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Abstract: This paper is concerned with path-tracking control of a wheeled mobile robot. This robot is
equipped with two permanent magnet brushed DC-motors which are fed by two inverter-DC/DC
Buck power converter systems as power amplifiers. By taking into account the dynamics of all the
subsystems we present, for the first time, a formal stability proof for this control problem. Our control
scheme is simple, in the sense that it is composed by four internal classical proportional-integral
loops and one external classical proportional-derivative loop for path-tracking purposes. This is the
third paper of a series of papers devoted to control different nonlinear systems, which proves that the
proposed methodology is a rather general approach for controlling electromechanical systems when
actuated by power electronic converters.

Keywords: energy-based control; wheeled mobile robots; path-tracking; inverter-DC/DC Buck
power converter system; lyapunov stability

1. Introduction

Pulse width modulation (PWM)-based power amplifiers are commonly employed to supply
power to electromechanical systems. However, the intrinsic hard commutation of PWM strategies
stresses the electromagnetic components of electric motors [1]. This has motivated the use of DC/DC
power electronic converters instead of PWM-based power amplifiers to control DC-motors [1–22].
An important exception is [23] which presented, for the first time, a solution for control of a magnetic
levitation system that is fed by a DC/DC Buck power electronic converter. The importance of this
application is that magnetic levitation systems are nonlinear electromechanical systems.

Despite these advancements, the above solutions are constrained to unidirectional control,
i.e., when power amplifier is only required to provide a single polarity voltage. This has motivated
a series of works [24–26] where, by cascade connecting an inverter and a DC/DC power electronic
converter, bidirectional velocity control in DC-motors has been rendered possible. Moreover, the use
of this converter topology has been extended in [27] to control velocity in a permanent magnet
synchronous motor, which is well known to be a nonlinear alternating current (AC) motor.

On the other hand, wheeled mobile robots (WMR) represent another class of nonlinear and
nonholonomic systems. One important control problem in this field is path-tracking. This task is
accomplished when driving a mobile robot as close as possible to a previously defined reference path
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which is specified as a set of straight lines or arcs of circumferences [28]. Several control schemes were
proposed in the literature. In [29] is presented a predictive controller based on the robot kinematic
model. A backstepping controller based on the kinematic model is proposed in [30] which takes into
account robot skidding and slipping. A Kalman-based active observer controller (AOB) designed on
the basis of both the kinematic and dynamic models of robot is proposed in [31] in order to take into
account the model uncertainties. Finally, in [32] is presented a Fuzzy-logic controller based on both the
kinematic and the dynamic models of robot.

In industrial applications, the path-tracking control problem is solved using a multi-loop control
strategy. The most external loop (a classical proportional-integral-derivative (PID) controller) is
used to control the path-tracking error. Output of this controller represents the desired velocity
that the wheels of robot must track in order to accomplish the task. Inner velocity loops, driven by
classical proportional-integral (PI) controllers, are used to compute the desired torques that must be
generated by motors to force the actual wheel velocities to reach their desired values [33]. Moreover,
another internal loop, driven again by classical PI controllers, is employed to compute voltage to be
applied to motors in order to ensure that generated torques reach their desired values.

Although the work in [28] is the only one in the literature using a standard PID controller.
However, that proposal is based only on the kinematic model of robot. Furthermore, any of the
additional internal PI control loops that are cited above are not studied although they are present in
the commercial robot that they use in the experiments.

The main contributions of the present paper are the following.

1. We extend the application of the control technique employed in [23,27], to the case when
path-tracking is performed by a WMR that employs two inverter-DC/DC Buck power electronic
converter systems to feed both brushed DC-motors used as actuators. This is the first time that a
formal stability proof is presented for this control problem by considering the dynamics of all the
components together.
On the other hand, the present paper demonstrates that our control design method can be
applied to control several different nonlinear electromechanical systems and, hence, it represents
a rather general methodology. Moreover, we stress that our approach has allowed us to extend the
solution for complex nonlinear electromechanical systems that are fed by DC/DC power electronic
converters. This feature is very important to be highlighted since, contrary to our previous
proposals in [23,27] and the present proposal, all proposals in the literature are constrained to
control simple DC motors with simple linear loads. See for instance [1–22].

2. Our proposal also constitutes an extension of the work in [33] to the case when the electrical
dynamics of motors and dynamics of the inverter-DC/DC Buck power electronic converters are
considered together with kinematic and dynamic models of WMR.

3. Control scheme that we propose in the present paper is composed by four internal PI control loops
and one external PD path-tracking loop, which results in a simple and robust control law which is
very similar to that commonly used in industrial practice. We stress that different PID control
schemes have been proposed previously in the literature to solve the path-tracking problem [28].
However, stability of the external-PD (for tracking error) internal-PI (for motor velocities) control
scheme that is standard in industrial applications has been studied only in [33] and any other
work on this subject has not been presented in the automatic control literature nor the robotics
literature. The contribution of the present paper with respect to [33] is that we take into account
the electrical dynamics of both DC motors and dynamics of the power electronic converters that
are used as power amplifiers. We stress that this is a novel control problem in wheeled mobile
robots and this explains why any references are not found in the scientific literature.

4. We present a formal stability proof ensuring the state boundedness and ultimate boundedness.
We stress that the ultimate boundedness result is consistent with current practice. This is
because changes in the path direction actuate as time varying disturbances avoiding asymptotic
convergence to an equilibrium point. See Remark 3.
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The key for results in [23,27] and in the present paper is a novel passivity-based approach
possessing the following features.

• It exploits, in a novel and advantageous manner, the energy exchange that naturally exists among
the inverter-DC/DC Buck power electronic converter system, DC-motors and WMR. Contrary to
the approach in [34], we do not require to include additional terms in the control law in order to
ease the achievement of such cancellations. On the other hand, although backstepping is another
control technique that it is commonly employed for electromechanical systems [35], the resulting
control laws are commonly much more complex (and, hence, sensitive to numerical errors and
noise amplification) than those obtained using passivity-based approaches.

