
Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 593175, 8 pages
http://dx.doi.org/10.1155/2013/593175

Research Article
Segmentation of the Striatum from MR Brain Images to
Calculate the 99mTc-TRODAT-1 Binding Ratio in SPECT Images

Ching-Fen Jiang,1 Chiung-Chih Chang,2 Shu-Hua Huang,3 and Chia-Hsiang Wu1

1 Department of Biomedical Engineering, I-Shou University, Kaohsiung 82445, Taiwan
2Department of Neurology, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine,
Kaohsiung 83301, Taiwan

3Department of Nuclear Medicine, Chang Gung Memorial Hospital, Kaohsiung Medical Center,
Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan

Correspondence should be addressed to Ching-Fen Jiang; cfjiang@isu.edu.tw

Received 18 January 2013; Revised 3 June 2013; Accepted 4 June 2013

Academic Editor: Norio Tagawa

Copyright © 2013 Ching-Fen Jiang et al.This is an open access article distributed under theCreativeCommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Quantification of regional 99mTc-TRODAT-1 binding ratio in the striatum regions in SPECT images is essential for differential
diagnosis between Alzheimer’s and Parkinson’s diseases. Defining the region of the striatum in the SPECT image is the first
step toward success in the quantification of the TRODAT-1 binding ratio. However, because SPECT images reveal insufficient
information regarding the anatomical structure of the brain, correct delineation of the striatum directly from the SPECT image
is almost impossible. We present a method integrating the active contour model and the hybrid registration technique to extract
regions from MR T1-weighted images and map them into the corresponding SPECT images. Results from three normal subjects
suggest that the segmentation accuracy using the proposed method was compatible with the expert decision but has a higher
efficiency and reproducibility than manual delineation. The binding ratio derived by this method correlated well (R2 = 0.76) with
those values calculated by commercial software, suggesting the feasibility of the proposed method.

1. Introduction

Alzheimer’s and Parkinson’s diseases are two common neu-
rodegenerative diseases associated with the aging process.
The induced intellectual and functional deterioration of
patients with these diseases can not only bring a heavy
load to his/her family but also has an economic impact on
society. Early diagnosis with appropriate treatment within a
reasonable time frame can prevent abrupt degeneration of
these diseases and distressing symptoms.

The current trend in the early diagnosis of such diseases
is usually to adopt a combination of functional images
and structural images to inspect the functional and struc-
tural changes in specific brain regions. However, qualitative
observation alone limits early detection of neurodegener-
ative diseases, because the associated functional/structural
changes are slowly progressive in the early stage and can
be too subtle to be detected by human vision. Therefore,

quantification of these changes can facilitate early detection
of neurodegenerative diseases.

SPECT imaging of dopamine transporter with 99mTc-
TRODAT-1 (TRODAT-1) has been proposed to be a valu-
able and feasible means for the diagnosis of Parkinson’s
disease and dementia with Lewy bodies (DLB) [1–5]. The
specific tracer, TRODAT-1, a radiolabeled tropane that binds
dopamine transporters, allows in vivo assessment of the
presynaptic dopaminergic neuron activity inside the striatum
[3, 6]. SPECT images from patients with these diseases reveal
a decrease in specific striatal uptake of TRODAT-1 in terms
of a dull contrast of radioactivity between the striatum and
adjacent brain tissue due to a selective loss of dopamine in the
striatum. Even though several approaches show the feasibility
of using TRODAT-1 SPECT in the evaluation of patients
in the early stages of these neurodegenerative diseases,
visual inspection or semi-auto quantification cannot avoid
high intra- or interobserver variability and thus hampers
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the associated diagnostic accuracy [7, 8]. A reliable automatic
method could considerably speed up the procedure andmake
it more reproducible.

