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Abstract The field of neuronal surface-directed antibody-
mediated diseases of the central nervous system has dra-
matically expanded in the last few years and now forms an
important cluster of treatable neurological conditions. In this
review, we focus on three areas. First, we review the
demographics, clinical features and treatment responses of
these conditions. Second, we consider their pathophysiology
and compare autoantibody mechanisms and their effects to
genetic or pharmacological disruptions of the target anti-
gens. Third, we discuss areas of controversy within the field,
propose possible resolutions, and explore new directions for
neuronal surface antibody-mediated diseases.
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Introduction

Neuroimmunology is a rapidly developing field with
increasing scope and relevance to multiple neurological pre-
sentations. Autoantibody-associated neurology has expanded
since the discovery of pathogenic acetylcholine receptor
autoantibodies in myasthenia gravis in the 1970s, and sub-
sequently other neuromuscular and peripheral nerve targets.

The first antibodies associated with diseases of the
central nervous system (CNS) were termed ‘onconeuronal’
antibodies due to their frequent cancer associations [1, 2].
These antibodies target intracellular proteins (such as Hu,
Yo, Ma2, Ri, Tr and CV2/CRMPS), the antibody levels do
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not correlate with disease severity, and prognosis is poor
despite tumour removal and immunotherapies. A cytotoxic
T cell-mediated mechanism is thought to be central to their
pathophysiology and the role of the antibodies is less clear.
These features contrast markedly with the neuronal sur-
face-directed antibody (NSAb)-associated CNS disorders.
The antibodies are much less frequently associated with
tumours, and are directed against extracellular epitopes on
surface antigens strongly expressed within the CNS, such as
the N-methyl-p-aspartate receptor (NMDAR) [3] and leu-
cine-rich glioma-inactivated 1 (LGI1) [4]. The discovery of
these NSAbs has helped identify treatable neurological
conditions, with retrospective evidence that earlier treat-
ment improves patient outcomes [5]. Although research is
rapidly evolving, the available data strongly support path-
ogenic roles for the NSAbs. The antibody targets can be
divided empirically into three groups: excitatory neuro-
transmitter receptors, inhibitory neurotransmitter receptors,
ion-channel subunits or cell adhesion molecules.

NSAbs and their clinical features

Antibodies directed against proteins involved
in excitatory neurotransmission

NMDAR

Since their discovery in 2007 [3], NMDAR-antibodies now
represent a more frequent cause of encephalitis than viruses
in patients under the age of 30 [6]. This encephalitis shows a
stereotyped evolution from a viral prodrome to a neuro-
psychiatric presentation, with psychosis, cognitive dys-
function and seizures, followed by a progression to a
distinctive movement disorder, dysautonomia and coma [7].
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Since its original description the spectrum has widened
and this disease has been associated with fewer tumours
(Fig. 1a), almost all ovarian teratomas [7, 8], increasing
numbers of paediatric cases (with only a 6 % association
with a tumour seen in those under 12 [5, 7]), and more male
cases, particularly in younger and older age groups [5, 7, 9].

Mono- or oligo-symptomatic presentations in patients
with NMDAR-antibodies have also been recognised with
predominant seizures and psychosis [7, 8, 10, 11]. Other
presentations seen in a small proportion of NMDAR-anti-
body-positive patients include longitudinally extensive
transverse myelitis [12] and optic neuritis [13]. This
overlap with demyelinating diseases may relate to the
expression of NMDARs on oligodendrocytes. However, an
overlap with neuropsychiatric lupus, where double-stran-
ded DNA antibodies have been reported to cross-react with
the NMDAR [14, 15], is yet to be confirmed using cell-
based assay techniques (discussed below) [3, 7].

NMDAR-antibody encephalitis has an approximately
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Fig. 1 a Trends in NMDAR-antibody encephalitis. Demographics of
published cases (series containing >3 patients) with NMDAR (N-
methyl-p-aspartate receptor)-antibody encephalitis. Note the slightly
decreasing median age (black line) and increasing male and falling
female representation (green and red, respectively). Tumour frequen-
cies (blue line) are falling, mainly due to the recent publications of
many paediatric cases. Figure adapted from Irani et al. [31]. b The
effect of immunotherapy on mortality, the percentage with a good
recovery (modified rankin score 0-2) and relapse-free recovery at
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immunotherapy (Fig. 1b) [5]. One large study showed that
50 % of patients responded to first-line therapy [with cor-
ticosteroids, plasma exchange (PLEX) and/or intravenous
immunoglobulin (IVIG)]. Of the remaining 50 %, second-
line therapies (with cyclophosphamide and rituximab)
offered a good outcome in 37.5 % compared to the 12.5 %
that did not receive such therapies. Immunotherapy
administration was also associated with lower relapse rate,
often seen in the natural history of this disease (Figs. 1b, 2)
[5]. While it yet may transpire that immunotherapy has
little effect on the long-term outcomes of the disease sur-
vivors, importantly it appears to hasten recovery at 2 years
and reduce mortality.

