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Abstract

Seed development is a complex process and consists of two phases:
embryo morphogenesis and seed maturation. LEAFY COTYLEDON (LEC)
transcription factors, first discovered in Arabidopsis thaliana several
decades ago, are master regulators of seed development. Here, we first
summarize molecular genetic mechanisms underlying the control of
embryogenesis and seed maturation by LECs and then provide a brief
review of recent findings in the role of LECs in embryonic resetting of the
parental ‘memory of winter cold’ in Arabidopsis. In addition, we discuss
various chromatin-based mechanisms underlying developmental silencing
of LEC genes throughout the post-embryonic development to terminate the
embryonic developmental program.
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Introduction

Plant seeds are composed mainly of three distinct compart-
ments: embryo, endosperm, and seed coat. Seed develop-
ment is a complex and critical stage in the life cycle of higher
plants. This development process is classified generally
into two different phases: a morphogenesis phase, which is
initiated after fertilization and consists of cell division and
differentiation, apical-basal plant axis establishment, and
organogenesis, and a maturation phase, which includes organ
expansion, storage macromolecule accumulation, and acquisi-
tion of desiccation tolerance'”. Each stage of seed development
is regulated by a number of transcription factors (TFs),
among which are LEAFY COTYLEDON (LEC)I, LEC2,
and FUSCA3 (FUS3)’. These three genes, first identified in
Arabidopsis, are master transcriptional regulators in seed
development'~. Loss-of-function mutations in LECI, LEC2, or
FUS3 lead to a partial loss of embryo identity and give rise to a
homeotic ‘leafy cotyledon’ phenotype: embryos with cotyle-
dons characteristic of leaf traits (for example, trichrome devel-
opment and anthocyanin accumulation)'’. When ectopically
expressed during vegetative phases, these genes can induce
somatic embryogenesis. Hence, these genes constitute the group
of LEC genes and appear to be evolutionarily conserved across
angiosperms to control seed development from embryogenesis
through seed maturation®.

Old story: LEC genes are master regulators of seed
development

LECI encodes a subunit of a trimeric nuclear factor Y (NF-Y)
TF and its expression is de novo activated shortly after
fertilization’. Both LEC2 and FUS3 encode plant-specific
B3-domain TFs and their expression in early embryos is
de novo activated within 2 and 3 days after fertilization
(DAFs), respectively™. LECI partly promotes the expression
of both LEC2 and FUS3'°. These three master TFs regulate
thousands of genes from early through late stages during seed
development in Arabidopsis’™ and function in partial redundancy
as well as synergistically to control seed development'-.

The LECI-bearing heterotrimeric NF-Y, through a DNA-binding
subunit (NF-YA), binds the CCAAT motif of the target gene
to regulate their expression’. Various genetic and molecular
analyses reveal that LECI is a central regulator of seed devel-
opment and controls embryonic morphogenesis such as to
maintain suspensor identity and specifying cotyledon iden-
tity and seed maturation, including biosynthesis of storage
macromolecules, acquiring desiccation tolerance, and seed
dormancy'~. Recent studies show that LECI sequentially regu-
lates distinct sets of genes involved in seed development from
early through late stages by coordinating with distinctive
TFs and hormones at different stages’. In early embryogen-
esis, LECI directly regulates the expression of the HD-ZPIII
TFs PHAVOLUTA and PHABULOSA (functioning as apical
fate master regulators), and the basic leucine zipper (bZIP) TF
SCARECROW that controls root architecture'*'", to promote the
establishment of the apical-basal plant axis in embryogenesis.
In addition, upon a high level of GA accumulation and con-
sequent degradation of the DELLA protein (a LEC1 part-
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ner), LEC1 is released to activate the expression of the auxin-
biosynthesis genes, including YUC4 and YUCIO0, leading to
auxin accumulation to facilitate embryo morphogenesis'”. In the
embryo/seed maturation phase, for instance, LEC/ activates the
expression of CRUCIFERIN (encoding a seed storage protein)
and FATTY ACID DESTATURASES3, leading to the accumulation
of seed storage macromolecules'*!".

