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Interferons (IFNs) are a family of cytokines providing a robust first line of host innate
defense against pathogenic infection, and have now been part of the standard treatment
for viral infection. However, IFN based therapy can best be described as modestly
effective. Long non-coding RNAs (lncRNAs) are a novel class of non-protein-coding
RNAs that are capable of regulating gene expression at different levels, including
chromatin, transcription, post-transcription, and translation. Recently, lncRNAs are
found to be deregulated upon viral infection or IFN treatment, and some of them can
modulate viral infection in an IFN-dependent or -independent manner. Due to the crucial
roles of lncRNAs in viral infection and the IFN antiviral response, the modulation of
specific lncRNAs may be involved to increase the IFN antiviral response and improve
the clinical result of IFN-based therapy. In this review, we summarize lncRNAs that
are deregulated by viral infection, with special focus on the functions and underlying
mechanisms of some essential lncRNAs, and discuss their roles in viral infection and the
antiviral response of IFN.
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INTRODUCTION

Interferons (IFNs) are a family of cytokines providing a robust first line of host innate defense
against pathogenic infection. Upon viral infection, IFNs are actively transcribed, which then
induces the expression of various interferon stimulated genes (ISGs), establishing an antiviral state
in the target cells (Borden et al., 2007). Currently, IFNs are attractive therapeutic options to control
chronic virus infections. They are classified into three types: type I (IFN-α,-β, -ε, -κ, and -ω), II
(IFN-γ), and III (IFN-λ1/IL-29, -λ2/IL-28A, -λ3/IL-28B). Type I IFNs, predominantly interferon-
α (IFN-α) and IFN-β, have been part of the standard treatment for hepatitis B virus (HBV) and
hepatitis C virus (HCV) infection, and play important roles in the initial stages of viral infection
(Borden et al., 2007; Lin and Young, 2014). However, IFN based therapy can best be described
as modestly effective. In a study of HBV infection, IFN based therapy only reached 33% HBV e
Antigen (HBeAg) seroconversion [from HBeAg to HBV e antibody (anti-HBeAg)], with 25% of
HBeAg positive patients achieving undetectable HBV DNA (Yuen and Lai, 2011). Therefore, great
effort is needed to improve the clinical result of IFN-based therapy.

Long non-coding RNAs (lncRNAs), a novel class of non-protein-coding RNAs exceeding 200
nucleotides in length, are capable of regulating gene expression at different levels, including
chromatin, transcription, post-transcription, and translation, and thus likely to be involved
in innate immunity and viral replication (Imamura et al., 2014; Ouyang et al., 2014, 2016;
Fortes and Morris, 2016; Valadkhan and Gunawardane, 2016). Recent studies demonstrated
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that, in response to viral infection or IFN, many lncRNAs were
deregulated, and some of them impact on viral replication in
an IFN-dependent or -independent manner; some viruses may
hijack host lncRNAs to facilitate their replication and latency (Li
et al., 2016; Ma et al., 2017; Wang P. et al., 2017). Due to the
crucial roles of lncRNAs in viral infection and the IFN antiviral
response, the modulation of specific lncRNAs may be involved to
increase the antiviral response of IFN and improve the clinical
result of IFN-based therapy. In this review, we summarize
lncRNAs that are deregulated by viral infection and IFN, with
special focus on the functions and underlying mechanisms of
some essential lncRNAs, and discuss their roles in viral infection
and the antiviral response of IFN.

IFN INDUCTION

Upon viral infection, viral features or pathogen-associated
molecular patterns (PAMPs) are sensed by pattern recognition
receptors (PRRs), such as retinoid acid inducible gene I
(RIG)-I-like receptors (RLRs), Toll-like receptors (TLRs), and
cyclic guanosine-monophosphate adenosine-monophosphate
(cGAMP) synthase (cGAS). Subsequently, adaptor proteins,
such as mitochondrial activator of virus signaling [MAVS,
IFN-β promoter stimulator 1 (IPS-1), or Cardif], Toll-IL-1
receptor (TIR)-domain-containing adaptor inducing IFN-β
(TRIF), myeloid differentiation primary response 88 (MyD88),
and stimulator of IFN genes (STING), are activated, which
then phosphorylate kinases NF-κB activator (TANK)-binding
kinase-1 (TBK1) and inhibitor of κB (IκB) kinase (IKK) ε,
or the IKKα and IKKβ kinases, leading to the activation of
interferon response factors (IRF) 3/7 or NF-κB. Phosphorylated
dimers of IRF3/7 or NF-κB then translocate to the nucleus, bind
to the promoters of target genes, and trigger the expression
of IFNs (Figure 1; Schneider et al., 2014; Makris et al.,
2017).