o-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA-type (glutamate receptor)) receptor

Antibodies to the GluR 1 and GluR2 AMPA -receptor subunits
often associate with a rare limbic encephalitis (LE) in older
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24 months. Data derived from Titulaer et al. [5]. ¢ Key features of a
representative patient with faciobrachial dystonic seizures (FBDS).
Note the increasing seizure frequency (red line), poor response to
anti-epileptic drugs (AEDs), time of onset of cognitive impairment
(quantified by fall in Addenbrooke’s cognitive examination-Revised
score (ACE-R, green line)) and of hyponatraemia (orange line). IT
results in dramatic improvement in all features. LG/ leucine-rich
glioma-inactivated, VGKC voltage-gated potassium channel-—com-
plex antibody titres are shown in purple and black, respectively
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Fig. 2 The contrasting probable natural histories of three antibody-
related encephalitidies. Key things to note are the relapsing course
NMDAR (N-methyl-p-aspartate receptor)-antibody encephalitis, often
with a good long-term outcome. The LGII (leucine-rich glioma-
inactivated 1) or CASPR2 (contactin-associated protein 2)-associated
encephalitis has a tendency to be more monophasic often with
residual memory and functional deficits. GAD (glutamic acid
decarboxylase)-antibody-associated LE has an insidious onset and
tends to adopt a more chronic course with ongoing seizures and
memory deficits

[16]. The syndrome of LE produces amnesia, disorientation
and seizures and is also seen in patients with GAD, LGI1 and
GABAgR-antibodies, as discussed later. Some patients show
a good response to immunotherapy [16]. All examined
tumours expressed at least one of the antigens, and a pre-
dominance of one subunit in the tumour mirrored the antibody
preference seen in the same patient [16].

AMPA receptors are usually tetramers of GluR subunits
1-4. GluR1/2 and GluR2/3 subunits are mostly post-syn-
aptic and are expressed at especially high concentrations in
limbic brain regions [17]. AMPAR-antibody-associated
phenotypes have spread to include two patients with an
acute psychosis-like illness [18] and antibodies to GluR2/3
receptors were found in two patients with Rasmussen’s
encephalitis [Nibber et al. in preparation].

Antibodies to proteins involved in inhibitory
neurotransmission

GAD

Glutamic acid decarboxylase (GAD) is a widely expressed
intracellular enzyme which catalyses the synthesis of
gamma aminobutyric acid (GABA), the major inhibitory
CNS neurotransmitter. Antibodies to GAD are seen in type
1 diabetes mellitus, and usually at much higher titres in LE,
cerebellar ataxia, epilepsy and the stiff person syndrome
(SPS) spectrum [19].

SPS is characterised by rigidity, stimulus-induced
spasms, anxiety, and more rarely, oculomotor and auto-
nomic disturbances [19, 20]. By contrast, GAD-antibody-
associated LE is predominantly a disease of young women

and usually presents with AED-refractory epilepsy and
amnesia, but without rigidity or spasms. The clinical fea-
tures and GAD-antibody levels are often immunotherapy
resistant, and the disease shows a chronic course (Fig. 2)
[21]. However, serum and CSF IgGs from patients with
GAD-antibodies do reproduce some of the clinical features
of SPS in rodents [22]. The antibodies may access antigen
upon its cell-surface exposure during exocytosis or pro-
grammed cell death [23, 24] or perhaps co-exist with
pathogenic NSAbs. Indeed, antibodies to the AMPA, gly-
cine, GABAg and GABA 4 receptors, in addition to novel/
undefined NSAbs, have all been observed in patients with
GAD-antibody-related neurology [25-31].