Even though some commercialized software packages
provide automatic calculation of theTRODAT-1 binding ratio
(BR), definition of the striatum in the SPECT image still
relies on manual delineation. However, the brain structure is
poorly-defined in SPECT images, which reveal more func-
tional information than anatomical structural information.
Therefore, demarcation of the region of interest (ROI) in
the SPECT image is usually carried out by overlapping the
SPECT images with the corresponding MR images, such that
physicians can map the ROI delineated in the MR images to
the SPECT images. Within this process, there are two key
components of determining the accuracy of the TRODAT-1
binding quantification. First, the striatum should be correctly
defined. Second, the MR images must be precisely registered
with the corresponding SPECT images. However, even awell-
trained physician can hardly guarantee obtaining accurate
and repeatable results at these two stages. Therefore, this
study aims to develop a robust method to fulfill the shortages
in the current approaches.

Regarding the segmentation task for subcortical brain
structures, several semiautomatic methods have been pro-
posed. Worth et al. proposed the regional thresholding
method to segment the caudate from the adjacent tissue [9].
A box was manually located to cover these three tissues,
including the ventricles, the caudate, and some white matter,
to derive a bimodal histogram, and then the threshold was
determined as the mean of the two peaks of the histogram.
However, the box location required human determination,
and the vague boundaries of the caudate tail surrounded
by gray matter still require manual drawing. Barra and
Boire proposed a fuzzy-logic-based method to segment
subcortical brain structures in MR images by integrating
the numerical information derived from the wavelet features
and structural information containing symbolized distance
and relative direction coding [10]. More recently, Xia et al.
took advantage of the high-contrast lateral ventricle as the
reference to localize the upper and lower bonds of the caudate
nucleus for region growing [11]. Fine-tuning according to
the topological and morphological information was still
required to smooth the initial segmentation. In view of these
methods, as several factors, such as the complex anatomic
brain structure, the connection of different tissues of a similar
intensity, the heterogeneous intensity within the same class of
tissue, and the partial volume effect, limit the performance
of fully automatic segmentation of the striatum; therefore,
using expert knowledge to refine the initial ROI derived
by running the computer program was inevitable. However,
visual confirmation and manual correction are conducted
slice by slice and thus may still be labor intensive and time
consuming.

Instead of applying expert knowledge in the last step to
refine the segmentation in the previous studies, we propose
a new approach using an active contour model to reverse the
process of segmentation, that is, to let the expert determine
the rough location of the striatum and allow the computer to
perform the refinement, such that human intervention can be

minimized and the segmentation efficiency can be enhanced.
The segmented regions were then mapped into the corre-
sponding SPECT images via a hybrid registrationmethod for
BR calculation. These methods associated with the imaging
protocol are described in detail in Section 2. To verify the
reliability of the proposed method, the segmentation results
and the derivative BRs were compared with those of experts
assisted by commercial software. The results are presented
and discussed, following which a brief conclusion is made.

2. Methods

We used hybrid SPECT/CT and 3D T1-weighted images to
achieve the goal. Each volume played a distinct role in the
overall process. The registration of the MR and the SPECT
volume pairs was first conducted using the corresponding CT
volume as a medium. After that, the striatum was segmented
from the registered MR images. Once the MR images were
adjusted to the same size under the same coordinates with
the SPECT images through registration, the ROIs obtained
by applying the active contour model to the registered MR
images could be directly mapped into the SPECT images
to calculate the binding potential. The overall process is
summarized in Figure 1 and described in detail below.

2.1. Imaging Protocol. For this examination, all the patients
were injected intravenously with a single bolus dose of
740MBq (20mCi) of 99mTc-TRODAT-1. Brain SPECT/CT
(Symbia T; Siemens, Erlangen, Germany) images were
obtained 4 hours later.The SPECT/CT scanner was equipped
with low-energy high-resolution collimators and a dual-slice
spiral CT. Acquisition parameters for SPECT were a 128 ×
128 matrix, 500mm FOV with 60 frames (40 s/frame). The
scan parameters for the CT were 130 kV, 17mAs, 5mm slices,
and image reconstruction with a medium-smooth kernel.
The SPECT images were attenuation-corrected based on the
CT images and scatter-corrected with Flash 3DR algorithm
(ordered subsets expectation and 3D maximization with
resolution correction) with 8 subsets and 8 iterations.