Apart from the CCAAT motif, recent genome-wide analyses
of LECI occupancy reveal that other cis-regulatory elements
are enriched in LECI target genes in seed development, includ-
ing RY (CATGCA), ABRE [(C/G/T) ACGTG(G/T)(A/C)] and
G-box (CACGTG)"". This indicates that LECI may partner
with other DNA-binding proteins to regulate seed gene expres-
sion. It has recently been shown that LEC1 can interact with
LEC2 to form a ternary complex that regulates seed gene
expression'®’; in addition, LEC2 and FUS3 can form a
heterodimer'®. The DNA-binding B3 domains in both LEC2
and FUS3 recognize the RY motif or its variants®**'"”; hence,
it is not surprising that the RY motif or variants are enriched in
LECI-binding sites. Consistent with similar seed phenotypes
in lecl, lec2, and fus3, these three genes regulate common sets
of genes that are involved in embryogenesis or seed maturation
or both’®. Nevertheless, these three genes each have
distinct targets in seed development’~. Thus, these genes have
partially overlapping as well as synergistic functions in the
control of seed development.

New function: LEC genes reset the parental ‘memory
of winter cold’ in early embryogenesis

Many over-wintering plants in temperate climates acquire
competence to flower in spring after experiencing winter
cold (prolonged cold exposure) through a process known as
vernalization””?!. The vernalization pathways shut down the
expression of a potent floral repressor and this vernalization-
mediated repression or ‘vernalized state’ is maintained in cell
divisions during subsequent growth and development when
the temperature rises in spring, namely epigenetic ‘memory of
winter cold’, enabling plants to flower in spring’”>. However,
the ‘memory of winter cold’ must be reset/erased in the next
generation to ensure that each generation or growth cycle expe-
riences winter cold prior to flowering and thus flowers at a right
season to maximize reproductive success’*. In crucifers such
as Arabidopsis thaliana, the vernalization pathway represses the
expression of the potent floral repressor FLOWERING LOCUS
C (FLC) to enable spring flowering®'. Recent studies reveal that
shortly after fertilization LEC1 functions as a pioneer TF to initiate
FLC resetting/re-activation and that LEC2 and FUS3 subsequently
function together with LECI to fully re-activate FLC expres-
sion in early embryogenesis'’*. Hence, these three LEC genes
act to reset the parental ‘memory of winter cold’ during early
embryogenesis in Arabidopsis.

In Arabidopsis winter annuals, FLC, encoding a MADS-box
TF, is upregulated by FRIGIDA (FRI) to a high level to inhibit
precocious flowering in young seedlings prior to winter cold
exposure”*. FRI, a plant-specific scaffold protein, is enriched
at the FLC locus and functions as ‘molecular glue’ to recruit
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active chromatin modifiers such as the histone 3 lysine 4
(H3K4) methyltransferase complex COMPASS-like and the
histone 3 lysine 36 (H3K36) methyltransferase EARLY
FLOWERING IN SHORT DAYS (EFS, also called as SDGS8)
and histone acetyltransferases’’~’. This leads to the establish-
ment of an active chromatin environment with multiple active
chromatin marks, including H3K4me3, H3K36me3, and histone
acetylation, resulting in a high level of FLC expression”. When
the temperature drops in winter, two homologous B3-bearing
proteins VP1/ABI3-LIKE 1 (VALI) and VAL2 are specifically
enriched at a 47-base pair cis-regulatory element encompass-
ing two canonical RY motifs (known as ‘cold memory element’
or CME), located near the 5° end of the first intron of FLC, to
mediate FLC silencing by vernalization®*'. VAL proteins further
recruit Polycomb group (PcG) proteins such as Polycomb
repressive complex 2 (PRC2, an H3K27 methyltransferase
complex) that deposits the repressive histone mark H3K27
trimethylation (H3K27me3), leading to a silenced chromatin
state at FLC and consequent FLC silencing by vernalization®'.
After return to warmth, the silenced FLC chromatin is stably
maintained or ‘memorized’ through cell divisions during
subsequent growth and development through DNA replication-
coupled H3K27 trimethylation by PRC2***.