• Contrary to standard passivity-based approaches as that in [34], we do not rely in a
nested-passivity-based control. This means that we do not require to force the electric current
error to converge exponentially to zero in order to consider it as a vanishing perturbation for the
mechanical subsystem. This provides our approach with the following advantages:

– We avoid the necessity to feedback the time derivative of either the desired electric currents
nor the desired voltage.

– We include PI controllers. In this respect, we stress that the approach in [34] is forced to
resort to disturbance estimators instead of PI controllers.

– We do not have the need to include velocity filtering.
– As we explained above, in applications as the one in the present paper, the electric current

error does not converge to zero.

Finally, some remarks on nomenclature. Given a n× n symmetric matrix A, symbols λmin{A} and
λmax{A} stand for the smallest and the largest eigenvalues of A, respectively. Given an scalar a, symbol
|a| stands for the absolute value. Given some x ∈ Rn and a n× n matrix A, symbols ‖x‖ =

√
xTx and

‖A‖ stand for the Euclidean norm of a vector and the spectral norm of a matrix, respectively.
This paper is organized as follows. In Section 2 we introduce the dynamical model of WMRs and

that of the inverter-DC/DC power converters employed to provide power to robot motors. In Section 3
we explain how passivity properties of this model can be exploited to render simple the controller that
is designed. Our proposal is presented in Section 4. In Section 5 we present some simulations to give
some insight on the achievable performance. Finally, some concluding remarks are given in Section 6.

2. The Dynamical Model to be Considered

2.1. Wheeled Mobile Robot Model

The dynamical model of WMR that we consider (see Figure 1) has been introduced in [36].
The following nomenclature was introduced in the above paper but, for the ease of reference, we repeat
it here. It is a mobile robot with two actuated wheels. Robot width is 2b whereas r is radius of each
wheel. O is the xy world coordinate system whereas P0 is the XY coordinate system fixed to WMR.
Origin of P0 is located at the middle of axis that is common to both driving wheels. Pc is center of mass
of WMR, which is on the X–axis, at a distance d from P0. Mass of the body and wheel with a motor
are mc and mw, respectively, Ic is the moment of inertia of the body about the vertical axis through Pc,
whereas Iw and Im are inertias of the wheel with a motor about the wheel axis, and the wheel with a
motor about the wheel diameter, respectively.

The generalized coordinates of WMR are q = [x, y, φ, θr, θl ]
T , where (x, y) are the Cartesian

coordinates of P0, φ is the WMR heading angle, whereas θr, θl are the angles of the right and left
driving wheels. We assume that wheel slipping is not present. The dynamic model is given as [36]:

q̇ = S(q)ν(t), (1)

M(q)ν̇ + C(q, q̇)ν = B(q)τ, (2)



Sensors 2020, 20, 6522 4 of 19

where:

S(q) =


r
2 cos φ r

2 cos φ
r
2 sin φ r

2 sin φ
r

2b − r
2b

1 0
0 1

 , (3)

M(q) =

[
r2

4b2 (mb2 + I0) + Iw
r2

4b2 (mb2 − I0)
r2

4b2 (mb2 − I0)
r2

4b2 (mb2 + I0) + Iw

]
,

C(q, q̇) =

[
0 r2

2b mcdφ̇

− r2

2b mcdφ̇ 0

]
, B(q) =

[
1 0
0 1

]
,

τ = [τr, τl ]
T represents torques applied at the right and the left wheels, i.e., τr and τl , respectively.

Angular velocities of the right (ν1) and the left (ν2) wheels are grouped in ν = [ν1, ν2]
T ,

whereas m = mc + 2mw and I0 = mcd2 + 2mwb2 + Ic + 2Im. Finally, if v =
√

ẋ2 + ẏ2, w = φ̇ are
defined, we obtain from (1):

d
dt

 x
y
φ

 =

 cos φ 0
sin φ 0

0 1

 [ v
w

]
, (4)

[
v
w

]
= A

[
ν1

ν2

]
, A =

[
r
2

r
2

r
2b − r

2b

]
. (5)

We stress that A is a nonsingular matrix.
To take into account the electrical dynamics of the permanent magnet brushed DC-motors,

model (1), (2), must be rewritten as follows:

q̇ = S(q)ν(t), (6)

M(q)ν̇ + C(q, q̇)ν + f ν = B(q)nkm I, (7)

La İ = −RI − nkmν + V. (8)

Both DC-motors are assumed to be identical with gearboxes reduction rate n, whereas La, R, km, f ,
are positive constants representing armature inductance, resistance, torque constant and viscous
friction coefficient. The variables I, V ∈ R2 represent electric current in both motors and voltage applied
at the motors armature terminals, respectively. Finally, as explained above, the motor mechanical
parameters are included in both M(q) and C(q, q̇). We take advantage from the fact that torque constant
and back electromotive force constant are the same in permanent magnet brushed DC-motors.

Figure 1. Wheeled mobile robot under study.
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2.2. Mathematical Model of the Inverter-DC/DC Buck Power Electronic Converter-DC Motor System

The inverter-DC/DC Buck power electronic converter-DC motor system that was introduced
in [24] is depicted in Figure 2. The following description has been introduced in the above paper.
Moreover, this description is also included in [27] because the same inverter-DC/DC Buck power
electronic converter system is employed but for control a different electromechanical system. We repeat
here the following description for the ease of reference and because we use the same inverter-DC/DC
Buck power electronic converter-DC motor system introduced in [24]. We use subindex j = 1, 2,
to designate the inverter-DC/DC Buck power electronic converter-DC motor system for the right and
left motors, respectively. We have four transistors Q1j, Q2j, Q̄1j, Q̄2j, an inductor L, a capacitor C and
a resistance Rc. The arrangement of components presented Figure 2 is repeated two times to drive
two different DC-motors. Symbols icj, Vj, Ij, represent the electric current through the inductance L,
voltage at the capacitor C terminals, and electric current through the j-th DC-motor. The symbol E
stands for voltage of the DC power supply. The system inputs are vj, which only take the discrete values
{+1,−1, 0} representing the on-positive, the on-negative and the discharging states of transistors
Q1j, Q2j, Q̄1j, Q̄2j [24].