RLR family consists of three members, RIG-I (also known
as DDX58), melanoma differentiation-associated gene 5 (MDA5,
IFIH1), and laboratory of genetics and physiology 2 (LGP2),
all of which are expressed in cytoplasm and specifically
recognize viral RNA (Bruns and Horvath, 2015). Although
they share similar structures, LGP2 lacks caspase activation and
recruitment domain (CARD), and could not directly initiate
downstream signaling like RIG-I and MDA5, while it was
shown to participate in MDA5-mediated signaling (Bruns and
Horvath, 2015). Upon binding of viral RNA, both of RIG-
I and MDA5 were transported to the mitochondria, where
they interact with the CARD of an adaptor protein MAVS
and trigger the expression of type I IFNs (Liu S. et al.,
2015). Viral nucleic acids can also be recognized by endosomal
TLRs, including TLR-3 (ds RNA), TLR7/8 (ssRNA), and TLR-
9 (unmethylated CpG DNA) (Lester and Li, 2014). Whist TLR3
interacts with TRIF and initiates TRIF-dependent signaling
cascade, TLR7/8 and TLR-9 activate MyD88-dependent pathways
(Lester and Li, 2014; Makris et al., 2017). Another TLR, cell
surface expressed TLR4, may sense lipopolysaccharides (LPS)
and induce the production of IFN-β through TRIF-mediated

signaling (Fitzgerald et al., 2003). cGAS recognizes viral
DNAs, and catalyzes the synthesis of the second messenger
cGAMP, which binds to endoplasmic-reticulum-resident protein
STING, resulting in the activation of IRF3 and induction
of type I IFN (Ablasser et al., 2013; Sun et al., 2013; Wu
et al., 2013). Other potential DNA sensors include DNA-
dependent protein kinase (DNA-PK), IFN-γ-inducible protein
16 (IFI16, also known as AIM2, absent in melanoma 2),
DNA-dependent activator of IFN-regulatory factors (DAI),
and DExD/H-box helicase (DDX) 41, etc. (Mansur et al.,
2014).

IFN SIGNALING

Generally, IFNs may bind to their receptors, and exert
antiviral effects in an autocrine/paracrine manner by signaling
through Janus kinase (JAK)-signal transducer and activator of
transcription (STAT) pathway to induce the expression of ISGs,
establishing an antiviral state in the target cells (Figure 1;
Borden et al., 2007). Except for the JAK-STAT pathway, IFNs
also function by activating other STAT-independent pathways,
such as mitogen-activated protein kinases (MAPKs) p38 and
extracellular signal regulated kinases (ERKs), as well as the
phosphatidylinositol 3-kinase (PI3K) pathway (Wang et al., 2004;
Platanias, 2005).

Type I IFNs bind to a heterodimeric transmembrane receptor
consisting of IFN-α receptor 1/2 (IFNAR1/IFNAR2), which
then activating IFNAR1/IFNAR2-associated tyrosine kinase 2
(TYK2) and JAK1, resulting in the phosphorylation of STAT1
and STAT2. STAT1/STAT2, together with IRF9, forms the IFN-
stimulated gene factor 3 (ISGF3), which translocates to the
nucleus and binds to IFN-stimulated response elements (ISREs)
in the promoters of ISGs to initiate their transcription. In
addition to ISGF3, type I IFN also induce the formation of STAT1
homodimers, which directly translocate to the nucleus without
assembly with IRF9, then bind to gamma-activated sequences
(GASs) in the promoter of ISGs to stimulate gene transcription
(Schneider et al., 2014). Type II IFNs bind to IFN-γ receptors
1/2 (IFNGR1/IFNGR2), which then activates their associated
tyrosine kinases JAK1 and JAK2, leading to the phosphorylation
of only STAT1 (Schroder et al., 2004). Phosphorylated STAT1
can form homodimers, which then translocate to the nucleus
and bind to GAS in the promoter of ISGs to promote their
transcription (Schroder et al., 2004). Type III IFNs, in contrast to
type I IFNs, bind to a distinct receptor complex composed of IL-
28RA and IL-10R2, while it triggers the same JAK-STAT signaling
transduction cascades to activate gene transcription (Lopusna
et al., 2013).