MR images were acquired using a 3.0 T MRI scanner
(Excite, GE Medical Systems, Milwaukee, WI, USA). Struc-
tural images were acquired for an anatomical reference
using a T1-weighted, inversion-recovery-prepared, three-
dimensional, spoiled, and gradient-recalled acquisition in a
steady-state sequence with repetition time/inversion time =
8,600ms/450ms, a 240 × 240mm field of view and a 1mm
slice thickness.

2.2. Image Registration. To precisely map the ROI delineated
from the MR into a corresponding position in the SPECT
image, registration of the MR volume with the SPECT-
CT volume was required. Even though several automatic
registration methods have been proposed, their success is
only guaranteed when the two scanning data to be registered
contain consistent volumes. However, the clinical volume
sets from different image modalities are usually truncated
unevenly, lending additional difficulties to the application
of conventional registration methods, such as principal axes
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Figure 1: The overall process to derive the BRs in SPECT images via registration of the images from SPECT-CT and MR with ROI
segmentation from the registered MR images.

registration (PAR) or mutual information (MI). To alleviate
this problem, we developed a hybrid registration method
combining principal axes registrationwith the generalHough
transform [12]. In addition, we took advantage of SPECT-
CT,which can acquire SPECT andCT images simultaneously,
while the patient maintains his/her position on the same
couch. Registration used the CT image as the registration
medium to increase the registration accuracy between the
SPECT and the MR image volumes. The registration process
is fully automatic. The essential idea of the design is briefly
described below.

The voxel size was adjusted to a 1mm3 cube through
bicubic interpolation prior to the following registration
process. The 3D head was segmented as an entity to derive
its three principal axes prior to registration. In this two-
stage registration scheme, principal axes registration was first
applied for coarse registration followed by fine-tuning via
applying the general Hough transform to the contour of the
maximal cross-sectional area (MCSA). The original concept
of principal axes registration (PAR) is to superimpose the
two volumes by aligning the corresponding three principal
axes from both head volumes [13]. However, the registration
accuracy of PAR is restricted by the degree of correspondence
between the two sets of principal axes [14]. As the scanning
range of one image modality is usually not the same as the
other, the centroids of the two different volume sets would
not be identical. In consequence, the two sets of principal
axes derived from the different centroids do not coincide
with each other. Therefore, in the coarse-registration stage,

we only adopted PAR to adjust the orientations of the long
axis of the head to be parallel with the 𝑧-axis of the system
coordinates. After this stage, the long axis from both head
volumes coincided with each other, but the horizontal planes
with the two short axes from the two volumes were still
mismatched.

In the second stage, the registration error in the hori-
zontal plane was then fine-tuned. We then turned the 3D
registration task into a 2D one by searching for the slices
containing the (MCSA) in both volumes, in that we had
proved the reliability of using the MCSA as the anatomical
feature for registration [15]. The vertical shift was first
corrected by aligning these two slices; then the detected
contour of the MCSA was used to derive the registration
parameters via the generalized Hough transform (GHT).The
process of the GHT algorithm in this approach included
two steps. First, an R-table was built by calculating the
vector set, { 󳨀⇀𝑎

𝑖
}, between each contour point (𝑥

𝑖
, 𝑦
𝑖
) and

the center of the contour, 𝑃
𝑐
(𝑥
𝑐
, 𝑦
𝑐
), in the CT image.

Then, the corresponding center point (𝑃󸀠
𝑐
) was derived by

searching for the maximal intersection via remapping the
vector information to each contour point X

𝑖
(𝑥
𝑖
, 𝑦
𝑖
) in the

MR image. In this study, as there was no scale for reference
and the voxel size had been adjusted to be the same, we
adapted a robust search only for the rotation angle 𝛽 in (1),
when the optimal match between 𝑃

𝑐
and 𝑃󸀠

𝑐
was achieved

𝑥
𝑐
= 𝑥
𝑖
+ 𝛾 cos (𝜃 + 𝛽) ,

𝑦
𝑐
= 𝑦
𝑖
+ 𝛾 sin (𝜃 + 𝛽) ,

(1)
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Figure 2: Anatomical structure of the striatum from the axial view
of an MR T1-weighted image.

where 𝜃 is the angle between the directional vector󳨀⇀𝑎
𝑖
and the

positive direction of the 𝑥-axis and 𝛾 is the length of the 󳨀⇀𝑎
𝑖
.