Figure 2. The inverter-DC/DC Buck power electronic converter-DC motor system.

Following [24] we find that the dynamical model of two inverter-DC/DC Buck power converter
systems is given as:

L
dicj

dt
= −Vj + Evj, (9)

C
dVj

dt
= icj − Ij −

Vj

Rc
, (10)

where j = 1, 2. Let U = [u1, u2]
T represent the average values of [v1, v2]

T . Also, with some abuse
of notation, let Ic = [ic1, ic2]

T , I = [I1, I2]
T , and V = [V1, V2]

T , represent the average values of the
corresponding variables. Thus, the average model of the above switched dynamical model can be
written as:

Lİc = −V + EU, (11)

CV̇ = Ic − I − 1
Rc

V. (12)

The complete dynamical model of system to be controlled in this paper is given by (6)–(8), (11) and (12).
Problem statement: Figure 3 depicts the control problem to be solved. Let φ∗ represent the

desired heading angle, where L0 is a positive constant. Suppose that φ(0) is close to φ∗(0). Design an
input U ∈ R2 such that the tracking error φ− φ∗ has an ultimate bound.
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Figure 3. Path tracking task.

Assumption 1. If the tracking error φ− φ∗ has a small ultimate bound and L0 is less than the robot length,
then Cartesian position does not matter to achieve path-tracking, i.e., dynamics (ẋ, ẏ) can be neglected.

The following result is important for our purposes and we repeat it here for the ease of reference.

Theorem 1. (Theorem 4.18 in ([37], p. 172)). Let D ⊂ Rn be a domain that contains the origin and
V : [0, ∞)× D → R be a continuously differentiable function such that:

α1(‖x‖) ≤ V(t, x) ≤ α2(‖x‖), (13)
∂V
∂t

+
∂V
∂x

f (t, x) ≤ −W3(x), ∀‖x‖ ≥ µ > 0, (14)

∀t ≥ 0 and ∀x ∈ D, where α1 and α2 are classK functions and W3(x) is a continuous positive definite function.
Take r > 0 such that Br ⊂ D and suppose that:

µ < α−1
2 (α1(r)). (15)

Then, there exists a classKL function β and for every initial state x(t0), satisfying ‖x(t0)‖ ≤ α−1
2 (α1(r)),

there is T ≥ 0 (dependent on x(t0) and µ) such that the solution of ẋ = f (t, x) satisfies:

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀t0 ≤ t < t0 + T, (16)

‖x(t)‖ ≤ α−1
1 (α2(µ)), ∀t ≥ t0 + T. (17)

Moreover, if D = Rn and α1 belongs to class K∞, then (16) and (17) hold for any initial state x(t0),
with no restriction on how large µ is.

Roughly speaking, Theorem 1 states that x converges into a domain whose radius is bounded by
α−1

1 (α2(µ)) which is known as the ultimate bound.
Given some n × n matrices F and G, with the former symmetric, and some y, x ∈ Rn then

([38], p. 176), ([39], p. 26):

λmin{F}‖y‖2 ≤ yT Fy ≤ λmax{F}‖y‖2, ∀y ∈ Rn, (18)

±yTGx ≤ |yTGx| ≤ ‖y‖ ‖G‖ ‖x‖, ∀y, x ∈ Rn. (19)

3. Open Loop Energy Exchange

In this section we explain how the plant passivity property is employed to simplify the controller
design task. Similar results have been shown to stand also in control of magnetic levitation systems [23]
and permanent magnet synchronous motors [27]. Hence, the ideas that we present in the following
must not be seen just as a monotonic repetition of results in the previous papers. On the contrary,
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it must be seen as evidence of a powerful methodology that is useful to solve control problems in
different plants.

Consider the dynamical model in (7), (8), φ̇ = w, (5), (11) and (12). The total energy stored in the
system is given as:

Ve(V, Ic, I, ν) =
C
2
‖V‖2 +

L
2
‖Ic‖2 +

1
2

La‖I‖2 +
1
2

νT M(q)ν. (20)

The term C
2 ‖V‖2 stands for electric energy stored in capacitors of the Buck power converters,

whereas L
2 ‖Ic‖2 represents the magnetic energy stored in inductances of the Buck power converters,

and 1
2 La‖I‖2 stands for the magnetic energy stored in the electrical subsystem of the DC-motors.

Finally, 1
2 νT M(q)ν is the kinetic energy stored in the mechanical subsystem of the WMR. The time

derivative of Ve along the trajectories of system in (7), (8), φ̇ = w, (5), (11) and (12) is given as:

V̇e = VT [Ic − I − 1
Rc

V] + IT
c [−V + EU] + IT [−RI − nkmν + V] + νT [−C(q, q̇)ν− f ν + nkm I].

Notice that several terms cancel to obtain:

V̇e = − 1
Rc
‖V‖2 − R‖I‖2 − f ‖ν‖2 + EIT

c U. (21)

We stress that these term cancellations represent (1) energy exchange between the electrical and
the mechanical subsystems of DC-motors, (2) energy exchange between the converter capacitor and
the electrical subsystem of DC-motors, (3) energy exchange between the capacitor and the inductance
of the Buck power electronic converters, and (4) skew-symmetry of matrix C(q, q̇).

Hence, if we define the input EU and the output Ic, then the dynamical model in (7), (8), φ̇ = w, (5),
(11) and (12) is passive [37], [Ch. 6]. This property is exploited in this paper to design a path-tracking
controller for the WMR when an inverter-DC/DC Buck power converter system is employed as
power amplifier.

4. Main Result

Our main result is stated in the following proposition. The reader may find some similarities with
controllers in [23,27]. The main reason for this is that the same inverter-DC/DC Buck power electronic
converter system is considered but applied to very different plants. Thus, these similarities must be
seen as indicatives that we found a powerful control methodology that is useful to control a set of
different nonlinear plants. This is an important contribution of [23,27] and the present paper.