Although binding to different receptors, three types of IFNs
signaling through similar JAK-STAT pathway. Types I and III
IFNs activate the transcription of overlapping ISGs, while type
II IFNs induces overlapping but distinct set of ISGs (Hertzog
et al., 2011; Lopusna et al., 2013). These ISGs may function
as antiviral factors, positive regulators or negative regulators
of the IFN pathway (Figure 1). Antiviral factors impact on
the different stages of the viral cycle. Among them, Myxovirus
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FIGURE 1 | lncRNAs involved in the IFN antiviral response. Viral DNAs or RNAs are recognized by pattern recognition receptors (PRRs), such as retinoid acid
inducible gene I (RIG)-I-like receptors (RLRs), Toll-like receptors (TLRs), and cyclic guanosine-monophosphate adenosine-monophosphate (cGAMP) synthase
(cGAS). Subsequently, adaptor proteins, such as mitochondrial activator of virus signaling (MAVS), Toll-IL-1 receptor (TIR)-domain-containing adaptor inducing IFN-β
(TRIF), myeloid differentiation primary response 88 (MyD88), and stimulator of IFN genes (STING), are activated, leading to the activation of interferon response
factors (IRF) 3/7 or NF-κB. Phosphorylated dimers of IRF3/7 or NF-κB then translocate to the nucleus, bind to the promoters of target genes, and trigger the
expression of IFNs. IFNs exerts their antiviral effects by binding to their corresponding receptors, and signaling through Janus kinase (JAK)-signal transducer and
activator of transcription (STAT) pathway to induce the expression of IFN-stimulated genes (ISGs), which can function as antiviral effectors, positive regulators or
negative regulators of the IFN pathway. Some host lncRNAs (red color) and viral lncRNAs (blue color) can modulate the activities of transcription factors, or the
expression of ISGs, and thus impact on the IFN antiviral response.

resistance (Mx) family of guanosine triphosphate (GTP)ases,
IFN-inducible transmembrane (IFITM) and the tripartite motif
(TRIM) family of proteins influence viral entry; IFN-induced
protein with tetratricopeptide repeats (IFIT) family, the 2′–
5′ oligoadenylate synthetase (OAS)-directed RNaseL pathway
family proteins, protein kinase R (PKR), guanylate-binding
proteins (GBPs), ISG15, ISG12a (IFI27), and G1P3 (IFI6, or 6–
16) impact on viral replication, transcription, and translation;
while radical s-adenosyl methionine domain-containing protein
2 (RSAD2, viperin) and bone marrow stromal cell antigen (BST)-
2 (also known as tetherin) regulate viral assembly and release
(Zhu and Liu, 2003; Zhu et al., 2003; Cheriyath et al., 2011; Sun
et al., 2013; Liu et al., 2014; Yang et al., 2014; Xue et al., 2016;
Chen et al., 2017). Positive regulators of IFN pathway include
PRRs and signal transducing proteins, such as IRF3/7/9 and
STAT1/2, and can be enhanced by IFN and reinforce the IFN
response (Schroder et al., 2004). However, negative regulators,
such as suppressor of cytokine signaling (SOCS), ubiquitin
specific peptidase (USP) 18 and STAT3, may help IFN-induced
cells to return to cellular homeostasis (Schroder et al., 2004; Wang
et al., 2011).

DEREGULATION OF lncRNA UPON
VIRAL INFECTION

Using lncRNA array and next-generation sequencing, aberrantly
expressed lncRNAs in viral infection have been progressively
unveiled. Various viruses, including influenza A virus (IAV),
HCV, human immunodeficiency virus (HIV), herpes simplex
virus (HSV), etc. have been reported to modulate the expression
of multiple lncRNAs in host cells. One specific virus can result in
the deregulation of multiple lncRNAs. For example, the infection
of wild type or mutant IAV lacking NS1 (PR81NS1, which
failed to control IFN in infected cells) induces the expression of
lncRNA EGOT (eosinophil granule ontogeny transcript), NEAT1
(Nuclear paraspeckle assembly transcript 1), BISPR (BST2 IFN-
stimulated positive regulator, also known as LncBST2), VIN
(virus inducible lincRNA), ISR (IFN-stimulated lncRNA)2 and
ISR8, while it inhibits the expression of lncRNA NRAV (negative
regulator of antiviral response, also known as DYNLL1AS1)
(Barriocanal et al., 2014; Carnero et al., 2014, 2016; Imamura
et al., 2014; Ouyang et al., 2014; Winterling et al., 2014).
HCV infection enhances the expression of lncRNA BISPR,
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NRIR (negative regulator of interferon response), EGOT, ISR2,
ISR8, GAS5 (growth arrest-specific 5), and lncITPRIP-1, etc.
(Barriocanal et al., 2014; Carnero et al., 2014, 2016; Kambara
et al., 2014; Qian et al., 2016; Xie et al., 2018). HIV infection
promotes the expression of ISR2 and NEAT1, while it inhibits
the expression of NRON [non-coding repressor of Nuclear Factor
of Activated T cells (NFAT)] (Zhang et al., 2013; Carnero et al.,
2014; Imam et al., 2015). Likely, one specific lncRNA can also
be deregulated by the infection of different viruses. For instance,
NEAT1 was reported to be up-regulated by IAV, HIV, HSV,
and Hantaan virus (HTNV); ACOD1, a lncRNA identified by
its nearest coding gene aconitate decarboxylase 1 (Acod1), can
be increased by IAV, HSV and vascular stomatitis virus (VSV);
while NRAV can be inhibited by the infection of IAV, HSV
and Sendai virus (SeV) (Zhang et al., 2013; Imamura et al.,
2014; Ouyang et al., 2014; Ma et al., 2017; Wang P. et al., 2017;
Wang Z. et al., 2017). These results indicate that lncRNAs were
differentially expressed in viral infection, and may be involved in
viral replication and pathogenesis.

