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Limited-angle computed
tomography with deep image
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Computed tomography is a well-established x-ray imaging technique to reconstruct the three-
dimensional structure of objects. It has been used extensively in a variety of fields, from diagnostic
imaging to materials and biological sciences. One major challenge in some applications, such asin
electron or x-ray tomography systems, is that the projections cannot be gathered over all the angles
due to the sample holder setup or shape of the sample. This results in an ill-posed problem called the
limited angle reconstruction problem. Typical image reconstruction in this setup leads to distortion
and artifacts, thereby hindering a quantitative evaluation of the results. To address this challenge,
we use a generative model to effectively constrain the solution of a physics-based approach. Our
approach is self-training that can iteratively learn the nonlinear mapping from partial projections to
the scanned object. Because our approach combines the data likelihood and image prior terms into
asingle deep network, it is computationally tractable and improves performance through an end-to-
end training. We also complement our approach with total-variation regularization to handle high-
frequency noise in reconstructions and implement a solver based on alternating direction method of
multipliers. We present numerical results for various degrees of missing angle range and noise levels,
which demonstrate the effectiveness of the proposed approach.

Computed tomography (CT) has found widespread applications in various areas from diagnostic imaging to
studies of materials and biological systems'~. In CT, an object illuminated by x-rays is rotated while collecting
projection image frames through a pixel array detector. In some CT setups, a uniform sampling of projections
around the object is not possible due to the experimental setup or the extended shape of the object. For instance,
in electron tomography, the angles are typically limited between — 70 to + 70°. The challenge also appears for
imaging planar objects such as integrated circuits because the light cannot penetrate the object due to increased
thickness or absorption at certain angles. Sometimes, this problem is also referred to as the “missing wedge”
problem since projections do not have any information about a wedge-shaped area in the Fourier space?; see
Fig. 1 for the illustration of the problem.

There are optimization-based iterative approaches to compensate for the imaging artifacts induced by the
limited projections. Algebraic reconstruction approaches, such as the algebraic reconstruction technique’, or the
simultaneous iterative reconstruction technique'®, often perform better than the traditional filtered-backprojec-
tion (FBP) method, at the expense of added computational cost. To better constrain the solution, compressive
sensing techniques!"!? have been applied to promote sparsity in reconstructions. Total variation (TV) regulari-
zation is commonly used to obtain improved accuracy of the solution while suppressing high-frequency noise
in reconstructions. However, a challenge is the choice of the regularization parameter, which is often performed
heuristically in practical applications.

Learning-based approaches for improving the reconstructions provide an alternative. Most of the initial
studies are essentially focused on image processing with pre-trained deep networks, either to in-paint sinogram
images'>~1, or to correct artifacts in reconstructed images'”!®. Therefore, they can be considered as a nonlinear
filtering operation before or after the image reconstruction step. Although successful results have been achieved
using pre-trained deep networks, the effectiveness of these approaches is fundamentally limited by the training
data used. While these methods offer superior results in fields like medical imaging, where training data may be
readily available, they are often not applicable to the fields of microscopy due to the limited amount of datasets
for training.

A better approach for applications, for which training data is not available or scarce, is to use untrained
networks, called deep image priors (DIPs)'. With DIPs, the network architecture itself constrains the solution.
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Figure 1. Comparison of the conventional and limited angle tomography problems.

Similarly to the compressive sensing approach, DIPs can perform image processing tasks like inpainting or
image recovery from incomplete observations. They do so by leveraging the superior low-dimensional image
representation capability of deep generative networks. Recently, DIPs are proposed for the CT problem as a
post-processing technique after tomographic reconstruction®. In a related study, DIP is used for the limited
angle problem but for diffraction tomography?*', where the measured images are in the Fourier space. In paral-
lel, Yang et al.? introduced a similar self-training optimization approach by combining DIP and tomographic
reconstruction through a single network. While they showed great improvements compared to non-learning
approaches, they also reported the instability of the method when measurements are noisy.

In this paper, we apply DIP to the limited angle problem for tomography, and extend DIP by incorporating
regularization to improve robustness to noise. To effectively solve the problem, we also introduce an augmented
Lagrangian type approach, which enables the use of the alternating direction method of multipliers (ADMM).
Because with ADMM, we can break the imaging problem into smaller and well-defined sub-problems that can
be solved independently, we can effectively map those sub-problems onto available computing resources. To
further improve the method, we extend the work of Yang et al.?> by incorporating a fully-connected network
before the DIP network, as the reconstruction is heavily dependent on the inverse projection operator, and a
fully connected network can be trained as one. Through numerical experiments, we analyze the convergence
behavior of the method and show that our approach can outperform standard methods like FBP and TV, based
on the structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR).