Proposition 1. Consider the mathematical model in (7), (8), φ̇ = w, (5), (11) and (12), in closed-loop with the
following controller:

U =
1
E

(
V∗ − Kpc Ĩc − Kic

∫ t

0
Ĩcdr

)
, (22)

I∗c =
1

Rc
V∗ − KpVṼ + I∗ − KiV

∫ t

0
Ṽdr, (23)

I∗ =
1

km

(
Kpν̃ + Ki

∫ t

0
ν̃(r)dr

)
, (24)

V∗ = RI∗ − αp Ĩ − αi

∫ t

0
Ĩdt, (25)

νd = A−1

[
vd
wd

]
, ν̃ = νd − ν =

[
ν̃1

ν̃2

]
, (26)

wd = −kpφφe − kdφ
dφe

dt
+ kdφw, φe = φ− φ∗, (27)
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where Ĩc = Ic − I∗c , Ṽ = V −V∗, Ĩ = I − I∗, vd > 0 is a constant standing for the WMR desired translational
velocity and Kp = diag{kp1 , kp2}, Ki = diag{ki1 , ki2}. There always exist positive controller gains kpφ, kdφ,
kp1 , kp2 , ki1 , ki2 and diagonal positive definite matrices αp, αi, Kpc, Kic, KpV , KiV , such that the closed-loop
state is bounded and it has an ultimate bound which depends on the WMR translational velocity.

Block diagram of control scheme in Proposition 1 is presented in Figure 4. It is composed by five
main loops: (1) a PI controller for electric current through the inductor of the DC/DC Buck power
electronic converter, (2) a PI controller for voltage at the DC/DC Buck power electronic converter
output (at the capacitor terminals), (3) a PI controller for electric currents through the motor armatures,
(4) a PI controller for motors velocity, and (5) a PD controller for path-tracking. Thus, our proposal
contains the fundamental components in industrial applications and, hence, it is expected to be robust
with respect to parametric uncertainties and external disturbances.

(a)

(b)

Figure 4. Block diagram of controller in Proposition 1. (a) PD path-tracking external loop and PI
velocity loop. (b) Block MOBILE ROBOT in Figure 4a. Symbol τ∗j stands for either τ∗r or τ∗l .

4.1. Closed-Loop Dynamics

Adding and subtracting some convenient terms in (7) and (8) and replacing (24), (25), we find:

M(q) ˙̃ν + C(q, q̇)ν̃ + f ν̃ =− nkm Ĩ + M(q)ν̇d + C(q, q̇)νd + f νd − K̄pν̃− K̄iz, (28)

La
˙̃I =− (R + αp) Ĩ + nkmν̃ + Ṽ − nkmνd − αizI − La İ∗, (29)

z =
∫ t

0
ν̃(r)dr, zI =

∫ t

0
Ĩdt, (30)
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where we defined K̄p = nKp, K̄i = nKi. The reader may simply cancel all of the redundant terms in the
above expressions to find the convenient terms that are added and subtracted. This applies in several
parts in the present proof. Please note that according to (5) and (26), we have that:

ν̃ = A−1

[
ṽ
w̃

]
, ṽ = vd − v, w̃ = wd − w. (31)

Using φ̇ = w we can write:

φ̇ = wd − w̃, (32)

φ̇∗ = w− dφe

dt
. (33)

Replacing (33) in wd given in (27) and replacing wd in (32), we obtain:

φ̇e = −w̃− kpφφe + (kdφ − 1)φ̇∗. (34)

Adding and subtracting some convenient terms in (11), (12) and replacing (22), (23), we find:

L ˙̃Ic =− Ṽ − Kpc Ĩc − Kiczc − Lİ∗c , (35)

C ˙̃V = Ĩc − Ĩ −
(

1
Rc

+ KpV

)
Ṽ − KiVzV − CV̇∗, (36)

zc =
∫ t

0
Ĩcdr, zV =

∫ t

0
Ṽdr. (37)

The closed-loop dynamics is given by (28)–(30) and (34)–(37), and the state is:

ζ = [ν̃T , ĨT , ṼT , ĨT
c , zT , zT

I , zT
c , zT

V , φe]
T ∈ R17.

4.2. Stability Analysis

We propose the following “energy” storage function for the closed-loop dynamics (see (20)):

W(ζ) =
C
2
‖Ṽ‖2 +

L
2
‖ Ĩc‖2 +

1
2

La‖ Ĩ‖2 +
1
2

αi‖zI‖2 +
1
2

KiV‖zV‖2 +
1
2

Kic‖zc‖2 +
1
2

β2Kpc‖zc‖2

+
1
2

β1

(
1

Rc
+ KpV

)
‖zV‖2 +

1
2

β3(R + αp)‖zI‖2 + β1CṼTzV + β2LĨT
c zc + β3La ĨTzI (38)

+ Vφ(φe, ν̃, z),

where:

Vφ(φe, ν̃, z) =
1
2

φ2
e +

1
2

ν̃T M(q)ν̃ + zT M(q)ν̃ +
1
2

zTK̄iz +
1
2

zTK̄pz. (39)

Notice that (39) can be bounded as follows [33]:

Vφ ≥ 1
2
|φ|2 + 1

2
λmin{M(q)}‖ν̃‖2 − λmax{M(q)}‖z‖‖ν̃‖+ 1

2
λmin{K̄i}‖z‖2 +

1
2

λmin{K̄p}‖z‖2,

=
1
2
|φe|2 +

1
2

[
‖ν̃‖
‖z‖

]T

Q1

[
‖ν̃‖
‖z‖

]
, (40)

≥ 1
2
|φe|2 +

1
2

λmin{Q1}[‖ν̃‖2 + ‖z‖2] ≥ 1
2

min{1, λmin{Q1}}‖ξ‖2,
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Q1 =

[
λmin{M(q)} −λmax{M(q)}
−λmax{M(q)} λmin{K̄i}+ λmin{K̄p}

]
,

with ξ = [φe, ν̃1, ν̃2, z1, z2]
T . On the other hand, it is possible to upper bound (39) as [33]:

Vφ ≤ 1
2
|φ|2 + 1

2
λmax{M(q)}‖ν̃‖2 + λmax{M(q)}‖z‖‖ν̃‖+ 1

2
λmax{K̄i}‖z‖2 +

1
2

λmax{K̄p}‖z‖2,

=
1
2
|φe|2 +

1
2

[
‖ν̃‖
‖z‖

]T

Q2

[
‖ν̃‖
‖z‖

]
, (41)

≤ 1
2
|φe|2 +

1
2

λmax{Q2}[‖ν̃‖2 + ‖z‖2] ≤ 1
2

max{1, λmax{Q2}}‖ξ‖2,

Q2 =

[
λmax{M(q)} λmax{M(q)}
λmax{M(q)} λmax{K̄i}+ λmax{K̄p}

]
.

Moreover, we can write:

1
2

χT
1 P1χ1 ≤

C
2
‖Ṽ‖2 + β1CṼTzV +

1
2

KiV‖zV‖2 ≤ 1
2

χT
1 P̄1χ1,

1
2

χT
2 P2χ2 ≤

L
2
‖ Ĩc‖2 + β2LĨT

c zc +
1
2

Kic‖zc‖2 ≤ 1
2

χT
2 P̄2χ2,

1
2

χT
3 P3χ3 ≤

1
2

La‖ Ĩ‖2 + β3La ĨTzI +
1
2

αi‖zI‖2 ≤ 1
2

χT
3 P̄3χ3,

P1 =

[
C −β1C
−β1C KiV

]
, P̄1 =

[
C β1C

β1C KiV

]
,

P2 =

[
L −β2L
−β2L Kic

]
, P̄2 =

[
L β2L

β2L Kic

]
,

P3 =

[
La −β3La

−β3La αi

]
, P̄3 =

[
La β3La

β3La αi

]
,

where we defined χ1 = [‖Ṽ‖, ‖zV‖]T , χ2 = [‖ Ĩc‖, ‖zc‖]T , and χ3 = [‖ Ĩ‖, ‖zI‖]T . Thus, according to
this and (41) and (42), we have that

α1(‖ζ‖) = c1‖ζ‖2 ≤W(ζ) ≤ c2‖ζ‖2 = α2(‖ζ‖), (42)

where:

0 < c1 =
1
2

min
{

1, λmin{Q1}, λmin{P1}, λmin{P2},

λmin{P3},
1
2

β2Kpc,
1
2

β1

(
1

Rc
+ KpV

)
,

1
2

β3(R + αp)

}
,

c2 =
1
2

max
{

1, λmax{Q2}, λmax{P̄1}, λmax{P̄2},

λmax{P̄3},
1
2

β2Kpc,
1
2

β1

(
1

Rc
+ KpV

)
,

1
2

β3(R + αp)

}
.

Notice that α1 and α2 are class K∞ functions.
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Taking advantage from the following cancellations, which are a direct consequence of the
similarities between the closed-loop dynamics (28)–(30) and (34)–(37), and the open-loop dynamics (7),
(8), φ̇ = w, (5), (11) and (12), (also see the paragraph after (21)):

ṼT Ĩc − ĨT
c Ṽ = 0, −ṼT Ĩ + ĨTṼ = 0, ν̃TC(q, q̇)ν̃ = 0,

we find that the time derivative of W along the trajectories of the closed-loop system (28)–(30) and
(34)–(37), is given as:

Ẇ = ṼT
[
−
(

1
Rc

+ KpV

)
Ṽ − KiVzV − CV̇∗

]
+ ĨT

c

[
− Kpc Ĩc − Kiczc − Lİ∗c

]
+ ĨT

[
− (R + αp) Ĩ + nkmν̃− nkmνd − αizI − La İ∗

]
+ αizT

I Ĩ + KiVzT
VṼ + KiczT

c Ĩc + β1CṼTṼ

+ β1zT
V

[
Ĩc − Ĩ − KiVzV − CV̇∗

]
+ β2LĨT

c Ĩc + β2zT
c

[
− Ṽ − Kiczc − Lİ∗c

]
+ β3La ĨT Ĩ

+ β3zT
I

[
nkmν̃ + Ṽ − nkmνd − αizI − La İ∗

]
+ V̇φ,

where:

V̇φ = − w̃φe − kpφ φ2
e + φe(kdφ − 1)φ̇∗ − 1

2
ν̃TK̄pν̃− 1

2
ν̃T [K̄p − 2M(q)]ν̃− zTC(q, q̇)ν̃− zTK̄iz

+ (ν̃ + z)T [M(q)ν̇d + C(q, q̇)νd + f νd]− (ν̃ + z)Tnkm Ĩ − (ν̃ + z)T f ν̃.

We can bound the following term as [33]:

−1
2

zTK̄iz + zT [M(q)ν̇d + C(q, q̇)νd + f νd] ≤ −
1
2

λmin{K̄i}‖z‖2

+‖z‖
[

λmax{M(q)}‖ν̇d‖+
r2

2b
mcd|φ̇|‖νd‖+ f ‖νd‖

]
,

≤ −1
2

λmin{K̄i}‖z‖2 + ‖z‖s3 ≤ 0, if
2s3

λmin{K̄i}
≤ ‖z‖ ≤ ‖x‖, (43)

s3 = ‖A−1‖
[

λmax{M(q)}
√

max{kpφ, kdφ}2(|φ̇e|+ |φ̈e|+ |φ̈|)2 + v̇2
d

+
r2

2b
mcd|φ̇|

√
max{kpφ, kdφ}2(|φe|+ |φ̇e|+ |φ̇|)2 + v2

d

+ f
√

max{kpφ, kdφ}2(|φe|+ |φ̇e|+ |φ̇|)2 + v2
d

]
.