HOST lncRNAs AS PIVOTAL
REGULATORS OF IFN ANTIVIRAL
RESPONSE

Host lncRNAs Modulate IFN Induction
NEAT1, an essential component for paraspeckle formation,
may interact with mammalian Drosophila melanogaster behavior
and human splicing (DBHS) proteins, including splicing
factor proline- and glutamine-rich (SFPQ) protein, paraspeckle
component 1 (PSPC1), and a non-POU domain containing,
octamer-binding NONO/p54nrb protein (Naganuma and Hirose,
2013). Recently, it was reported to be involved in cancer
progression and the infection of several viruses, including HTNV,
HSV-1, IAV, HIV, and KSHV (Zhang et al., 2013; Imamura
et al., 2014; Idogawa et al., 2017; Ma et al., 2017; Wang Y.
et al., 2017; Wang Z. et al., 2017; Chen et al., 2018). Among
these viruses, NEAT1 modulates HTNV through impacting on
IFN induction (Ma et al., 2017). In HTNV infected human
umbilical vein endothelial cells (HUVECs), silencing NEAT1 by
siRNA significantly accelerated, while over-expression of NEAT1
by NEAT1-expressing plasmid effectively inhibited, HTNV
replication, viral-specific mRNA and nucleocapsid protein (NP)
expression (Ma et al., 2017). Results from in vivo studies
demonstrated similar inhibitory effect of NEAT1 on HTNV
virus titers and NP expression, and also found decreased IFN-
β production in serum and remarkably reduced body weight
(Ma et al., 2017). Further mechanism studies revealed that
NEAT1 may promote IFN responses by acting as a positive
feedback for RIG-I signaling (Ma et al., 2017). By interacting
with and relocating SFPQ from the promoter regions of RIG-I
and DDX60 to paraspeckles, NEAT1 removed the transcriptional
inhibitory effects of SFPQ on RIG-I and DDX60, resulting in
increased expression of transcriptional factor IRF7, which in turn
induced the expression of IFN and NEAT1 (Ma et al., 2017).
Except for this, NEAT1 also forms a multi-subunit complex

with HEXIM1, which may interact with cGAS sensor and its
partner polyglutamine binding protein 1 (PQBP1), resulting in
the release of paraspeckle proteins, recruitment of STING, and
activation of IRF3, initiating the activation pathway leading to
the production of type 1 IFN (Morchikh et al., 2017). These
results indicate that NEAT1 has a critical role in the antiviral
response of IFN through RIG-I signaling and cGAS-STING-IRF3
pathway.

Most recently, lnc-Lsm3b and lncITPRIP-1, two IFN-
inducible lncRNAs, were reported to impact on viral infection
and IFN production by modulating PRRs RIG-I and MDA5,
respectively (Jiang et al., 2018; Xie et al., 2018). Lnc-Lsm3b,
which is transcribed from Lsm3 loci, could be up-regulated
upon the infection of RNA viruses, such as VSV or SeV, as
well as DNA virus HSV-1, and could also be stimulated by
high concentration of type I IFNs and various TLR ligands
(Jiang et al., 2018). Knocking down of lnc-Lsm3b using
siRNA significantly increased the production of IFN-α and -β,
resulting in decreased replication of VSV (Jiang et al., 2018).
Mechanism studies revealed that in viral infected cells, lnc-Lsm3b
may competitively bind with RIG-I monomer to restrict its
conformational shift, thus preventing its binding with viral RNA,
resulting the inactivation of RIG-I downstream signaling and
termination of IFNs production (Jiang et al., 2018). By contrast,
lncITPRIP-1, the genomic loci of which is near to inositol 1,4,5-
trisphosphate receptor interacting protein (ITPRIP, also known
as DNACR), was reported to be induced by multiple viruses,
including HCV, VSV, SeV, and HSV, while over-expression
of this lncRNA significantly inhibited HCV replication (Xie
et al., 2018). Further studies revealed that lncITPRIP-1 can bind
to the c-terminal of MDA5, increase the oligomerization of
MDA5, and mediate MDA5-triggered production of IFNs (IFN-
β, IL-28A, and IL-29) and ISGs (ISG12a, ISG56, and ISG60),
leading to the suppression of HCV replication (Xie et al.,
2018).

NeST (IFNG-AS1, or Tmevpg1), the genomic loci of which is
located adjacent to the IFN-γ gene in both humans and mice,
was reported to promote IFN-γ expression, and is associated
with host’s persistence from Theiler’s virus (Vigneau et al., 2003;
Gomez et al., 2013). Mechanism study revealed that NeST can
bind to WD repeat-containing protein 5 (WDR5), a component
of histone H3 lysine 4 (H3K4) methyltransferase complexes,
resulting in enhanced H3K4 trimethylation (H3K4me3) at the
IFN-γ locus, and leading to enhanced transcription of IFN-γ
(Gomez et al., 2013).