Glycine receptor

Progressive encephalomyelitis with rigidity and myoclonus
(PERM) is at one end of the SPS spectrum with the poorest
prognosis, and usually these patients have no GAD-anti-
bodies [30]. In 2008, a patient with PERM without GAD-
antibodies was found to have antibodies directed against
the glycine-receptor (GlyR) alphal subunit [32]. Subse-
quently, GlyR-antibodies have been reported in patients
with classical and variant SPS, brainstem encephalitis, a
few with LE, many with PERM, and occasionally in
patients with demyelinating disease. There is a good
response to immunotherapy (median modified Rankin
Scale scores fall from of 5 to 1) [27, 33, 34]. Tumour
associations are infrequent but thymoma and lymphoma
have been reported [27]. The GlyR is expressed in the
upper and lower brainstem, diencephalon and the colliculi
as well as the dorsal and ventral horns of the spinal cord:
these localisations correlate well with the observed clinical
features [27].

GABApg receptor

GABAg-antibodies, predominantly reacting with the
GABAGg; subunit, have been associated with a form of LE,
usually of later life, with prominent seizures [25, 26]. More
recently the phenotype has expanded to include presenta-
tions with cerebellar ataxia, status epilepticus, and opso-
clonus myoclonus, often in patients with cognitive
impairment [25, 35]. There is a close association with
small-cell lung cancers (SCLC) [25, 26, 36], which express
the GABAgR [25]. Mortality is high, especially in tumour-
related cases, but 80 % of patients initially respond to
immunotherapy, plus tumour removal where relevant [25].

GABA, receptor

Antibodies to the GABA a.1/B3 subunits have recently been
described in a small number of patients. When detected at
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high serum titres (>1:160) and in the CSF, these were
associated with LE, status epilepticus or epilepsia partialis
continua [28]. Patients have unusual cortical and subcor-
tical imaging hyperintensities, a variable response to
immunotherapy, and high mortality due to status epilepti-
cus. Twelve patients with other neurological diseases had
lower titre serum GABA s-antibodies, not detected in the
CSF, with a broader spectrum of diseases including LE,
SPS, and opsoclonus myoclonus [28]. Autoantibodies
against the ol and/or y2 subunits were found in patients
with seizures (47 %), memory impairment (47 %) and
hallucinations (33 %); one had non-Hodgkin’s lym-
phoma (Pettingill et al. in press). In that study, however,
many patients were not considered to have immune-med-
iated diseases, and immunotherapies were not used in most.
Nevertheless, the antibodies internalised the GABAAR
subunits in vitro, consistent with their pathogenic potential
[37] (Pettingill et al. in press).

Antibodies directed against ion-channel-associated
proteins and cell adhesion proteins

Voltage-gated potassium channel (VGKC) complex

Antibodies to the VGKC-complex were originally descri-
bed in patients with peripheral nerve hyperexcitability
(PNH) syndromes [38]. Since 2001, these antibodies have
been recognised in patients with CNS features including
Morvan’s syndrome (MoS) [39, 40], LE [4, 41, 42], fa-
ciobrachial dystonic seizures (FBDS) [43-45], a minority
of patients with cryptogenic epilepsies [46], neuropathic
pain syndromes [47] and some cerebellar ataxias [48].
VGKC-complex antibodies are detected by immunopre-
cipitation of iodinated alpha-dendrotoxin (o-DTX)-labelled
VGKCs from digitonin-solubilised mammalian brain
homogenates. a-DTX is known to bind with high affinity to
the VGKC subunits Kv1.1, 1.2 and 1.6. Based on this,
Kvl.1, 1.2 and 1.6 were considered the likely target epi-
topes [49]. However, only a minority of IgGs bind the Kv1
subunits themselves [4]. A much larger proportion bind to
target cell-surface domains of proteins which are tightly
associated with Kvl subunits; most commonly LGI1 and
contactin-associated protein-2 (CASPR2) [4, 39, 50]
(Fig. 3). A smaller proportion were found to target cont-
actin-2, which have been reported in association with
LGI1- and CASPR2-antibodies [4].

LGII
LGI1 is a secreted protein that interacts in situ with Kv1.1,
Kv1.2 and AMPARs. LGI1 forms a trans-synaptic protein

complex with presynaptic ADAM?23 (a disintegrin and
metalloproteinase 23) and post-synaptic ADAM?22 [51]. It
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is expressed throughout the brain, especially in the hip-
pocampus and neocortex [4].