In a similar way, we can obtain:

−1
2

ν̃TK̄pν̃ + ν̃T [M(q)ν̇d + C(q, q̇)νd + f νd] ≤ 0, if
2s3

λmin{K̄p}
≤ ‖ν̃‖ ≤ ‖x‖. (44)

Therefore, we can bound V̇φ as:

V̇φ ≤ − kpφ|φe|2 −
1
2

ν̃T [K̄p − 2M(q)]︸ ︷︷ ︸
KPM

ν̃− 1
2

zTK̄iz

− w̃φe + (kdφ − 1)φeφ̇∗ − zTC(q, q̇)ν̃− (ν̃ + z)Tnkm Ĩ − (ν̃ + z)T f ν̃.



Sensors 2020, 20, 6522 12 of 19

Matrix KPM is positive definite (and, hence, all of its eigenvalues are positive) if it is strictly
diagonally dominant and its diagonal entries are positive [38], i.e.,:

nkp1 − 2(|M11|+ |M12|) > 0,

nkp2 − 2(|M21|+ |M22|) > 0.

Considering (3), (31) and using matrix notation, we can write [33]:

V̇φ ≤ −uTQ0u + |φe||kdφ
− 1||φ̇∗| − (ν̃ + z)Tnkm Ĩ, (45)

and matrix Q0 is defined as:
kpφ − r

4b − r
4b 0 0

− r
4b

1
2 λ1{KPM}+ f 0 − f

2 − r2

4 mcd|φ̇|
− r

4b 0 1
2 λ2{KPM}+ f − r2

4 mcd|φ̇| − f
2

0 − f
2 − r2

4 mcd|φ̇| 1
2 nki1 0

0 − r2

4 mcd|φ̇| − f
2 0 1

2 nki2


where u = [|φe|, |ν̃1|, |ν̃2|, |z1|, |z2|]T and λ1{KPM}, λ2{KPM}, represent two positive constants such
that 0 < λ1{KPM} < λmin{KPM} and 0 < λ2{KPM} < λmin{KPM}.

On the other hand, taking into account nkm ĨT ν̃− nkmν̃T Ĩ = 0, and (45), it is found that Ẇ can be
upper bounded as:

Ẇ ≤ −
(

1
Rc

+ KpV − β1C
)

ṼTṼ −
(
Kpc − β2L

)
ĨT
c Ĩc −

(
R + αp − β3La

)
ĨT Ĩ − β1KiVzT

VzV

−β2KiczT
c zc − β3αizT

I zI −
(
Ṽ + β1zV

)T CV̇∗ −
(

Ĩc + β2zc
)T Lİ∗c −

(
Ĩ + β3zI

)T La İ∗

−nkm ĨTνd + β1zT
V

[
Ĩc − Ĩ

]
− β2zT

c Ṽ + β3zT
I

[
nkmν̃ + Ṽ − nkmνd

]
(46)

−uTQ0u + |φe||kdφ
− 1||φ̇∗| − zTnkm Ĩ.

Moreover, recalling (23), (24) and (25), we have that:

V̇∗ =
R
km

(
Kp M−1

(q)
[
− C(q, q̇)ν̃− nkm Ĩ + M(q)ν̇d + C(q, q̇)νd − K̄pν̃− K̄iz

]
+ Ki ν̃

)
−

αp

La

{
− (R + αp) Ĩ + nkmν̃ + Ṽ − nkmνd − αizI −

La

km

(
Kp M−1

(q)
[
− C(q, q̇)ν̃− nkm Ĩ

+ M(q)ν̇d + C(q, q̇)νd − K̄pν̃− K̄iz
]
+ Ki ν̃

)}
− αi Ĩ,

İ∗c =

(
1

Rc
+ KpV

)
V̇∗ −

KpV

C

[
Ĩc − Ĩ −

(
1

Rc
+ KpV

)
Ṽ − KiVzV

]
+

1
km

(
Kp M−1

(q)
[
− C(q, q̇)ν̃− nkm Ĩ + M(q)ν̇d + C(q, q̇)νd − K̄pν̃− K̄iz

]
+ Ki ν̃

)
− KiVṼ,

İ∗ =
1

km

(
Kp M−1

(q)
[
− C(q, q̇)ν̃− nkm Ĩ + M(q)ν̇d + C(q, q̇)νd − K̄pν̃− K̄iz

]
+ Ki ν̃

)
.

Thus, we can write (46) as:

Ẇ ≤ −ρT Pρ + ‖ρ‖µ0, (47)
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where:

ρ = [|φe|, |ν̃1|, |ν̃2|, |z1|, |z2|, ‖ Ĩ‖, ‖zI‖, ‖Ṽ‖, ‖zV‖, ‖ Ĩc‖, ‖zc‖]T ,

and µ0 > 0 is proportional to either s3 or |φ̇∗|. Entries of matrix P are given as follows.

1. The first five rows and columns of matrix P are identical to Q0 defined after (45).
2. All entries of P are constant or depend on |φ̇|.
3. All of the diagonal entries of P depend on some controller gain. This controller gain is different

for each diagonal entry.
4. Let γi be the controller gain the Pii entry depends on. Excepting Pii, any of the entries of the

submatrix defining the i-th leading principal minor do not depend on γi.
5. According to the previous item, given some supt≥0 |φ̇(t)|, there always exists a large enough

γi > 0 such that the i-th leading principal minor can be rendered positive.
6. Given some supt≥0 |φ̇(t)|, there always exist controller gains such that matrix P is positive definite,

i.e., λmin{P} > 0.

Hence, recalling −ρT Pρ ≤ −λmin{P}‖ρ‖2 and given some 0 < Θ < 1, we can write (47) as:

Ẇ ≤ −(1−Θ)λmin{P}‖ρ‖2 −Θλmin{P}‖ρ‖2 + ‖ρ‖µ0,

Ẇ ≤ −(1−Θ)λmin{P}‖ρ‖2, if −Θλmin{P}‖ρ‖2 + ‖ρ‖µ0 < 0, (48)

Ẇ ≤ −(1−Θ)λmin{P}‖ρ‖2, ∀ ‖ρ‖ > µ0

Θλmin{P}
= σ0 > 0.