Another lncRNA, lncRHOXF1, is specifically expressed in
human trophectoderm cells. It was found to be significantly
increased by the infection of SeV, while knocking down of this
lncRNA greatly reduced the production of viral mRNAs and
decreased expression of ISGs Mx1 and IFIH (Penkala et al., 2016).
Further studies demonstrated that in human trophectoderm
progenitor cells, depleting lncRHOXF1 using siRNAs resulted in
significant increase of proteins in IFN induction pathway and
ISGs, such as PRR MDA5 and RIG-I, IFN-β, as well as ISGs Mx1,
OAS1, and IFIT1 (Penkala et al., 2016). These results indicate that
lncRHOXF1 play a pivotal role in controlling SeV infection by
modulating the IFN antiviral response.
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Host lncRNAs Interfere With ISGs
Expression
NRAV, located on chromosome 12q24, was primarily found
to be down-regulated in IAV-infected A549 cells, and could
significantly affect the replication of IAV (Ouyang et al., 2014).
Over-expression of NRAV by retroviral vectors significantly
enhanced, whereas knocking down of this lncRNA by shRNA-
based lentivectors greatly reduced, IAV replication (Ouyang
et al., 2014). In in vivo studies, transgenic mice expressing
human NRAV demonstrated greater replication of IAV and
more severe inflammation in lungs compared with wide-type
mice (Ouyang et al., 2014). By cDNA array screening and
qRT-PCR validation, differentially expressed genes in NRAV
over-expressing A549 cells infected with IAV were detected.
The results showed that the expression of several critical ISGs,
including IFIT2, IFIT3, IFITM3, OASL, and Mx1, were greatly
reduced in NRAV over-expressing cells; while the expression
of these ISGs were significantly increased in NRAV knocking
down cells (Ouyang et al., 2014). Similar results were obtained
in IAV infected NRAV transgenic mice (Ouyang et al., 2014).
However, forced expression of these antiviral ISGs in NRAV
over-expressing cells greatly reversed the effect of NRAV on
the replication of IAV, suggesting that NRAV may function by
regulating the expression of these ISGs during viral infection
(Ouyang et al., 2014). Further mechanism studies revealed
that NRAV over-expression significantly increased transcription
activation marker histone 3 lysine 27 trimethylation (H3K27me3)
enrichment at mxA gene locus, whereas NRAV knockdown
greatly promoted transcription inhibition marker H3K4me3
enrichment and inhibited H3K27me3 enrichments at mxA and
ifitm3 transcription start sites (Ouyang et al., 2014). These data
suggest that NRAV promotes viral replication by inhibiting the
expression of ISGs such as MxA and IFITM3 via promoting
H3K27me3 and reducing of H3K4me3.

LUARIS (lncRNA upregulator of antiviral response interferon
signaling), also known as lncRNA #32, is an IFN down-
regulated lncRNA widely expressed in various human tissues,
and has been reported to inhibit the replication of EMCV,
HBV, and HCV (Nishitsuji et al., 2016). In immortalized
human hepatocytes (HuS cells), over-expressing of LUARIS
greatly inhibited EMCV levels, while silencing of this lncRNA
significantly enhanced viral titers (Nishitsuji et al., 2016). Results
from cDNA microarray demonstrated that, at the absence
of LUARIS, treatment of IFN-β in HuS cells significantly
reduced the expression of many known ISGs and chemokines,
including IRF7, OASL (2′–5′-oligoadenylate synthetase-like
protein), RSAD2, CCL5 (Chemokine C-C motif ligand 5), CXCL
(C-X-C motif chemokine ligand) 11/ITAC (interferon gamma-
inducible T-cell alpha chemoattractant), and CXCL10/IP-10;
while in LUARIS over-expressing cells, many of them were
greatly increased (Nishitsuji et al., 2016). Similar results were
found for anti-HBV and anti-HCV activities of IFN-β in
human primary hepatocytes, indicating the inhibitory role of
LUARIS on viral replication may associate with its regulation
of ISGs and chemokines (Nishitsuji et al., 2016). Mechanism
studies revealed that the function of LUARIS may associated
with heterogeneous nuclear ribonucleoprotein (hnRNP) U and

activating transcription factor 2 (ATF2) (Nishitsuji et al., 2016).
HnRNPU, a protein previously reported to inhibit the replication
of RNA viruses, was found to improve the stabilization of
LUARIS, and thus impacted on the expression of IP-10 and
RSAD2 (Pichlmair et al., 2012; Nishitsuji et al., 2016). In contrast,
ATF2 may bind to the promoter region of ISGs and regulate their
expression with the help of LUARIS (Nishitsuji et al., 2016). These
data implied that LUARIS may be negatively regulated by IFN to
prevent the possible inflammatory damage induced by excessive
IFN response.

