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Adverse drug reactions (ADRs) are an essential part of the analysis of drug use, measuring drug use benefits, and making policy
decisions. Traditional channels for identifying ADRs are reliable but very slow and only produce a small amount of data. Text
reviews, either on specialized web sites or in general-purpose social networks, may lead to a data source of unprecedented size,
but identifying ADRs in free-form text is a challenging natural language processing problem. In this work, we propose a novel
model for this problem, uniting recurrent neural architectures and conditional random fields. We evaluate our model with a
comprehensive experimental study, showing improvements over state-of-the-art methods of ADR extraction.

1. Introduction

Recent studies on text mining applications increasingly
employ nonstandard sources of information to obtain new
data related to health conditions, the efficiency of treatment,
drug reactions, and interactions between different drugs.
Users provide information about themselves through social
media posts and free-text forum comments. This rich source
of information has been successfully used, for instance, to
monitor adverse drug reactions, making it possible to detect
rare and underestimated reactions through the users com-
plaining about their health [1].

In this work, we focus on the identification of adverse
drug reactions (ADRs). ADRs are an essential part of drug
postmarketing surveillance. Traditionally, reports about
ADRs have been identified using (i) FDA’s Adverse Event
Reporting System (AERS) complaints from individual
patients and their physicians and (ii) scientific literature
and reports on clinical trials [2, 3]. Nowadays, drug reactions
can be extracted from user reviews provided on theWeb, and
processing this information in an automated way represents
a novel and exciting approach to personalized medicine and

wide-scale drug tests. Our goal is to extract phrases about
ADRs in the context of a user’s post. For example, a sentence
“1st pill taken with food, a few hours after I experienced
shortness of breath, a sense of depression, cramping, upset
stomach” contains four ADRs, namely, shortness of breath,
depression, cramping, and upset stomach. Formally, this
challenging task is divided into the two subtasks: identifica-
tion of ADRs and normalization of ADRs. In this paper, we
focus on the first subtask.

Bidirectional recurrent neural networks (RNN) and con-
ditional random fields (CRF) are considered to be among the
most powerful models for sequence modeling [4–13], each
one having its own advantages and disadvantages. In a direct
RNN application, especially with LSTM or GRU cells, one
can get a better model for long sequences of inputs, but the
RNN output (a softmax layer) will classify every tag indepen-
dently. CRF can solve this problem but is less expressive than
RNN in modeling the sequence itself; therefore, it is natural
to try to unite the two.

In this work, we apply a combination of RNN and CRF
using the following strategy. We feed word-level representa-
tions into a bidirectional RNN to encode the context vectors
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for each word. On top of this RNN, we use a sequential CRF
to jointly decode the words’ labels for the entire sentence. A
similar strategy has been successfully proposed in the past
for two sequence labeling tasks: part-of-speech (POS) tagging
and named entity recognition (NER) [14–16]. We evaluate
our model for ADR extraction on an annotated corpus
CADEC. The CADEC corpus consists of 1250 medical forum
posts taken from AskaPatient.com [17], where each post has
been manually annotated with mentions of ADRs. Our
results show that the joint model of RNN and CRF improves
the performance of state-of-the-art CRF and RNN models
trained separately. Hence, we can summarize the contribu-
tions of this work as follows: (i) we have introduced a joint
model that combines CRF and RNN to model the sequence
of labels for ADR extraction; (ii) we have conducted empiri-
cal evaluation of this model on benchmark datasets; and (iii)
experimental results have shown that the proposed model
improves over state-of-the-art performance.

The paper is organized as follows: in Section 2, we survey
related work; Section 3 introduces the combined RNN+CRF
model, and Section 4 considers in detail our experimental
evaluation. We conclude in Section 5.

2. Related Work

Our work represents a new look at the recently popular
studies on biomedical text mining and pharmacovigilance
from social media.

2.1. Biomedical Text Mining. Recent studies in various fields
of biomedical research have applied text mining, including
such problems as named entity recognition [10, 11], relation
extraction [18, 19], text classification [9, 20], hypothesis gen-
eration [21, 22], and the creation of knowledge sources and
linguistic resources. A comprehensive review of important
areas of biomedical text mining can be found in [23, 24].
Huang and Lu [23] reported a series of evaluations of natural
language processing (NLP) systems for various biomedical
tasks, including both knowledge-based methods and
machine learning approaches to NLP.

In general, biomedical named entities include genes/pro-
teins, chemicals, drugs, and diseases. As for relations, most
research studies have focused on the entities’ functions
(e.g., gene functions), relational events, and interactions
(e.g., drug-drug or protein-protein interactions). Many stud-
ies have employed simple classifiers to extract information
from texts. For example, Ngo et al. [25] employed a classifica-
tion method on a set of features based on distributed
representations to predict drug-disease relations in cancer
treatment. Rastegar-Mojarad et al. [26] used machine learn-
ing methods to identify disease names from user reviews
for about top 180 most frequently searched medications on
the WebMD forum. In order to identify candidates for drug
repurposing, the authors removed indications of known
drugs and did a manual review of the comments without
using FDA reports. The main limitation of this work is the
lack of an annotated corpus to evaluate the proposed system.
Zhang et al. [20] proposed a weighted average ensemble of
four classifiers, based respectively on a handmade lexicon,

n-grams, and word representation vectors (also called word
embeddings). Avillach et al. [3] developed a method to find
previously established relationships between drugs and
adverse events using the MEDLINE corpus and medical sub-
ject headings and subheadings such as “chemically induced”
and “adverse effects.” Well-recognized limitations of these
resources include the need of volunteers to report events
and lack of sufficiently large result sets to draw the statistical
conclusion. These drawbacks have led to the rise of pharma-
covigilance from social media.