Thus, according to Theorem 1, the ultimate bound is given as
√

c2
c1

σ0. Since λmin{P} cannot
be rendered arbitrary large by suitable selection of controller gains, this ultimate bound cannot be
rendered arbitrarily small and we depend on a small enough µ0, i.e., on small enough s3 and |φ̇∗|.

Thus, invoking Theorem 1, it is proven that ζ ∈ R17 is bounded and it has an ultimate bound that
decreases to zero as s3 and |φ̇∗| decrease to zero, i.e., as the WMR translational velocity v decreases
to zero. Notice that φe, φ̇, φ̇∗ and their time derivatives are larger as WMR moves faster, i.e., as v is
larger. However, neither s3 nor |φ̇∗| can be zero since this would imply that WMR does not move.
Thus, the ultimate bound cannot be zero. This completes the proof of Proposition 1. Conditions for
this stability result are summarized by c1 > 0 and all of the eleven leading principal minors of matrix
P defined in (47) are positive.

Remark 1. According to arguments at the end of the above proof, given any |φ̇| there always exist controller
gains such that λmin{P} > 0 globally. However, large values of |φ̇| also result in a large ultimate bound√

c2
c1

σ0. This and the fact that sensors used to measure φe always have a limited range, force the stability result
in Proposition 1 to be local. Moreover, according to Assumption 1, in Section 2.2, we require tracking error φe to
be small in order to ensure that path-tracking is achieved.

Remark 2. As stated in the introduction Section, the most common control scheme for path tracking in
industrial applications is composed by an external PID or PD controller for path tracking and an internal PI
velocity control for both WMR wheels. In this respect, work in [33] constitutes the only result presenting a
formal stability analysis for such a control scheme, i.e., by considering both the kinematic and dynamic models of
WMR. We stress, again, that result in Proposition 1 represents an extension of result in [33] to the case when
both (i) electrical dynamics of DC-motors used as actuators and (ii) dynamics of the inverter-DC/DC Buck power
electronic converters used as power amplifiers, are taken into account during the stability analysis. Moreover,
dynamics of all the above cited components are considered together in the stability analysis. This is different from
some results in the literature [19], on DC-motor control, where hierarchical arguments are employed to assume
that dynamics of the subsystems are isolated.
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It is important to point out that because of the fast dynamics of both the electric dynamics of DC-motors and
dynamics of the inverter-DC/DC Buck power electronic converters, no trajectory tracking performance differences
are expected between control schemes in Proposition 1 and [33]. The reason to include inverter-DC/DC Buck
power electronic converters as power amplifiers is to avoid stress of the DC-motors produced by the hard
commutation that is intrinsic to PWM-based power amplifiers [1]. Hence, performance improvement is expected
to occur at the practical power electronic stage. However, verifying this affirmation concerns to power electronics
practitioners who have proposed such a solution. The present paper is control oriented and, thus, we are only
interested in finding conditions ensuring stability of the closed-loop systems; stability conditions that can be
used as tuning guidelines in practice.

Remark 3. Proposition 1 only ensures ultimate boundedness instead of asymptotic stability. However, we stress
that this result is consistent with current practice when classical PI controllers are employed. As a matter of
fact, it is well known from classical control that the integral part of a PI controller is intended for regulation
tasks, i.e., for constant references or constant external disturbances. In this respect, it is clear from (48) that σ0

is a disturbance avoiding asymptotic stability. If this disturbance was constant, then the PI controllers could
compensate it and asymptotic stability would be achieved. However, notice that σ0 constant implies s3 constant,
i.e., φe, φ̇eφ̈e, and φ̇, φ̈ constants. Hence, this condition would restrict the result to track ingvery particular paths
such as straight lines, i.e., the result would be very limited.

Moreover, the reader might argue that path-tracking is performed by a PD controller, but not by a PI
controller. However, a PD controller cannot achieve a zero tracking error if DC-motors do not generate the
desired torques demanded by the PD path-tracking controller. This requires electric currents in motor armatures
to reach their desired values. This is not possible with PI electric current controllers if the desired currents are not
constant because the desired torques are no constant. Thus, perfect tracking cannot be achieved when employing
internal loops driven by classical PI controllers.

We are interested in proving that simple to implement controllers can achieve the path-tracking task.
After all, simple to implement controllers are preferred by practitioners. We know that there exist advanced
controllers ensuring zero tracking error in theory. However, most of those controllers only consider the mechanical
part of the system and the electrical dynamics is neglected. What most people forget is that the main argument
used to disregard the electric dynamics is the assumption that internal electric current loops driven by classical PI
controllers are employed. This explains why a nonzero trajectory tracking error is reported when experimentally
testing some advanced trajectory tracking controllers. We invite the reader to consult [40], for instance,
where such a problem appears but, incorrectly, the authors attribute the nonzero tracking error to a wrong
estimation of velocity.

5. Simulation Results

In this section, we present a numerical example to give some insight on the achievable performance
with the control scheme in Proposition 1. To this aim we employ the numerical parameters of the
WMR built at the CIDETEC-IPN Mechatronics Laboratory (also see [33]). This is a differentially driven
robot which was designed to exactly meet the description presented in Figure 1.

The robot total mass is 20 [Kg] and 0.422 [m] length, 0.35 [m] width, 0.25 [m] height are its
geometric dimensions. Robot parameters are: r = 0.07499 [m], b = 0.175 [m], mc = 15.8 [Kg],
mw = 2.47 [Kg], Ic = 0.135 [Kgm2], Im = 0.0015 [Kgm2], Iw = 0.00375 [Kgm2], d = 0.05 [m]. It is
assumed that the path-tracking sensor consists of a set of discrete optical sensors placed on an arc
of circle centered at P0 with L0 = 0.237 [m] as radius. See Figure 3. This arc of circle is centered at
the longitudinal axis of WMR spanning a total angle of 0.5 [rad]. In the following simulation results,
we assume that separation among the discrete optical sensors is 0.005 [rad].