LGI1-antibodies are often found in LE [4, 52]. As the
descriptions of LGIl1-antibody-positive cohorts have
grown, it has become increasingly clear that this is only
rarely paraneoplastic, has an equal sex distribution,
responds well to immunotherapy, and has a low overall
mortality [4, 45, 50, 53] (see Table 1). Although there are
descriptions of untreated partial recovery over around
2 years [54, 55], larger cohorts suggest that early immu-
notherapy offers the best short-term outcomes [42, 56], and
recent data indicate that the addition of PLEX and/or IVIG
to corticosteroids may not alter 4-year outcomes [31].

Several studies have described LGII-antibodies in
patients with isolated seizure syndromes of multiple
semiologies, which are often immunotherapy-responsive
[57-59]. A recent clinical observation has been the asso-
ciation of a highly distinctive seizure semiology—termed
faciobrachial dystonic sseizures (FBDS)—in patients with
LGI1-antibodies. These stereotyped events, characterised
by their high frequency (median 50/day), short duration
(usually <3 s) and their predilection for the hemiface and
ipsilateral arm, are often refractory to anti-epileptic drugs
but preferentially respond to the addition of immunother-
apies (see Fig. 1c) [43-45, 60, 61]. Importantly, the onset
of FBDS often precedes the onset of the cognitive
impairment seen in patients with LE and one small pro-
spective study has suggested that cognitive impairment
may be avoided with early treatment of FBDS [43—45, 60].
In addition, ictal bradycardia and piloerection may be
seizure semiologies enriched in patients with LGI1-anti-
bodies [62, 63].

CASPR2

CASPR?2 is a transmembrane protein localised to the jux-
taparanode of myelinated axons. The extracellular domain
of CASPR?2 interacts with contactin-2 in both cis and trans
(Fig. 3b), and in association with other proteins is
responsible for concentrating Kv1.1 and Kv1.2 channels at
the juxtaparanode [64]. Therefore, CASPR2 has cell
adhesion and Kvl-partner functions. Patients with LE,
PNH and subacute cerebellitis [48] have CASPR2-anti-
bodies in around 10, 30 and 10 % of cases, respectively.
However, CASPR2-antibodies are most consistently asso-
ciated with MoS, in which about 50 % of patients also have
LGI1-antibodies [39]. This combination may generate both
the CNS and PNS features of MoS. MoS occurs almost
exclusively in males, and interestingly, the prostate is one
of the few non-neuronal sites of CASPR2 expression and
CASPR2-antibody-associated MoS has been described
post-scrotal hydrocele drainage [65]. Another potential
immunisation mechanism is via the associated thymomas
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Fig. 3 Illustration of the VGKC-complexes: the association of Kv/s
and CASPR2 (contactin-associated protein), LGII (leucine-rich
glioma-inactivated and other components of the complexes. a Neuro-
nal subcellular domains including the axon initial segment, presyn-
aptic terminal, node of Ranvier (NoR), paranode (PN), juxtaparanode
(JXTPN) and internode (IN). b Juxtaparanode: Kvl channels (blue,
alpha subunits = rectangle, beta subunit = circle), CASPR2 (pink

present in around 50 % of MoS and especially in patients
with CASPR2-antibodies [39].

Other VGKC-complex proteins

Most VGKC-complex antibody-positive patients with
higher VGKC-complex titres (>400 pM), have LGI1- or
CASPR2-antibodies. Much more commonly at lower levels
(100400 pM), the targets of the antibodies are not yet
known [4, 53]. Serum and CSFs from many of these
patients do not show binding to the surface of live hippo-
campal neurons (Vincent, unpublished), suggesting that
they may target intracellular VGKC-complex epitopes.
While these may not be pathogenic, the antibodies may still
be predictive of a neuroinflammatory syndrome and a
response to immunotherapy, or an inflammatory compo-
nent to a neurodegenerative disease [66, 67] (Hacohen
et al. submitted).

oval), contactin-2 (black diamond), MAGUKSs (membrane-associated
guanylate-kinases) (semicircles), protein 4.1B/spectrins/ankyrins
(green/blue triangles). ¢ Synaptic Kvl organisation. Kvl s (blue,
such as Kvl.1), LGIl (red) and o-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors (AMPAR) and ADAM22/23 (a
disintegrin and metalloproteinase 22/23) (brown) anchored at post-
synaptic membranes

Dipeptidyl-peptidase-like protein-6 (DPPX)

A subacute LE associated with tremor, myoclonus and
diarrhoea was described in association with antibodies to
DPPX, a cell-surface protein associated with the Kv4.2
potassium channel [68]. A more recent study has high-
lighted the brainstem focus of this condition and the mul-
tiorgan dysautonomia with bladder and cardiac
involvement [69]. The condition is usually severe, with a
gradual response to immunotherapy and relapses without
immunotherapy [68].