Methods

In this section, we present our approach to model the inverse problem of limited angle tomography and our
solution approach. Our approach uses a generative model for constraining the solution, an approach similar to
deep image priors (DIP)'°. We also combine this approach with regularization methods for improved robustness
of the reconstruction in noisy settings.

The inverse problem. The limited angle tomography acquisition process is well approximated by a linear
imaging model as:

d=Rx+n 1)

where R : RM*! — RN*Lis the x-ray projection operator that defines a mgpping from a three-dimensional ob;\fct
represented in a vector form, x € RM*1, to a set of projection data, d € RN*!, with measurement noise, n € RN,
A common approach to solve the inverse limited angle tomography problem, is to carry out the optimization:

X = argmin ||Rx — d|; + «TV (x) (2)

TV is the total variation distance, and is defined as TV (x) = ||Vx||;. The first term is the data fidelity term meas-
ured by the £ norm and the second term is the regularization term to favor piecewise-constant solutions. / is
the regularization parameter that controls the trade-off between these terms. £; norm is chosen for data fidelity
term due to the increased reconstruction quality compared to £, norm at early experimentation.

To leverage deep generative models for effectively constraining the solution, we will describe x with,
Gy : RN*1 — RM*1 where w represents the weights of the deep neural network. This leads to the optimization
problem of the form:

w = argmin,, [RGy(d) —dl1 + VG- (3)

Because the network defines a mapping from the data domain to the object domain, it can be seen as an approxi-
mation to the inverse x-ray projection operation. Therefore, it captures both attributes of physics-based inversion
and deep image prior into a single deep neural network.

Solution of the inverse problem. For solving Eq. (3), we first convert the problem into a constrained
optimization problem by using an auxiliary variable, and use the alternating direction method of multipliers
(ADMM) for the solution®’. The constrained problem formulation is given as:

W,y = argmin,, , [RGy(d) — dlly + allyll1 subjectto VG (d) =y (4)

and the corresponding augmented Lagrangian is written as follows,
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Figure 2. Illustration of the operators and deep neural network architecture?.

L(w,y,2) = [IRGy(d) — d|l1 +allyli + 2" (VGy(d) — ) + 1/2IIVGy(d) — yl3, (5)

wheret > 01is an auxiliary parameter and z € R™*1is introduced as the dual variable. We use ADMM to mini-
mize Eq. (5) by iteratively solving for w and y, followed by the update of the dual variable , that is,

Wkt = argmin,, {IRGw(d) — dll + £/21VGutd) —y* + /1) ©
YR = arg miny{otllylh +1/2[IVG i1 (d) —y + zk/‘f||%} (7)
Zk+1 = zk +1 (Vka+1 (d) - yk+1)' ®

At each ADMM iteration, L(w, y, z) is minimized over each variable by fixing the other variables until
convergence.

The operators for the problem and the network architecture architecture are illustrated in Fig. 2. Because the
deep generative network in sub-problem Eq. (6) is used to both represent the inverse x-ray projection operation
and the deep image prior, we use two cascaded neural network architectures: a fully connected network followed
by a convolutional network. In this configuration, the input projections are mapped to the reconstruction domain
by the fully connected layers, and then they are converted to a three-dimensional array. Convolutional layers
then convert the features of the 3D tensors to minimize sub-problem Eq. (6).

The proposed solution utilizes the deep image priors in order to improve the reconstruction. The networks
implicitly optimize the weight for inpainting missing parts of the projections with the help of the physical for-
ward model. Although there is missing information, low-level statistical distribution learning is used to estimate
the 3D object structure, and the network reconstructs the 3D object by filling out the missing information in
the measurements. The capability of the network to inpaint the missing parts of the projections depends on the
convergence of the self-learning process to optimize the weights of the network.
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Algorithm 1 Self-training Deep Image Priors Tomographic Reconstruction via ADMM

Require: w

00 0=0,7=05 a=5x10"3

1: while not converged do
2wkl < argmin,, <||RGW(d) —d|,+1/2||VGy(d) —yk—l—zk/THg