The registration parameters of the rigid transformderived
abovewere then applied to theMR volumes tomatchwith the
SPECT images.

2.3. ROI Segmentation from MR T1-Weighted Images. The
registered MR T1-weighted images obtained from the pre-
vious stage were then used as the reference to demarcate
the striatum on the corresponding SPECT images. As the
assessment of TRODAT-1 BR is usually carried out from the
axial view of SPECT images, the segmentation of the striatum
was performed in the axial planes of the MR images. Figure 2
shows the structure of the striatum from the axial view of the
MR image. It can be seen that the left and right sides of stria-
tum of the basal ganglia are located beside the ventricle. Each
side of the striatum can be further divided into the caudate
nucleus and putamen. We named the two pairs of caudate
nucleus and putamen the ST regions. However, the division
of the ST regions is not obvious because they usually fuse with
other brain structures. The unclear cut between the caudate
nucleus and putamen and the surrounding brain structure
brings up difficulties in isolating the ST regions solely using
automatic image segmentation techniqueswithout any expert
intervention.

To segment these four ROIs, we adopted a modified
active contour model. In this way, an initial contour of the
first slice can be determined by an expert according to the
topological andmorphological characteristics of the ST.Once
the location and shape of the ST regions are confined into the
bond of the initial contour, then refinement can be carried
out by the computer according to the intensity information.
In addition, assuming smooth variation of the 3D ST region
contour, the final contour of the present slice can be directly
used as the initial contour for the next slice. To achieve this
goal, the active contour model is a suitable choice.

The basis of the active contour model, named snake, is
to represent an initial contour in the parametric form of

V(𝑠) = [𝑥(𝑠), 𝑦(𝑠)], 𝑠 ∈ [0, 1] that deforms to the optimal
shape by minimizing the energy functional

𝐸snake = ∫
1

0

[𝐸int (V (𝑠)) + 𝐸ext (V (𝑠))] 𝑑𝑠

= ∫

1

0

1

2

[𝛼

󵄨
󵄨
󵄨
󵄨
󵄨
V
󸀠
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

2

+ 𝛽

󵄨
󵄨
󵄨
󵄨
󵄨
V
󸀠󸀠
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

2

+ 𝐸ext (V (𝑠))] 𝑑𝑠,

(2)

where 𝛼 and 𝛽 are the parameters to weight the influence on
the curve deformation from the curve’s tension V󸀠(𝑠) and the
rigidity V󸀠󸀠(𝑠), respectively.

Theoretically, at the minima of the energy functional, the
snake must satisfy the Euler equation

𝛼V
󸀠󸀠
(𝑠) − 𝛽V

󸀠󸀠󸀠󸀠
(𝑠) − ∇𝐸 ext(V (𝑠)) = 0. (3)

As the first derivative of energy gives the force, the above
equation can be interpreted as a force balance equation

𝐹int (V) + 𝐹ext (V) = 0. (4)

The internal force, 𝐹int(V) = 𝛼V
󸀠󸀠
(𝑠)−𝛽V󸀠󸀠󸀠󸀠(𝑠), restricts the

curve to stretch and bend, while the external force, 𝐹ext(V) =
−∇𝐸 ext(V), pulls the curve toward the desired image edges.

The snake is an active rather than a salient model due
to the dynamic deformation process by treating the force
balance equation as function of time 𝑡.Therefore, the solution
of (3) can be approximated by iteratively searching for the
steady state of the following equation, where the V(𝑠, 𝑡) =
[𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡)] denotes V(𝑠) at the 𝑡th iteration

𝜕V (𝑠, 𝑡)

𝜕𝑡

= 𝛼V
󸀠󸀠
(𝑠, 𝑡) − 𝛽V

󸀠󸀠󸀠󸀠
(𝑠, 𝑡) − ∇𝐸 ext(V (𝑠, 𝑡)) . (5)