IgLONS
Not all NSAbs are pathogenic. Antibodies to IgLONS, a
neuronal cell adhesion protein involved in synapse for-

mation, were described in patients with a progressive
complex neurodegenerative sleep disorder with disordered
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breathing [70]. The most striking aspect of these patients
was their lack of response to immunotherapy and atypical
brainstem tau deposition [70]. The association of an NSAb
with a neurodegenerative disease adds to evidence from
CJD studies [71, 72] that NSAbs may not always play a
primary role but can be secondary to neuronal damage with
possible implications for disease progression or disease
biomarkers.

Antibodies associated with glial damage, specifically to
aquaporin-4 (AQP4) and myelin oligodendrocyte glyco-
protein (MOG), are summarised in Table 1.

Pathogenic considerations

Exactly how these antibodies lead to the observed pathol-
ogy is an area of active research (Fig. 4). For instance,
many but not all NSAbs induce receptor internalisation
in vitro resulting in receptor loss, as observed in myas-
thenia gravis. This applies to NMDAR [8], AMPAR [16],
GABAAR [37] and GlyR [27] antibodies and can be
demonstrated in cell cultures. Other NSAbs may mediate a
direct effect on channel kinetics. LGI1- and DPPX-anti-
bodies may indirectly induce channel modulation: for
example, LGI1-antibodies appear to reduce Kvl channel
function [73] and to decrease AMPAR expression in vitro
[74]. Tt is likely that the antibodies binding to LGI1 disrupt
the trans-synaptic bridge between the pre- and post-syn-
aptic membranes and this may affect the function of both
VGKCs and AMPARs. In addition, however, antibodies of

PRESYNAPTIC @

3. Direct effect on

VGKC or channel kinetics

,  AMPAR

'\
‘ 1. Internalisation

Fig. 4 Potential pathogenic mechanisms of neuronal surface-directed
antibodies (NSAbs). a Internalisation of receptors has been demon-
strated in vitro using NMDAR (N-methyl-p-aspartate receptor),
AMPAR  (a-amino-3-hydroxy-5-methylisoxazole-4-propionic  acid
receptor) and GABAAR (y-aminobutyric acid A receptor)-antibodies.
Here the LGI1-ADAM?22 interaction is shown as a possible unit for
co-internalisation. b Antibody-mediated complement fixation and
complement-mediated membrane receptor disruption as seen with
antibodies against AQP4 (aquaporin-4). ¢ Direct alteration of ion-
channel molecular function is an alternative mechanism

SYNAPTIC
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the IgGl and IgG3 subclasses have the ability to fix
complement. In biopsy studies, this has been shown to
occur with AQP4- (and less so LGI1-) antibodies but not
with NMDAR-antibodies [75, 76]. Mechanisms that appear
to prevent complement fixation by the IgGl-subclass
NMDAR-antibodies should be explored in future studies.

To further explore NSAb-pathogenicity, below we
highlight features of genetic or pharmacological situations
in which the target antigen is relatively specifically dis-
rupted and compare this to the corresponding antibody-
mediated process (Table 2).

Mutations, drugs and antibodies which target
the NR1 subunit

NR1 homozygous null mice die 8 h after birth and hypo-
ventilate, similar to patients with NMDAR-antibody
encephalitis [77]. Mice with a 50 % NR1 genetic knockout
exhibit both psychiatric and cognitive signs, similar to
those seen in NMDAR-antibody encephalitis but without a
movement disorder or seizures [78]. As described in
Table 2, polymorphisms and de novo mutations in the
human NR1 subunit gene (GRIN1), and NMDAR-antago-
nists such as ketamine and phencyclidine, recapitulate
many aspects of NMDAR-antibody encephalitis. However,
the ‘full” syndrome appears to be unique to autoantibodies
targeting the NR1 subunit.