BISPR, the genomic loci of which near to BST2, was identified
to be highly up-regulated by IFN-α2 or IFN-λ in a dose- and
time-dependent manner, and can be significantly increased upon
the infection of mutant viruses IAV (PR81NS1) and VSVM51R,
two of which failed to control IFN in infected cells (Garcia-
Sastre et al., 1998; Terstegen et al., 2001; Garcia-Sastre, 2011;
Barriocanal et al., 2014). Similar results were shown in HCV or
HEV infected Huh7 cells and the liver of HCV-infected patients
(Barriocanal et al., 2014; Paliwal et al., 2017). Bioinformatics
analysis suggested that BISPR could share the same promoter
with BST2 (Barriocanal et al., 2014). Furthermore, the expression
of both BISPR and BST2 was STAT-dependent, and BISPR could
positively regulate the expression of BST2 (Barriocanal et al.,
2014). Based on the inhibitory effect of BST2 on virion secretion,
BISPR may be involved in regulating viral infection partially by
increasing the expression of antiviral protein BST2.

NRIR, also known as lncRNA-CMPK2, is located near the
genomic loci ISG CMPK2 (cytodine/uridine monophosphate
kinase 2) and RASD2 (Kambara et al., 2014). It was found to be
stimulated by IFN-α or IFN-γ (Kambara et al., 2014). However,
when the JAK-STAT pathway was suppressed by JAK inhibitor
ruxolitinib or depleting of STAT2, the up-regulation of CMPK2
was abrogated, suggesting the direct stimulating role of IFN on
its transcription (Kambara et al., 2014). Furthermore, in IFN-
stimulated hepatocytes, knocking down of NRIR resulted in the
transcriptional up-regulation of many ISGs, including CMPK2,
RASD2, ISG15, CXCL10, IFIT3, and IFITM1, and also led to
remarkable suppression of HCV replication (Kambara et al.,
2014). Clinical results demonstrated that the expression of NRIR
was up-regulated in liver tissues of chronic HCV infected patients
which have active IFN response (Kambara et al., 2014). These
data suggest that NRIR promotes HCV replication by negatively
regulate the IFN antiviral response.

EGOT is another lncRNA that can be stimulated by IFN-α
(Carnero et al., 2016). It was found to modulate the infection
of different viruses, including HCV, IAV and Semliki forest virus
(SFV), and also play important roles in several cancers, such as
gastric cancer, glioma and renal cell carcinoma (Xu et al., 2015;
Carnero et al., 2016; Jin et al., 2017; Peng et al., 2017; Wu et al.,
2017). Upon HCV infection, viral RNA was sensed by RIG-I
and PKR, then NF-κB was activated and bound to the promoter
region of EGOT, leading to increased expression of EGOT
(Carnero et al., 2016). In HCV-infected Huh7 cells, depletion
of EGOT using gapmers greatly reduced HCV genomes, titer,
core and NS3 proteins (Carnero et al., 2016). Similar results
were also observed in SFV-infected Huh7 cells (Carnero et al.,
2016). Mechanism studies revealed that in EGOT depleting cells
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with or without HCV infection, the expression of several ISGs,
including GBP1, ISG15, Mx1, BST2, ISG56, IFI6, and IFITM1,
was observed to be significantly increased, indicating that EGOT
may promote viral replication by blocking the IFN antiviral
response (Carnero et al., 2016).

Miscellaneous Host lncRNAs Participate
in the IFN Antiviral Response
Four lncRNAs, including IFN-stimulated lncRNA (ISR) 2, 8, 12
and lncISG15, can be stimulated by IFN and different viruses,
and their genomic loci are near to ISGs GBP1, IRF1, IL-
6, and ISG15, respectively (Barriocanal et al., 2014; Carnero
et al., 2014). Upon the treatment of IFN, the expression of
ISR2 (GBP1 pseudogene 1), ISR8 (AC116366.6), and ISR12
(LOC100506178) was significantly stimulated at early (6–12 h,
ISR2, and 8) or later times (48–72 h, ISR12), mimicking that of
their neighboring genes GBP1, IRF1, and IL-6 (Barriocanal et al.,
2014). Bioinformatics analysis showed that STAT1 and 2 as well
as IRF1 and 2 may bind to the promoter of ISR8 and impact on
its transcription, while lncISG15 may share the same promoter
with ISG15 (Barriocanal et al., 2014; Carnero et al., 2014). Results
from virus infected cells and clinical samples showed that both
ISR2 and ISR8 can be greatly up-regulated by HCV infection,
while lncISG15 can be significantly enhanced by the infection
of mutant IAV (PR81NS1) and VSV (M51R), indicating their
possible roles in viral infection and IFN response (Barriocanal
et al., 2014; Carnero et al., 2014).

