cell-mediated 
cytotoxicity (ADCC) within the tumor site (Selby et al., 2013; 
Simpson et al., 2013). In regard to the tumor-suppressing effec-
tor cells, IL-12 increased the expression of perforin-1 in CD8 
T cells and NK cells, but not in CD4 cells (Fig. 4 E), indicating 
that CTLs are ultimately responsible for tumor control.

We next tested the treatment regimen in a different model 
of GB. SMA-560 is derived from a spontaneous murine astro-
cytoma (Uhl et al., 2004). Here, we initiated treatment on day 7 
after tumor cell implantation. Also, in this genetically different 
mouse strain (VM/Dk), we found the combination therapy to 
confer a significant survival advantage (Fig. 4 F).

The poor activity of CTLA-4 monotherapy observed in 
our study contrasts with previous studies using similar models 
(Fecci et al., 2007; Grauer et al., 2007; Agarwalla et al., 2012). 
In those studies CTLA-4 blockade was initiated at much earlier 
time points after seeding, the disease course progressed at a 
slower pace, and/or a different mAb was used in treatments. We 
used a different anti–CTLA-4 mAb (9D9, IgG2b), which has 
been reported to confer weaker ADCC of T reg cells than the 
9H10 hamster mAb used by Fecci et al. (2007; Selby et al., 2013; 
Simpson et al., 2013). It is therefore tempting to speculate that 
the combination of i.t. IL-12Fc in combination with systemic 
CTLA-4 blockade through a strong ADCC-inducing mAb 
may yield even better synergy. To expand our treatment strategy 
toward other types of cancers, we explored intracranial implan-
tation of B16:F10 melanoma cells. B16 is an extremely aggres-
sive melanoma cell line and poorly immunogenic (Becker et al., 
2010). In this rapidly progressing model of intracranial mela-
noma, only combination therapy led to a significant, albeit very 
modest survival advantage when compared with vehicle con-
trols (Fig. 4 G).

Systemic anti–CTLA-4 treatment is FDA-approved for 
metastatic melanoma based on clinical trials demonstrating 
clinical benefit (Hodi et al., 2010) and has been further tested 
for various other solid cancers (Grosso and Jure-Kunkel, 2013). 
In light of the data presented here, a combination therapy 
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Cells were frozen immediately, lysed and RNA isolated. Poly-d(T) primers 
were used for synthesis of complementary DNA. TaqMan probes and prim-
ers for hypoxanthine-guanine phosphoribosyltransferase (HPRT) and Perforin 
(prf1) were used for quantitative real-time PCR using a CFX384 Cycler (Bio-
Rad Laboratories). Subsequent analyses were performed with Bio-Rad CFX 
Manager software using the Ct method. The specificity of amplification was 
also assessed by gel electrophoresis.

Histology. For histology, animals were euthanized with CO2, transcardially 
perfused with ice-cold PBS, and decapitated. The brain was removed and the 
frontal part of the cerebrum was embedded in optimal cutting temperature 
compound (O.C.T.; Sakura) and snap-frozen in liquid nitrogen. Immuno
staining of cryosections was performed as described previously (Eisenring  
et al., 2010). Alternatively, sections were stained with hematoxylin and eosin. 
Brains were also fixed in 4% formalin, embedded in paraffin and 2–3 µm sec-
tions were processed. Pictures were generated using an Olympus BX41 light 
microscope equipped with an Olympus ColorView IIIu camera and Olympus 
cell B image acquisition software. Whole slides were also scanned with a Zeiss 
Mirax Midi slidescanner, equipped with a 20× objective (NA 0.8) and 3CCD 
color camera (1360 × 1024 pixel, size 0.23 µm) and analyzed using Panoramic 
viewer 1.14.50 RTM and the HistoQuant plugin (both 3DHISTECH). Tumor 
boundaries were manually outlined and either area covered by staining and/or 
number of objects stained where quantified using the batch processing func-
tion. Images shown in figures were processed with Adobe Photoshop CS5.

Statistical analysis. For all nonsurvival analyses of two experimental groups, 
an unpaired, two-tailed Student’s t test was performed. For all nonsurvival analy
ses of three or more experimental groups, a one-way ANOVA with Bonferroni 
posttest was performed. For statistical analysis of Kaplan-Meier survival curves, 
a Log-rank (Mantel-Cox) test was used to calculate the p-values indicated in 
respective experiments. P-values <0.05 were considered statistically significant 
and indicated in figures as asterisks (*, P < 0.05; **, P < 0.01; ***, P < 
0.001). All quantitative analysis was performed with GraphPad Prism version 
5.0a for Mac OSX (GraphPad Software, Inc).
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