// iterative minimization with initial w set to the final value in the previous iteration

s 4 e argming (@lyll +7/2]|VG e (d) -y 2/

// iterative minimization with initial y set to the final value in the previous iteration

4 e F (VG (d) - )
5: k< k+1

6: end while

Implementation details. Cascaded architecture of the generative network is shown in Fig. 2 for an input
of 120 projections acquired from an object with a support of 64 x 64 x 64 pixels. First part of the network
consists of four fully-connected layers where hidden layers have 64 nodes each. Each fully-connected layer is
followed by a hyperbolic tangent activation function, a layer normalization operation, and a dropout layer with
a dropout ratio of 0.25. Then, the output of the fully-connected network is reshaped into 64 x 64 x 64. The fol-
lowing convolutional network consists of two 3D convolutional layers, two 3D transposed convolutional layers,
and one 3D convolutional layer with kernel sizes of 7, 3, 7, 3, and 3, respectively. Padding is applied for maintain-
ing the size and stride size is kept at 1, while 8 filters are used for each convolutional layer. Similarly, each con-
volutional layer is followed by a Exponential Linear Unit (ELU) activation and a layer normalization operation,
and the output of the last convolutional layer is the reconstruction of 3D object.

Algorithm 1 presents the pseudo-code of our ADMM algorithm. For the minimization of sub-problem Eq. (6),
we use the Adam optimizer® with a learning rate of 2 x 107, and the two momentum terms are equal to 0.5 and
0.999. We experimented with different values for the total variation regularizer parameter o empirically, and we
found that values between le — 3 and le — 5 give reasonable results for different objects and different levels of
desired piece-wise smoothness. This change depends on the object, and the reconstruction is not too sensitive
to change of the value of . We initialize w, y, and z with zeros at the first iteration, and each of the inner opti-
mizations for w [Eq. (6)] and y [Eq. (7)] are initialized with their corresponding values from their converging
values at the previous outer iterations. tau is initialized with the value of 0.5, and it is updated based on Egs. (9),
(10) and (11 )at every outer iteration for optimizing the value for the best convergence behavior. The number
of iterations for estimating the network weights is set to 1000 for each ADMM iteration. Similarly to other DIP
implementations, we use early stopping as a regularization to avoid over-fitting the noise.

€ = VG, (d) — yFIl 9)
ek = tM|VG, ik (d) — VG, i1 (d)]2 (10)

Sk _ {2rk, ife; > 106,
- >

%rk, if e > 10€; (11)

We use soft-thresholding? for explicitly solving the subproblem Eq. (7). For simplicity, we assume element-wise
operations for taking the absolute value, comparing to zero, and dividing. the resulting update for y is:

ki1 _ VG 4257 {0
|VG i1 (d) + 25/7| '

VG, (d) + zk/r‘ /7. (12)

We normalize the range of input variables to avoid overflowing of gradients. The normalization is done in two
steps: first, z-score normalization is done to maintain a zero mean and unit variance; and second, min-max
normalization is done to obtain values between 0 and 1. We apply normalization both to the input and the
computed projections. In other words, we normalize the x-ray transform operator, R. Besides, we apply a layer
normalization? to every layer of the network to improve the convergence and accuracy of the network.

Results

Simulation setup. To evaluate the effectiveness of the proposed method against the state-of-the-art meth-
ods, numerical tests are performed on two simulated phantoms with support of 64 x 64 x 64 pixels. One phan-
tom is a simulated 3D object consisting of two spiral-shaped materials created by XDesign?, that is made of a
strongly absorbing material, gold (Au), and a weakly absorbing material, zinc oxide (ZnO). The densities of these
materials are 19.32 and 5.606 g/cm?, respectively. A 5 keV energy beam is used to simulate the refractive index
values. The XDesign Phantom and its center slice are illustrated in Fig. 3a. The second phantom is chosen to be
the 3D Shepp-Logan phantom from TomoPy?’; see Fig. 3b for the illustration of the bottom half of the 3D object
and its center slice. The objects are chosen to be sparse in 3D space to observe the artifact removal in limited
angle tomography reconstructions more clearly.
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(a) 3D XDesign phantom and its center slice (b) 3D Shepp-Logan phantom and its center slice

23,28

Figure 3. Simulated 3D objects***® and their center slices.