Two lncRNAs, lincRNA-cox-2 and lincRNA-EPS, can be
modulated by TLR ligands, and the deregulation of these two
lncRNAs influence the expression of some ISGs. LincRNA-cox2,
also known as Ptgs2os2 [prostaglandin-endoperoxide synthase
(PTGS) 2, opposite strand 2], can be induced by TLR ligands
in a MyD88 and NF-κB dependent manner, while the up-
regulation of this lncRNA significantly reduced the expression
of some ISGs, such as irf7 and Rasd2 (Carpenter et al.,
2013). Mechanism studies suggested that lincRNA-Cox-2 may
interact with HnRNP-A/B and hnRNP-A2/B1 to regulate gene
expression (Carpenter et al., 2013). On the contrary, lincRNA-
EPS (erythroid prosurvival), can be suppressed by TLR ligands,
and the reduction of lincRNA-EPS significantly increased the
expression of ISGs ifit2, Rasd2, Oas1 and gbp5 by recruiting
hnRNPL (Atianand et al., 2016).

Several lncRNAs, including PACER, NKILA, and lethe, may
modulate the activity of NF-κB (Rapicavoli et al., 2013; Krawczyk
and Emerson, 2014; Liu B. et al., 2015). PACER (p50-associated
Cox2 extragenic RNA), also known as PTGS2-AS1, is located
near the genomic loci of COX-2 gene, and functions as a positive
regulator of NF-κB by binding to the repressive NF-KB subunit
p50 and promoting the formation of RelA-p50 heterodimer;
NKILA (NF-κB-interacting lncRNA) inhibits NF-κB activity by
binding to NF-κB/IκB and blocking the phosphorylation sites of
IκB from IκB kinase (IKK) and thus preventing the degradation
of IκB; while lethe suppress NF-κB activity by blocking the
binding site of RelA to target genes and subsequent transcription
(Rapicavoli et al., 2013; Krawczyk and Emerson, 2014; Liu B.
et al., 2015).

Besides, lnc-DC (lnc-Dendritic cell lncRNA), also known as
WFDC21P (WAP four-disulfide core domain 21, pseudogene),
may impact on IFN response by modulating STAT3 (Wang
et al., 2014). It can directly bind to STAT3 and prevent its
dephosphorylation by SHP1, and thus activate STAT3-dependent
transcription. In another report, lncRNA lethe (after the “river of
forgetfulness” in Greek mythology) is reported to be stimulated
by STAT3, and promote HCV infection and inhibit the expression
of some ISGs, including PKR, OAS, and IRF1 (Xiong et al., 2015).
However, in this report, incorrect primers for lncRNA lethe were
used, so it is still arguable whether this lncRNA play a role in HCV
infection.

VIRUS-ENCODED lncRNAs IMPACT ON
THE IFN ANTIVIRAL RESPONSE

To counteract the IFN antiviral response, viruses have evolved
different strategies to minimize IFN production and the
activation of IFN signaling (Devasthanam, 2014; Chan and
Gack, 2016; Schulz and Mossman, 2016). Interestingly, recent
findings found that virus encoded lncRNAs may also participate
in the antiviral response of IFN. For example, PAN RNA
(polyadenylated nuclear RNA) from KSHV interacts with several
virus- and host-encoded factors, including IRF4. During the
lytic phase of KSHV infection, the expression of PAN RNA
reduces the expression of IFNα, IFNγ, and ISG RNaseL; sfRNAs
(subgenomic flavivirus RNAs) from several viruses, including
Japanese encephalitis virus (JEV), dengue virus, and West Nile
Virus (WNV), may antagonize the antiviral response of IFN by
inhibiting the IFN signaling, the expression of IFN-β or specific
ISGs; adenovirus virus-associated RNA (VA) target the ISG PKR
to regulate the expression of ISGs (Rossetto and Pari, 2011;
Schuessler et al., 2012; Chang et al., 2013; Bidet et al., 2014; Kondo
et al., 2014). Interestingly, a chimeric lncRNA HBx-LINE1, which
is generated by the integration of HBV into host cell genome,
may attenuate the IFN antiviral response by inhibiting microRNA
(miRNA)-122, a negative regulator of HBV replication which can
be suppressed by IFN (Qiu et al., 2010; Chen et al., 2011; Wang
et al., 2012; Hao et al., 2013; Lau et al., 2014).