The epigenetic ‘memory of winter cold’ is reset in the next
generation. A recent study has revealed that a LECI-bearing
NF-Y (LEC1 NF-Y) pioneer TF initiates FLC re-activation/
resetting shortly after fertilization”. Loss of LECI function
disables FLC resetting in early embryogenesis and thus FLC
remained silenced in the next generation in the absence of
winter cold exposure. LEC1 NF-Y binds to CCAAT motifs
located in a distal FLC 5° promoter region, enabling the CME to
be accessible to LEC2 and FUS3". The B3 domains of LEC2,
FUS3, VALI, and VAL2 bind to CME in an identical manner".
In early embryogenesis, LEC2 and FUS3 are progressively
enriched at the CME region, whereas the levels of VAL pro-
teins at CME are progressively reduced, resulting in a disruption
of PcG-mediated silencing at FLC inherited from the
vernalized parents’”. On the other hand, LEC2 and FUS3 fur-
ther recruit FRI in complex with active chromatin modifiers
to establish an active FLC chromatin state, resulting in embry-
onic FLC re-activation/resetting’’. The active embryonic
FLC chromatin state can be transmitted to young seedlings
upon seed germination and a high-level expression of FLC
prevents precocious flowering prior to winter cold exposure™.

Developmental silencing of LEC genes throughout
post-embryonic development

LEC genes are specifically or primarily expressed in seed
development and silenced throughout post-embryonic devel-
opment under normal growth conditions™. This terminates
the embryonic developmental program. Following seed ger-
mination, plants enter vegetative growth and development.
Furthermore, the silencing of LECs at seedling stages enables
VALLI and VAL2 to bind to CME at the FLC locus to mediate
FLC silencing again by vernalization when winter cold comes'’,
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ensuring that each generation acquires competence to flower
after experiencing winter.

LEC genes are silenced by chromatin-mediated mechanisms
through repressive chromatin modifications throughout post-
embryonic development’. Following seed germination, his-
tone deacetylases such as HDA6 and HDA19 are enriched at
the LEC loci for histone deacetylation' . In addition, Poly-
comb repressive complex 1 (PRC1), containing an E3 ubiquitin
ligase AtBMI1A/AtBMIIB, is enriched at LEC loci to medi-
ate histone H2A monoubiquitination (H2Aub), and after H2Aub
marking, an H3K27 methyltransferase complex, PRC2, is
recruited to deposit the repressive H3K27me3 for transcrip-
tional repression at the LEC loci**™. In addition to the H2Aub
marking, cis-regulatory DNA elements, Polycomb responsive
elements (PREs), are required for PRC2 recruitment to both
LEC2 and FUS3 chromatin®™'=; moreover, H3K27 trimeth-
ylation at LECs requires ATP-dependent nucleosome remod-
eling by PICKLE*. The H3K27me3 mark at the LEC loci is
read by LIKE HETEROCHROMATIN PROTEIN 1 (LHP1)
and two Bromo adjacent homology (BAH) domain-bearing
proteins known as EARLY BOLTING IN SHORT DAYS
(EBS) and SHORT LIFE (SHL)“®. These readers further
associate with the plant-specific EMBRYONIC FLOWER 1
(EMF1) that mediates chromatin compaction for transcriptional
repression”~’. In short, PRCl-mediated H2A monoubiquitina-
tion initiates the repression of LECs, followed by H3K27me3
deposition by PRC2 to establish stable silencing of LECs.
This results in the switch from embryonic to post-germinative
growth and development and thus termination of the embryonic
developmental program.

Perspectives

LECI, LEC2, and FUS3 play essential roles to regulate seed
development from early through late stages. Although there
is considerable understanding of the regulatory network
of LECs, important questions remain to be answered. For
example, how LECs and other transcriptional regulators func-
tion together to sequentially regulate various aspects of seed
development at different stages. How is the expression of each
LEC gene de novo activated in early embryogenesis? Within
hours after fertilization, the expression of LECI, functioning
as a pioneer TF, is activated, but the underlying molecular and
chromatin mechanisms are essentially unknown.

Plants are sessile and must endure diverse environmental chal-
lenges (for example, winter cold) by reprograming transcrip-
tional circuitries typically through chromatin modifications. At
certain loci, some environment-induced chromatin marks are
heritable through cell divisions after relief from environmen-
tal inputs. In addition to resetting/erasing of the winter cold—
induced H3K27me3 at FLC, do LEC genes function to erase
H3K27me3 at other loci and/or other chromatin marks in the
Arabidopsis genome in early embryogenesis? Seeds are essen-
tial resources of nutrients for humans and animals. Address-
ing these and related questions will advance the molecular,
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genetic, and epigenetic understanding of seed development,
providing effective strategies for genetic manipulation of seed
development toward high yield and better nutrients.
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