For simulations throughout the paper, projections are acquired via a limited angle tomography setup where
the objects are rotated around their common axes. Projections are simulated by 1° separation in the limited
ranges of 0°-120° and 0°-150°; corresponding to 60° and 30° of missing wedge information, respectively. In
addition, Gaussian noise with increasing variance is added to test the noise removal capabilities of the proposed
method, resulting in projections that have noise with variances 0.5, 2.5, 5, and 10. We assumed Gaussian noise
on measurements because we mainly target transmission-type microscopes, where the photon fluence on the
sample is reasonably high. However, for microscopes that use secondary signals like fluorescence emission or
gamma radiation, a Poisson data formation model may be a better choice.

Analysis of convergence behavior. In this section, we discuss the convergence behavior of the proposed
algorithm by evaluating how different losses behave as a function of each iteration. In Fig. 4a, we show the term
IRG,,x(d) — d|1 as a function of iteration k. It is a measure of how well the generated projections based on the
reconstructed 3D object by the deep neural network fit the available data, for different number of projections
and amounts of noise.

€1 = [RG(d) —dlh (13)

The amount of noise in the projections is the main factor determining the convergence of the projection fit.
Although all setups are able to minimize this loss with increasing number of iterations, the error decreases to a
significantly lower value in noise-free cases because it is not possible for the generated projections to fit Gaussian
noise. This behavior is not only expected but also desired since the targeted reconstructions are required to be
free of noise. Similarly, the error minimization of projection fit for noisy setups is adjusted by the regularization
loss. Unlike the effect of noise, the effect of the missing wedge information is minimal on the convergence. With
increased number of projection angles, the decay of the error term is slightly improved.

The second loss function to update the deep network is the loss derived from the regularization term. The
auxiliary ADMM variable, y, which should converge to the gradient of a noise free reconstruction, is updated
using total variation (T'V) regularization to have minimum values except at the edges. Then, the network weights
are updated by minimizing:

& = 1/2|VGE ) — y* + 25/ )2 (14)

As shown in Fig. 4b, unlike the convergence of the projection fit loss, change in the error amount of the regulari-
zation loss has a positive correlation with the variance of the noise in the projections. Since the target is for the
reconstruction to have piece-wise smoothness, reconstructions with high variance are effected by regularization
more, and the error is minimized accordingly for noisy projections. A trade-off between the effects of regulariza-
tion and the projection fit is apparent in noisy projection setups, where increased piece-wise smoothness means
worse fit to the sinograms. Due to this trade-off, decay curves show an increase in error for the regularization
term with the increased number of iterations while the generated projections converge to the noisy projections.
Similarly to the projection fit decay curve, the error for regularization also achieves smaller values for increased
number of projections with decreasing effects of missing wedge artifacts.

ADMM convergence can be analyzed by the observation of the decay curves of primal and dual residuals of
the ADMM framework. The primal and dual residuals, 7**! and s**1, respectively, can be derived from Eq. (5)
as follows, where k is the outer iteration number:

rk‘H :yk+1 — Vka+1 (d) (15)

S =2 {VG i1 (d) — VG i (d))} (16)

The derived primal and dual residuals demonstrate the behavior of the update steps taken in the ADMM itera-
tions. While the primal residual is a measure of how well the reconstructions converge towards the auxiliary
variable z, the dual residual shows how much the reconstruction is updated towards the solution. While Figs. 4c
and d demonstrates that residuals are minimized with increased number of iterations for each setup, the amount
of decrease is more for the noisy reconstructions due to the increased divergence from the initial reconstructions
and higher number of degrees of freedom they have.
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Figure 4. Convergence curve plots.

Reconstructions and comparisons. In this section, we show the reconstructions for different tomo-
graphic angle ranges, list the methods in the literature to be compared to the proposed approach, present the
reconstructions for the simulations for all methods, and discuss the results qualitatively and quantitatively.

In Fig. 5, the center slices of 3D reconstructions of the two simulated objects with different tomographic scan
angles in the noise-free case are demonstrated. As can be seen, reconstruction for 0°-150° case is the reconstruc-
tion is almost identical with the full scan angle case, and the degradation in the reconstruction for 0°-120° case
is minimal with some small visible artifacts. With the increased missing wedge size, the reconstruction quality
decreases as expected. However, the reconstruction for the Shepp-Logan phantom, which is a more compact
object, is quite reasonable even for even the 0°-40° case, where the reconstruction for the 0°-80° does not even
show easily visible artifacts. In contrast, the limitation of the approach for a more complex object such as the
XDesign phantom can be observed for small tomographic angle range reconstructions. While the reconstruction
for the 0°-80° case is acceptable, the structure of the object is lost in the 0°-40° case. In addition to the reconstruc-
tions in Fig. 5, reconstructions of a slab-shaped 2D object with square inclusions are provided in Supplementary
Fig. S2 to show the effectiveness of the algorithm for different types of objects. It is observed that the proposed
method also produces successful reconstructions with a slab-shaped object.