GABAGg receptor mutations and medications

Pathophysiologically, GABAgR-antibody LE shows pre-
dominant seizures. This concurs with observations from
murine genetic and pharmacological studies of GABAgR
downregulation [79, 80], but by contrast to most other
antibodies GAB AgR-antibodies do not appear to internalise
their target antigen. There are no documented GABAg R
human mutants, but GABAg;R polymorphisms have been
associated with temporal lobe epilepsy [81], schizophrenia
[82] and obsessive—compulsive disorder [83].

LGI1 mutations

Leucine-rich glioma-inactivated 1 homozygous null mice
develop myoclonic seizures at days 12-18 of life, dying
soon after [84]. Electrophysiological studies in both mutant
LGI1 and LGII null mice demonstrate increased synaptic
excitation [84, 85], thought to be mediated by increased
glutamate efflux [84]. LGIl mutations in humans cause
autosomal dominant lateral temporal lobe epilepsy (AD-
LTE), with ictal auditory hallucinations [86]. Some
patients have generalised tonic—clonic seizures, sensory
aphasic seizures, and a few kindreds have ictal psychic
phenomena [87].
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Contrasts are stark between LGI1 human mutants and
the corresponding antibody-mediated syndromes. In
patients with LGI1 mutations, despite focal temporal lobe
seizures, there are no cognitive or psychiatric manifesta-
tions, seizure semiology is predominantly auditory, and
MRIs are normal. The opposites are true of patients with
FBDS- and LGIl-antibodies. These differences may be
accounted for by antibody access to only specific brain
regions, the effect of complement-mediated neuronal
damage, or genetic compensation in LGI1 mutants which
may not occur in a rapid onset antibody-mediated disorder.
Perhaps some effects of LGI1 mutations are via expression
or function of VGKCs. Indeed, humans with Kv1.1 muta-
tions have neuromyotonia and an increased rate of seizures
[88, 89].

CASPR2 mutants

Contactin-associated protein-2 null mice were originally
thought to have normal behaviour and neuronal growth
despite loss of K+ channel juxtaparanode clustering [90].
More recent analyses have shown that they demonstrate
hyperlocomotion, repetitive and inflexible behaviours,
impaired socialising and seizures after 6 months of age [91].
The findings are reminiscent of those seen in autistic
spectrum disorders, and mutations/polymorphisms in the
CASPR2-encoding gene, CNTNAP2, have been linked to
autism [92]. Interestingly, a recessive non-coding mutation
for CNTNAP2 causes cortical dysplasia focal epilepsy
syndrome (CDFE), characterised by seizures, intellectual
disability, hyperactivity, and in two-thirds of cases, autism
[93]. Mutations in CNTNAP2 have also been linked to
schizophrenia, psychosis and other forms of epilepsy [94].
Therefore, there are clear similarities between patients with
CASPR2-antibodies and mutations in CASPR2.

Controversies, possible resolutions and new directions
Antibody levels and assay methodologies

Early in these illnesses, the levels of serum autoantibodies
are almost always higher than CSF autoantibodies. This
seems intuitive in patients with a peripheral tumour, such as
an ovarian teratoma, and also given patients positive clini-
cal responses after plasma exchange. Therefore, it seems
likely that reports of autoantibody detection in the CSF, but
not serum, are due to differences in assay methodologies.
One consideration is that the presence of intrathecal auto-
antibody synthesis, particularly seen with NMDAR-anti-
bodies, and the constitutively low total IgG levels in CSF
makes CSF easier to use than serum in diagnostic assays. As
differences between antibody-detection methods have been

@ Springer

discussed in detail elsewhere [31, 95, 96], here we sum-
marise the main areas of controversy.

Autoantibodies with pathogenic potential recognise the
extracellular domains of native membrane proteins. They
are very rarely detected in denaturing western blots.
However, assays utilised in the field do not always exclu-
sively detect these autoantibodies. For example, the use of
fixed tissue (where native epitopes may be destroyed) and
the use of permeabilised antigen-transfected cells to detect
antibodies may permit non-pathogenic autoantibody bind-
ing [8, 96]. Despite this possibility, the concurrent use of
live hippocampal neurons [4, 8] and techniques of antibody
absorption exclusively against the extracellular domain [4,
97] allay this concern [31]. In conclusion, differences
between current assays suggest that both CSF and serum
should be sent to laboratories whenever possible, and
future cross-laboratory comparative assays should help
understand the differences described above.