In practice, a numerical solution to (5) can be achieved by
discretizing 𝑠 iteratively using a finite difference method [16],
as per

x
𝑡
= (A + 𝛾I)−1 (x

𝑡−1
− p
𝑥,𝑡−1
) ,

y
𝑡
= (A + 𝛾I)−1 (y

𝑡−1
− p
𝑦,𝑡−1
) ,

(6)

where A is a pentadiagonal matrix containing the constants
𝛼 and 𝛽. The parameter of 𝛾 is the step size to control the
degree of the contour deformation between iterations. I is
the unit matrix. x

𝑡
and y
𝑡
are the vectors consisting of the 𝑥-

and 𝑦-coordinates of the contour V(𝑠, 𝑡), respectively. p
𝑥,𝑡−1

and p
𝑦,𝑡−1

are the vectors containing 𝜕𝐸ext(𝑥(𝑠, 𝑡 − 1), 𝑦(𝑠, 𝑡 −
1))/𝜕𝑥, and 𝜕𝐸ext(𝑥(𝑠, 𝑡 − 1), 𝑦(𝑠, 𝑡 − 1))/𝜕𝑦 as their elements
for all 𝑠, respectively.

The external force (∇𝐸ext) in the active model can usually
be classified into two types: static and dynamic. Static forces
are derived from the image gradients, which do not change
throughout the deformation process, while dynamic forces
vary as the snake deforms. Using the image gradient as the
external force makes the conventional snake difficult to move
into a concave edge, because the null image gradients within
a homogenous region inside the contour fail to attract the
contour, and as a result, the contour is only affected by
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the internal forces. Even though several dynamic external
forces have been proposed to alleviate such a limitation of
the static external forces, they also raised other problems,
increasing the calculation complexity or leading to uncon-
trollable deformation [17, 18]. A new static external force,
called gradient-vector flow (GVF), adding the directional
property into the original image gradient map, was proposed
by Xu and Prince to improve the performance of the static
snake in concave edge detection [19]. Several reports have
demonstrated the success of applying the GVF snake to
medical image segmentation [20–23], including brain MRI
[24]. This encouraged us to apply the GVF to segment the ST
regions in our study.

The gradient-vector-flow field is defined as k(𝑥, 𝑦) =
[𝑢(𝑥, 𝑦), V(𝑥, 𝑦)] such that the external energy function
becomes

𝐸gvf = ∬⌊𝜇 (|∇𝑢|
2
+ |∇V|

2
) +
󵄨
󵄨
󵄨
󵄨
∇𝑓
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
k − ∇𝑓

󵄨
󵄨
󵄨
󵄨

2

⌋ 𝑑𝑥 𝑑𝑦, (7)

where 𝜇 is a parameter to control the degree of smoothness of
the gradient-vector-flow field and ∇𝑓 is an edge map derived
from the original image 𝑓(𝑥, 𝑦).

To solve the equation numerically by discretization and
iteration, let 𝑛 indicate the times of iteration, and the
increments in 𝑥, 𝑦, and 𝑡 are all equal to 1. The relation of
vector flows from the current to the next position can be
derived as

𝑢
𝑛+1
(𝑥, 𝑦) = (1 −

󵄨
󵄨
󵄨
󵄨
∇𝑓
󵄨
󵄨
󵄨
󵄨

2

) 𝑢
𝑛
(𝑥, 𝑦)
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𝑛
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𝑛
(𝑥, 𝑦 + 1)

+ 𝑢
𝑛
(𝑥 − 1, 𝑦) + 𝑢

𝑛
(𝑥, 𝑦 − 1)

−4𝑢
𝑛
(𝑥, 𝑦)] +
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󵄨
󵄨
󵄨
󵄨
𝑓
𝑥
(𝑥, 𝑦) ,
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󵄨
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) V
𝑛
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+ 𝜇 [V
𝑛
(𝑥 + 1, 𝑦) + V

𝑛

(𝑥, 𝑦 + 1)

+ V
𝑛

(𝑥 − 1, 𝑦) +V
𝑛
(𝑥, 𝑦 − 1)

−4V
𝑛

(𝑥, 𝑦)] +
󵄨
󵄨
󵄨
󵄨
∇𝑓
󵄨
󵄨
󵄨
󵄨
𝑓
𝑦
(𝑥, 𝑦) .