Comparative studies. To evaluate the improvements brought by the proposed method over the ones in the lit-
erature, reconstructions from the proposed algorithm are compared to the reconstructions from state-of-the-art
algorithms. The baseline algorithm used for comparison is called GridRec®"*2, a simple filtered-back projection
method* implemented by the application of interpolation in Cartesian coordinates instead of polar coordinates.
GridRec is demonstrated as the primal reconstruction method that does not take any steps to compensate for
missing wedge artifacts or noise. A more elaborate and advanced algorithm is developed by Yang et al.??, deploy-
ing a self-training approach with a Generative Adversarial Network (GAN), called GANrec, and aiming at accu-
rate slice-by-slice reconstructions by the use of a generative network with the help of a discriminator network
loss. Although the method is successful for reconstructions in noise-free cases and eliminates some of the miss-
ing wedge artifacts, it is not robust to noisy projection inputs.

To understand the effectiveness of the noise removal by regularization in the proposed approach, a Total
Variation (TV) reconstruction algorithm?®* is used, which deploys a total variation regularization integrated into
back-projection algorithm to lower the noise and missing wedge artifacts. For TV, an efficient implementation
called TIGRE® is used for reconstructions. The Deep Image Prior (DIP) algorithm is also tested by designing a
DIP network as shown in Supplementary Fig. S1. The convolutional network implemented in DIP is chosen to
be deeper than the cascaded network in the proposed model, and has the same number of trainable parameters.
The network is trained in the same ADMM framework with the addition of total variation regularization. For
GridRec, GANrec, TV, DIP, and the proposed method, the same forward projector®® is used, and GANrec is
implemented in PyTorch for a fair comparison.

Comparisons. In Fig. 6, center slices of the 3D reconstructions of GridRec, GANrec, TV, Deep Image Pri-
ors with TV (DIP-TV), and the proposed method (TomoDIP-TV) from noise-free projections are shown. For
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Figure 5. Reconstructions for projection in varying angles from noise-free projections.

both angle ranges and phantoms, GridRec fails to generate comparable results due to the missing projections.
Reconstructions from GANTrec are significantly improved compared to the GridRec. GANrec is able to eliminate
elongation artifacts at the edges of the sections of the object, although it shows some streaking artifacts in the
areas that should have been piece-wise constant. Details of the improvements at the edges are more visible in the
zoomed images; however, streaking artifacts are shown to be above the desired limits for the low number of pro-
jections. This effect is more observable for the XDesign phantom. TV method improves the piece-wise smooth-
ness with the help of regularization, but fails at compensating for missing wedge artifacts. As shown in the
zoomed images, although the streaking artifacts are reduced, borders of the objects experience notable artifacts.
Besides, even though the reconstructions for fewer missing wedge data (0°- 150°) are close to the ground truth,
effects of over-regularization can be seen at the edges. However, DIP-TV greatly reduces the artifacts and recon-
structs the objects more accurately. The proposed method improves the reconstruction quality even more by
reducing the artifacts at the edges to very low levels. This effect can be observed in detail in the zoomed images.

In Table 1, Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR) for the noise-
free reconstructions are shown. The quantitative measures of the reconstructions mostly align with observations
in the qualitative analysis, and the proposed method performs the best overall. On the other hand, in particular
setups, DIP-TV method generates slightly higher measures when there is enough data and less variance in the
object values. While GridRec has the worst measures, GANrec and TV show their advantages in different setups.