The two identical permanent magnet brushed DC-motors employed to provide torque have as
parameters km = 1.748 [Nm/A], R = 1.05 [Ohm], La = 1.4× 10−3 [H], n = 1, f = 0.5 [Nm/(rad/s)].
Each DC-motor is fed by a inverter-DC/DC Buck power electronic converter with the parameters
E = 20[V], L = 10.6× 10−3 [H], Rc = 100 [Ohm], C = 220× 10−6 [F].
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The controller gains were chosen as kpφ = 4, kdφ = 0.3, Kp = diag{6, 6}, Ki = diag{6, 6},
αp = diag{0.5, 0.5}, αi = diag{12, 12}, KpV = diag{2, 2}, KiV = diag{15, 15}, Kpc = diag{5, 5},
Kic = diag{20, 20}.

The desired path is eight-shaped, generated as two circles one above the other, each one with
a 1 [m] radius. The upper circle is centered at (x, y) = (0,−1) in meters and circle at the bottom is
centered at (x, y) = (0,−3) in meters. See Figure 5a. The desired translational velocity was fixed to be
vd = 0.5 [m/s]. All initial conditions were fixed to zero, excepting y(0) = 0.1 [m].

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x, [m]

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

y
, 
[m

]

(a) (b)

(c) (d)

Figure 5. Path-tracking variables. (a) Dashed: desired path. Continuous: actual WMR position.
(b) Tracking error φe. (c) Actual WMR orientation φ. (d) Translational velocity v.

The desired path and the actual path described by robot are shown in Figure 5a. Notice that
convergence to the desired path is achieved despite WMR is not on the desired path at the beginning.
We realize that the actual path and the desired path overlap most of the time. In Figure 5b we observe
that the tracking error angle φe never stays at zero but its maximal value is about 0.1 [rad]. Its initial
large values are because WMR is not on the path at the beginning. Notice that φe changes sign when
the sign of curvature of desired path also changes. In Figure 5c we present the WMR orientation,
φ, just to verify that it corresponds to the described path. In Figure 5d we realize that the translational
velocity reaches its desired value vd = 0.5 [m/s] very fast and remains there.

In Figure 6a,b we observe that electric currents through both converter inductors ic1, ic2, remain
within a reasonable range, i.e., about [0, 4] [A]. The noise content is due to the discrete nature of the
optical sensors and because the nature of the desired path is also discrete, given the discrete nature
of these simulations. This feature results in noisy signals because of the derivative part of the PD
path-tracking controller. These results were obtained using increments of 0.001 [rad] when computing
circles defining the desired path. In Figure 6c,d we observe that voltages applied to both motors V1, V2,
are also noisy but these variables take values within a reasonable range, i.e., [0, 20] [Volts].
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(a) (b)

(c) (d)

Figure 6. Power electronic converter variables. (a) Electric current in the Buck converter inductor no. 1
(right), ic1. (b) Electric current in the Buck converter inductor no. 2 (left), ic2. (c) Voltage at the Buck
converter capacitor no. 1 (right), V1. (d) Voltage at the Buck converter capacitor no. 2 (left), V2.

In Figure 7a,b we see that electric currents through the motors I1, I2, are in the range [0, 4] [A],
which is acceptable for this WMR prototype. Finally, in Figure 7c,d we see the variables u1, u2, used to
control the inverter transistors. These variables contain many large spikes which, however, are applied
during short intervals of time. We also see that disregarding these spikes, these noisy signals remain
in the range [0, 1.5]. Since these variables can only take values in the range [−1, 1], we saturated the
variables plotted in Figure 7c,d to the range [−1, 1] before applying them to transistors. As we saw
above, this suffices to accomplish the path-tracking task.

(a) (b)

(c) (d)

Figure 7. Electric current through the motor armatures and transistors on-off average signals.
(a) Electric current in the right DC-motor, I1. (b) Electric current in the left DC-motor, I2. (c) On-off
signal in the right Buck converter transistor, u1. (d) On-off signal in the left Buck converter transistor, u2.

As stated in Remark 2, performance improvement with control scheme in Proposition 1 with
respect to experimental results in [33] is expected to occur only at the practical power electronic stage.
Thus, we refer the reader to [33] in order to observe the tracking performance achieved in experiments.
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The present work is not concerned with the practical power electronic stage but it is only interested
in finding conditions ensuring stability of the closed-loop system. Moreover, comparison with any
previous work would be unfair because, until now, our proposal is the only one solving the problem at
hand. See Remark 2.

6. Conclusions

We presented, for the first time, a formal stability result for a wheeled mobile robot when
the DC-motors used as actuators are fed by inverter-Buck DC/DC power electronic converter
systems as power amplifiers. It is assumed that robot is performing the path-tacking control task.
Although asymptotic stability is not ensured, the proven ultimate boundedness of the state is consistent
with current practice. This is because several internal PI loops are employed, which ensure zero steady
state error only in regulation tasks. We point out that a nonzero steady state tracking error is common
in practice even when employing advanced trajectory tracking controllers for mechanical systems.
This is because it is assumed during the design stage that electrical dynamics may be neglected because
PI electric current controllers are employed in practice. Thus, presenting a formal justification for
this control scheme that is widely employed in industrial practice is another important contribution.
Thus contrary to modern control strategies, our control scheme is simple to implement and we hope
this feature results in a good acceptance from the part of practitioners.

The electrical signals that we obtain in simulations are noisy. This is because of the discrete
nature of the methodology employed to measure the tracking error in our discrete simulations. This is
magnified by the PD controller that we use for path-tracking. This feature is not restricted to our
control scheme: highly noisy electrical signals appear whenever a controller with derivative action is
employed to control the mechanical variables. We showed that despite these noisy electrical variables,
the path-tracking task is accomplished satisfactorily.
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