(8)

There are 4 parameters determined empirically to obtain
the optimal results in the approach. The elasticity parameter
(𝛼) and the rigidity parameter (𝛽) in (2) were set to be 0.1 and
0.2, respectively. The parameter (𝛾) in (6) was set to be 1. The
external force weight (𝜇) in (7) was set to be 0.5.

3. Results and Discussion

3.1. Registration Results. An example is given in Figure 3 to
illustrate the use of our developed interface to detect the slices
containing the MCSA from the CT and MR volumes and
register these two images through the GHT. Once the rigid
transform with the registration parameters had been applied
to the MR image volume, it can directly match the SPECT
volume, as shown in Figure 4. The registration accuracy
reached 96.48%. Our previous study quantitatively evaluated

Figure 3: An example of registration of the CT image (middle small
panel) and theMR image (right small panel) to render the final fused
image (left large panel).The red and blue lines in the small panels are
the detected boundaries and the contour of the head.

Table 1: Correspondence of the manual delineation between the
observers.

JI (%) Rater A-Rater B Rater B-Rater C Rater A-Rater C
Case 1 60.4 ± 4.8 62.1 ± 1.1 75.6 ± 2.1

Case 2 54.3 ± 4.5 54.7 ± 5.6 71.8 ± 5.2

Case 3 58.0 ± 4.7 58.1 ± 5.4 76.6 ± 5.2

the registration accuracy of the proposed method better than
the results obtained solely using the PAR method or directly
registering SPECT with MR images [12].

3.2. Segmentation Results. The expert delineation and the
GVF segmentation of the ST regions containing two pairs
of the caudate nucleus and putamen are given in Figure 5. A
quantitative comparison of these twomethods is given below.

We used the Jaccard index (JI) to quantify the degree of
match between the two corresponding ROIs.The JI is defined
as the ratio of the intersection of two volumes Ω

1
and Ω

2
by

the union of them. If the two volumes completely overlap, the
JI value is equal to 100%

JI =
󵄨
󵄨
󵄨
󵄨
Ω
1
∩ Ω
2

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
Ω
1
∪ Ω
2

󵄨
󵄨
󵄨
󵄨

× 100%. (9)

The five sequential axial slices containing the ST from
three normal cases were recruited in the comparative eval-
uation. Three neurologists first manually delineated the ST
regions, including the caudate nucleus and putamen, on two
lateral sides of the brain. The intrarater correspondences in
terms of the mean and standard deviation of the JI values
from the five slices are listed in Table 1, suggesting great
differences between observers. It was found that Raters A and
Chad the highest correspondence, with a JI value greater than
70%.

The JI values were also derived by mapping the manually
defined contours by each rater into the GVF segmented
results. The initial contour of the first slice in each case was
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(a) (b) (c)

Figure 4: Registration between (a) SPECT and (b) MR to give the final overlaid image in (c).

(a) (b) (c)

Figure 5: The ST regions in (a) the original MR T1-weighted image and the corresponding segmentation results by (b) manual delineation
and (c) the GVF snake.

Table 2: Correspondence betweenmanual delineation and theGVF
snake result for each observer.

JI (%) Rater A-GVF
snake

Rater B-GVF
snake

Rater C-GVF
snake

Case 1 64.4 ± 9.0 56.2 ± 5.5 65.3 ± 4.8

Case 2 68.6 ± 1.6 57.7 ± 5.1 65.4 ± 6.5

Case 3 61.1 ± 3.8 51.5 ± 3.1 59.9 ± 3.7

defined by the same specialist in the GVF snake process.
Table 2 shows the correspondence with GVF segmentation.
We used the paired 𝑡-test to evaluate the significance level
between the JIs derived from the interrater comparison and
those from the rater-GVF comparison for each slice in each
case. The insignificant differences (𝑃 = 0.124 under a 95%
confidence interval) suggest that the segmentation accuracy
using the GVF snake is compatible with the level of manual
drawing.