The effect of increased noise variance in the projections is evaluated in Fig. 7 where center slices of the 3D
reconstructions using GridRec, GANrec, TV, DIP-TV, and TomoDIP-TV from noisy projections are shown. For
the simulations, the variance of the Gaussian noise is varied between 0.5 and 10, while the projection angle range
is kept the same (0°-150°). As expected, GridRec and GANrec do not perform well when the input projections
are noisy. In fact, GANrec suffers more from the increased noise since there is no mechanism in the algorithm
to prevent the generated projections from fitting the noisy sinograms, creating even noisier reconstructions.
TV performs significantly better than the previous two methods, but it suffers from poor reconstruction quality
at the edges. Moreover, the reconstruction quality is greatly reduced with increased noise, where the trade-off
between missing wedge artifacts and regularization is more apparent. DIP-TV takes advantage of the regu-
larization effect of the deep image priors and reconstructs the 3D object well, even for the setups with high
noise variance. However, it fails to eliminate artifacts to recover the object structure when the noise variance is
increased beyond its limits. On the other hand, TomoDIP-TV takes advantage of the fully connected network to
reconstruct the object structure and improves the quality with the help of DIP and TV regularization. Although
the reconstructions for projections with high noise variance are far from ideal, the object structure is preserved
more compared to the previous methods.

Quantitative analysis of the 3D reconstructions from noisy projections can be seen in Table 2. Most of the
SSIM and PSNR values are consistent with the qualitative observations and highly favor the proposed method as
the best reconstruction method. While reconstructions using GANrec have the lowest SSIM and PSNR values,
the increase towards the proposed method in SSIM is notably higher than the increase in PSNR. In some cases,
the PSNR values are slightly lower for the proposed method, whereas the SSIM values are significantly higher. For
those setups, qualitative evaluations of the reconstructions in Fig. 7 show that even though the PSNR is lower, the
structural integrity of the reconstructions is higher for the proposed method than for the rest of the algorithms.

Although the sinogram completion effect of the DIP method is not explicit, it can be observed in sinograms
of the reconstructed objects. A comparison of the complete sinogram for the Shepp-Logan phantom and the
reconstructed sinogram for the noise-free case is given in Fig. 8. As observed, the missing part of the sinogram
is constructed using only the information from the other parts of the sinogram, which do not necessarily give
straightforward information about the missing part. This difference shows the advantage of the DIP method over
the techniques in the literature, which lack the ability to complete the sinogram information in detail.
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Figure 6. Reconstruction comparison for the XDesign phantom and the Shepp-Logan phantom for the noise-
free case.

XDesign phantom Shepp-Logan phantom

0°-120° 0°-150° 0°-120° 0°-150°
3D Noise free reconstruction | ssim | psnr | ssim | psnr |ssim | psnr |ssim | psnr
GridRec 049 |60.90 |0.56 |62.50 |0.39 |62.51 |0.42 |63.20
GANrec 0.74 |65.76 |0.90 |71.23 |0.79 |69.43 |0.86 |69.06
vV 0.86 |70.62 |093 |7444 |0.80 |68.43 |0.88 |70.41
DIP-TV 090 |72.37 |091 7248 |0.83 |6855 (097 |76.18
TomoDIP-TV 091 |73.15 |0.94 |76.01 |0.86 |69.41 |0.95 |73.98

Table 1. Quantitative comparison of reconstruction qualities from noise-free projections (Best SSIM and
PSNR results per number of projections are shown in bold).

Discussion
In computed tomography, uniform sampling around the object might not always be possible, creating the so-
called missing-wedge problem. Reconstructions using the traditional methods such as filtered back-projection
show elongation, streaking, and ghost tail artifacts. Regularizers can be employed to reduce the effects of these
artifacts. An example is the TV method which incorporates total variation regularization into the back-projection
operation based on preliminary information or assumptions on the object. Although this approach is successful
at increasing the reconstruction quality, artifacts cannot be eliminated completely; see Fig. 6. On the other hand,
deep image priors (DIP) architecture demonstrates that the whole process could be learned by self-training the
network. The convolutional network employed becomes an “optimized regularizer” to reduce the artifacts. Using
this idea, we have implemented a DIP network to reconstruct the 3D object directly from the projections. To
incorporate total variation regularization, we applied self-training in an ADMM framework, which is able to
decompose the problem into more manageable sub-problems. The resulting reconstructions showed that DIP-
TV approach increased the reconstruction quality notably, eliminating both missing wedge and noise artifacts
(see Figs. 6 and 7).

Although we have shown that the DIP-TV method improves the reconstruction of 3D objects compared to
the methods in the literature, the idea of the DIP is to regularize an existing solution. In DIP computed tomog-
raphy reconstructions, the convolutional network is responsible for the inverse projection operation in addition
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Figure 7. Reconstruction comparison for the XDesign phantom and the Shepp-Logan phantom for different
noise levels and for projections between 0° and 150°.