HOST lncRNAs PARTICIPATE IN
IFN-INDEPENDENT ANTIVIRAL
RESPONSE

Except for functioning IFN antiviral response by regulating
IFN induction and ISG expression, lncRNAs can also regulate
viral infection and replication in an IFN-independent manner,
impacting on the transcription of viral genes, the translocation
of viral transcripts, the function of viral proteins, even host cell
metabolism. For example, NRON, which has been reported to
enhance HIV gene expression in primary CD4 T cells, decreases
the binding of NFAT and viral transcriptional activator Tat to
the HIV-1 long terminal repeat (LTR) promoter region, resulting
in reduced HIV-1 replication and viral protein expression;
whereas lncRNA uc002yug.2 (linc01426) enhances HIV-1 viral
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replication, LTR activity, and the activation of latent HIV
by up-regulating HIV Tat and suppressing RUNX 1b/1c, a
transcription factor which can bind with HIV-1 LTR to inhibit
HIV-1 replication (Cron et al., 2000; Willingham et al., 2005;
Imam et al., 2015; Li et al., 2016; Mousseau and Valente,
2017; Huan et al., 2018). NEAT1 modulates the replication of
different viruses by multiple mechanisms. Except for impacting
on RIG-I signaling and cGAS-STING-IRF3 pathway, NEAT1
also influence the transcription of viral genes or translocation
of viral transcripts. In response to HSV infection, NEAT1 and
two other paraspeckle protein components, P54nrb and PSPC1,
may associate with HSV DNA. By doing so, PSPC1 may recruit
STAT3 to paraspeckles and viral gene promoters, and thus
facilitate HSV replication and protein expression (Wang Z. et al.,
2017). In contrast, upon HIV infection, NEAT1 reduces nucleus-
to-cytoplasm export of HIV-1 transcripts which containing
cis-acting instability elements (INS), such as gag/pol and env
RNAs, resulting in reduced HIV-1 replication (Zolotukhin
et al., 2003; Kula et al., 2011; Yedavalli and Jeang, 2011;
Zhang et al., 2013). Similarly, lncITPRIP-1 regulates HCV
replication through both IFN-dependent and IFN-independent
manners. Except for mediating MDA5-triggered production
of IFNs and ISGs, lncITPRIP-1 also enhances the inhibitory
effect of MDA5 on HCV replication by facilitating the binding
of MDA5 to viral RNA (Xie et al., 2018). Another lncRNA,
GAS5, reduces HCV replication by interacting with HCV
protease NS3 protein to decoy its function (Qian et al., 2016).
Interestingly, lncRNA-ACOD1 can promotes viral infection by
modulating host cell metabolism. It directly interacts with
metabolic enzyme glutamic-oxaloacetic transaminease (GOT2)
in cytoplasm, resulting in increased catalytic activity of this
enzyme, leading to enhanced production of key metabolites
required for viral replication (Kotzin et al., 2017; Wang P.
et al., 2017). Besides these, other lncRNAs, such as VIN
(viral inducible lincRNA), also reported to modulate viral
replication, while it did not change type I IFN response, the
underlying mechanism of which is still unclear (Winterling et al.,
2014).

CONCLUSION AND FUTURE
PERSPECTIVES

IFN-mediated innate antiviral response is the first line of immune
defense against viral infection. In the past decade, lncRNAs
have been demonstrated to control fundamental biological
processes at the epigenetic, transcription and post-transcriptional
levels, and the deregulation of lncRNAs contributes to immune
response, including IFN-mediated antiviral response. In this

review, we summarized the deregulated lncRNAs upon viral
infection, with special focus on the functions and underlying
mechanisms of some important lncRNAs, and discussed their
roles in the antiviral response of IFN. The functions and
mechanisms of action of some essential lncRNAs in viral infection
and IFN antiviral response are summarized in Figure 1 and
Table 1.

Except for impacting on IFN-mediated antiviral response,
lncRNAs also modulate viral infection or replication by
other mechanisms, such as regulating viral gene transcription,
viral RNA translocation, viral protein function, and host cell
metabolism. Interestingly, one lncRNA, NEAT1, has been
reported to exert different effects on different viruses: it inhibits
HTNV or HIV replication by activating IFN signaling or
improving the translocation of INS-containing viral RNAs, while
enhances HSV replication by facilitating the binding of STAT3 on
the viral gene promoters. These indicate that different therapeutic
strategies should be used to control different viruses. When host
lncRNAs exert modulation on immune response, viruses have
evolved to facilitate their survival and replication by regulating
the expression of lncRNAs to influence different host pathways,
suggesting the pivotal regulatory roles of lncRNAs in the interplay
between host and viruses. Until now, only a small part of lncRNAs
have been identified and characterized to participate in the IFN
antiviral response, while the vast majority of uncharacterized
lncRNAs remain to be further explored. More extensive studies
are required to describe the precise profile of virus regulated
lncRNAs and their functions in viral infection. Furthermore, the
regulatory mechanisms of these lncRNAs by different viruses,
as well as the underlying mechanisms of these lncRNAs in viral
infection need to be fully elucidated. The investigation of the
interaction between lncRNA and the IFN antiviral response may
not only deepen our understanding of antiviral response, but
also provide novel applications for better prognosis and antiviral
therapy.
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