Rater A, the chief neurologist, was required to conduct
the manual drawing twice. The JI values of the two delin-
eations are listed in the middle column of Table 3, showing

Table 3: Correspondence between two repeated conductions of
each method.

Slice no. JI (%)
Manual drawing GVF deformation

1 66.3 77.05
2 61.2 73.31
3 53.34 78.3
4 51.3 71.46
5 45.57 78.44
Mean ± std 55.5 ± 8.2 75.7 ± 3.2

std: standard deviation.

that the correspondence declined along with the slice num-
ber. Instead of segmentation solely by hand, the GVF snake
was also applied twice to the same set of images. Only the
first slice required an initial contour manually defined by the
rater each time. The JI values of repeated conduction of the
GVF snake are also listed in the third column of Table 3,
suggesting more stable results than those from slice-by-slice
manual drawing.
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In comparison with the index of overlap (similar to JI)
between hand-drawing and computer-aided segmentation
reported in the literature [9–11], the JI values obtained in
our study were relatively low. This could be due to the extra
region, that is, the putamen, involved in our study. The
segmentation target of the previous reports is focused on
the caudate nucleuses that are next to ventricles with greater
contrast (Figure 1) and therefore more easily identified. In
comparison with the caudate nucleuses, the low contrast
of the putamen to the surrounding tissue increases the
difficulty of extraction. Using expert hand drawing as the
comparison basis seems to be the only choice in current
studies, since there is no gold standard to determine the
absolute accuracy of segmentation of the ST regions due
to individual-dependent variation in the brain structure.
However, we demonstrated that significant interobserver and
intraobserver variability in such a decision exists even among
the well-trained neurologists participating in our study,
which was overlooked in previous studies. The inconsistency
in decision-making could be incurred by the small size (in
the order of 100 pixels) of the structures as compared with the
imaging resolution and image noise. Under a compatible level
of precision as shown in Tables 1 and 2, we demonstrated that
the reproducibility and consistency improved when using the
GVF snake segmentationmethod. In addition to stability, the
GVF snake can save labor and provide a more efficient way
than previous studies to define the ST regions contours in
consecutive slices, as it only requires an initial contour drawn
by hand in the first slice.

3.3. Binding Ratio Calculation. In the final stage of evaluation
of the reliability of the proposedmethod, after completing the
MR and SPECT image registration, the BRs were also derived
from the segmented ST regions in the SPECT images using
the proposed method to compare with those obtained using
commercial software (Siemens Medical Systems, Knoxville,
TN, USA), in which the ST regions were manually outlined
by an expert. The BR was calculated by normalizing the
mean intensity in the ST regions by the mean intensity in
the occipital cortices. Linear regression analysis (Figure 6)
revealed a close correlation (CC = 0.874, under 95%
confidence interval) between the BRs derived by the two
systems.

4. Conclusions

To calculate the regional TRODAT-1 binding ratio in SPECT
studies, accurate and repeatable extraction of the ST regions
from MR images is required to indirectly define the cor-
responding regions in the SPECT images. Segmentation
directly on the SPECT image is not applicable in this case,
because it distorts the ST regions. Clinical routine tends to
apply manual delineation of the ST regions, which is prone
to errors incurred through interobserver and intraobserver
variability. Previous researchers have developed several seg-
mentation algorithms to complete similar tasks, where expert
decisions for anatomical and morphological information
were still necessary to refine the results. As the localization
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Figure 6: Linear regression analysis between the BRs derived by our
method and those by the commercial software.

of the ST regions is a knowledge-driven task, the proposed
method allowed the expert to assign the initial contour
in the proper location and applied the gradient-vector-
flow snake to approach the real contours. In such a way,
the complexity of the algorithm can be reduced and the
efficiency of segmentation can be increased. Results from
three normal subjects showed a higher reproducibility of
the proposed method than manual segmentation under
compatible segmentation accuracy. The MR images with
segmented ST regions were overlaid on the SPECT images
using our previously developed registration algorithm to
calculate the TRODAT-1 BR.The derived BRs correlated well
with those derived using commercial software, suggesting a
good reliability of the proposed method.
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