XDesign phantom Shepp-Logan phantom

62 =05 62 =25 o2 =5 o2 =10 02=05 02=25 02=5 02 =10
3D noisy reconstruction ssim | psnr ssim | psnr ssim | psnr ssim | psnr ssim | psnr ssim | psnr ssim | psnr ssim | psnr
GridRec 0.55 62.30 0.52 61.98 0.49 61.62 0.46 61.06 0.39 62.83 0.34 62.34 0.31 61.43 0.29 61.12

GANrec 0.49 61.89 0.30 59.56 0.25 58.90 0.24 58.75 0.38 64.25 0.26 62.55 0.24 62.22 0.22 61.98
TV 0.79 71.97 0.73 69.06 0.69 67.48 0.63 65.38 0.64 68.90 0.54 67.49 0.50 66.77 0.45 65.60
DIP-TV 0.89 69.01 0.84 67.52 0.83 66.70 0.73 71.11 0.85 69.02 0.79 67.80 0.75 66.87 0.71 66.39
TomoDIP-TV 0.97 75.11 0.92 7291 0.90 70.48 0.81 66.82 0.87 69.81 0.81 68.10 0.77 67.34 0.71 66.42

Table 2. Quantitative comparison of reconstruction qualities from noisy projections between 0° and 150°
(Best SSIM and PSNR results per noise level are shown in bold).

to being a regularizer. However, inverse projection is a mapping operation, and it is shown that it can be mod-
eled with a fully connected network more accurately. Thus, we have designed a cascaded network consisting of
fully connected and convolutional layers as shown in Fig. 2, and replaced the fully convolutional network with
it. Although having a smaller regularizer network, Figs. 6, 7, and Tables 1, 2 show that there is a considerable
improvement in the reconstructions with the proposed method. With a more accurate modeling of the inverse
operation, it can be seen that edges are more well-defined, and variation of reconstructed values is less for the
proposed approach.

Despite the improved reconstruction quality, reconstruction time is a significant drawback for the proposed
method. The method is a self-training algorithm, and it requires the network to be trained for each unique
reconstruction, making the proposed method considerably slower compared to the supervised learning meth-
ods or the iterative reconstruction methods. For the simulations, the training is done on Nvidia GeForce RTX
2080 Super graphics card, where each inner ADMM iteration took approximately 0.37 s, resulting in 431 min to
reconstruct an object on average. The reconstruction time increases linearly with the increased number of voxels
to be reconstructed, meaning an exponential increase for increased size in one dimension. This requires the size
of the object to be limited for reasonable reconstruction times. However, experimental trials on using transfer
learning applications showed that there is a possibility of reconstructing similar objects with the trained networks
by minimal additional training, i.e., transfer learning, which can lower the reconstruction time up to 20-100
times. Starting the self-training with the optimized weights of the network from a previous reconstruction leads
to a need for a smaller change in the network weights, which reduces the reconstruction time significantly. The
temporal evaluation of the weights of the network in a previous reconstruction would mean a better starting
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Figure 8. Reconstructed sinogram for noise-free 0° — 120° projections, the sinogram from the original object
for Shepp-Logan phantom, and the relative error between them.

point, and only a fine-tuning would be needed requiring a smaller amount of time. Also, the memory of GPUs is
limited, and data transfers to and from the GPUs can become the bottleneck for self-training. The best solution to
overcome these bottlenecks is to share the computational burden among multiple GPUs, which would increase
the reconstruction speed and increase the possible size of the object to be reconstructed at the same time*”*%.

Conclusion

In this paper, we have proposed a physics-based deep image priors application on a limited-angle tomography
problem without the need for training data. We have shown that by separating the reconstruction problem using
the alternating direction method of multipliers framework, we can augment regularization for prior information
in the deep image priors network. First, we have demonstrated that deep image priors can improve the recon-
struction quality with a trade-off between the reconstruction accuracy and the reconstruction time. Then, we
have proposed a cascaded architecture network to model the inverse tomography problem more accurately and
demonstrated that performance could be further increased. Besides, we have shown that an improved reconstruc-
tion quality for data with high noise variance is possible using the proposed algorithm.

Data and code availability
The data and the code used in this study are available upon request.
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