NSADs in other neurological diseases and the healthy
population

In a recent study by Dahm et al., sera from over 4,000
healthy and disease controls with varied neuropsychiatric
presentations (including schizophrenia, ALS, Parkinson’s
and stroke) were screened for a panel of NSAbs and intra-
cellular-targeted antibodies. ~ 11 % of the combined cohort
was found to be positive for IgM- (6 %), IgA- (5 %) and
IgG (1 %)-NMDAR-antibodies at titres from 1:10 to
1:1,000 with equal proportions in disease and healthy con-
trols. Other frequently detected antibodies were amphi-
physin (2.0 %), CASPR2 (0.9 %), MOG (0.8 %), GAD65
(0.5 %), Ma2 (0.5 %), Yo (0.4 %) and Mal (0.4 %), also
with similar frequencies in disease and healthy controls
[98]. The use of a permeabilised cell-based assay without
CSF testing may account for the lowered specificity.
However, as these antibodies appear to be present in healthy
controls, this study suggests that clinical syndrome classi-
fication remains key to defining disease-relevant autoanti-
bodies with pathogenic potential. Indeed, the lack of gold
standards for disease, independent of antibody positivity,
for research purposes is a problem for future studies.

IgA and IgM autoantibodies

Antibodies of the IgG class associate with all of the NSAb-
mediated diseases discussed thus far. There have, however,
been reports of IgA- and IgM-NMDAR-antibodies associ-
ated with slow cognitive impairment [99], psychosis and
bipolar disorder [100]. These IgM-NMDAR-antibodies
caused a reduction in cell survival and NR1 expression in
cultured rodent neurons [100], suggesting pathogenic
potential. One study suggested that 31 % of patients with
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IgG-NMDAR-antibodies also had IgA-NMDAR-antibod-
ies [99].

Autoantibody triggers: tumours, infections
and neurodegeneration

As tumours often express the antigen of interest in para-
neoplastic NSAb-associated conditions, they are the likely
sites of antigen presentation. In addition, other paradigms
for breaking immune tolerance have arisen.

After herpes simplex virus encephalitis (HSVE), chil-
dren often suffer relapses which have recently been asso-
ciated with NMDAR-antibodies [101, 102]. Relapses
occurred a few weeks to months after the HSVE, pheno-
typically closely resemble classical NMDAR-antibody
encephalitis, and appear to be immunotherapy-responsive.
The NMDAR-antibodies were found alongside other novel
NSAbs and may represent systemic immunisation after
neuronal damage. Indeed in adults, generation of VGKC-
complex, glycine receptor and NMDAR-antibodies has
been observed in a small proportion (<5 %) of patients
with rapid neurodegeneration as seen in CID [72, 103]. A
more elegant example of this is the observation that
VGKC-complex antibodies (amongst others) are generated
in abattoir workers after exposure to aerosolised porcine
neural tissue [104]. Furthermore, experimental rodents
exposed to inhaled brain tissue aerosol developed a similar
clinical and serological profile to their human counterparts
[105]. It is likely that these antibodies are secondary.

In summary, multiple triggers appear able to generate
serum autoantibodies with pathogenic potential. Factors
governing the antibody-pathogenicity may include their
access to the brain/CSF compartments, concentrations, the
duration of antibody production, and intrinsic individual
patient thresholds.

Conclusions

Neuroimmunology has moved on from its position
15 years ago where it principally reflected research into
multiple sclerosis and the pace of change and growth seems
set to continue. There are increasing numbers of NSAbs
associated with defined conditions. With the majority of
discoveries being recent, much work will be needed to
hone these phenotypes, their pathophysiological basis,
optimal treatments, prognosis and longer term manage-
ment. There are still methodological issues to settle, such
as the best way to test for NSAbs, the independent gold
standards for diagnosis of each condition and the relevance
of low antibody levels in patients with non-classical syn-
dromes. There are still antibodies to be found, for example
in the VGKC-antibody-positive patients without LGI1- and

CASPR2-antibodies. The underlying immunological
mechanisms remain only partly characterised and much
work will address this in coming years.

In the meantime, work must go on by the bedside, with
clinicians recognising signs which suggest an underlying
autoimmune condition and initiating the testing to detect an
antibody, novel or otherwise. Only with such collaboration
and high-quality clinical work can progress continue to be
made in the laboratory to reduce the impact of these often
devastating diseases.
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