2.2. Pharmacovigilance from Social Media. Social media has
been increasingly used for medical and pharmacological
research since the early 2010s; the term “pharmacovigilance”
was coined for automated monitoring of social media for
potentially adverse drug effects and interactions.

NLP techniques have been applied in five main domain
of texts: (i) biomedical literature, clinical trial records, and
electronic medical/health records (e.g., medical correspon-
dence and letters) [3, 5, 10, 27–30]; (ii) short messages from
Twitter [9, 31, 32]; (iii) user reviews from health-related
and e-commerce websites [4, 26, 33, 34]; (iv) web search logs
[22]; and (v) forum discussions and message boards about
medications, health conditions, treatment modality, and so
on [35–37]. Most of these works focused on creating linguis-
tic methods based on keywords for extracting major adverse
effects, classifiers to detect whether a text contains ADRs or is
relevant to drug reactions, and sequence labeling algorithms
to extract mentions of ADRs. A review of techniques applied
to drug reaction detection has been given in [38, 39].

In opinion mining, one of the major tasks is the identifi-
cation of opinion targets (also called aspects) or opinion
expressions. This task has been studied by many researchers
using frequency-based methods and unsupervised and super-
vised methods. In [40], authors described linguistic resources
for event extraction: linguistics databases and vocabularies
such as thesauri. Currently, most of the state-of-the-art
methods are based on CRF with a set of hand-crafted features
and bidirectional RNNs [7, 8, 10]. Irsoy and Cardie [7]
applied deep RNNs to extract direct or expressive subjective
expressions; in their experiments, 3-layer RNN outper-
formed CRF, semi-CRF, and 1-layer (i.e., shallow) RNN.
Liu et al. [8] applied RNNs for aspect extraction from data
sets about laptops and restaurants, and RNNs based on
pretrained word embeddings outperformed feature-rich
CRF-based models.

In recent years, there has been a growing interest in the
area of detecting ADRs from social media. It started in
2010 with a pioneering study of Leaman et al. [41], who ana-
lyzed user posts regarding six drugs from the health-related
social network DailyStrength. FDA alerts were used as a gold
standard to evaluate discovered associations between drugs
and ADRs. Yang et al. [42] conducted an experiment for
ten drugs and five ADRs to examine associations between
them on texts from online healthcare communities using
association mining techniques. Rastegar-Mojarad et al. [26]
developed a rule-based system to extract drug effects.
Feldman et al. [37] identified ADRs on texts from health-
related online forums. They employed dictionary-based drug
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detection, and symptoms were extracted with a combination
of dictionary-based and pattern-based methods. Pointwise
mutual information (PMI) was computed to evaluate the
likelihood of a drug-ADR relation. The authors analyzed sev-
eral case studies of drugs to show that some ADRs were
reported prior to the FDA communication. One limitation
of this work is the amount of annotated data; the test set con-
tained less than 500 samples. See [39] for a comprehensive
review of ADR extraction from social media data with
NLP-based approaches.

Supervised machine learning techniques have been suc-
cessfully applied to detect ADRs. Bian et al. [31] utilized an
SVM classifier to identify tweets describing ADRs. Yom-
Tov and Gabrilovich [22] analyzed web search query logs
to extract information related to drugs and adverse reactions.
ADR extraction has been regarded in many studies as a
sequence labeling problem using conditional random fields
(CRF). CRFs with a rich set of contextual, lexicon-based,
grammatical, and semantic features were used in [6, 9, 33].
In [6], the semantic features were based on word clusters
using k-means clustering on pretrained word embeddings.
A set of experiments showed that contextual and semantic
features are the most effective to classify ADRs in tweets.
We also note a Social Media Mining Shared Task Workshop
(organized as part of the Pacific Symposium on Biocomput-
ing 2016) devoted to mining pharmacological and medical
information from Twitter, with a competition based on a
published dataset [32].

Supervised models tend to work well when trained on
fully labeled data. Although there is a large amount of unla-
beled data from social media, labeled data are time-
consuming to obtain. Gupta et al. [35, 43] used semisuper-
vised learning of patterns to identify drugs, symptoms, and
conditions. Lexico-syntactic patterns have been learned with
a seed dictionary of terms, and a bootstrapped rule-based
method extracted specific entities that were missing from
the seed dictionaries. One limitation of this approach is that
it does not identify long descriptive phrases. Stanovsky
et al. [44] employed an active learning technique to create a
bootstrap lexicon of ADRs. The main advantage of this
approach is that it can identify entities with a small num-
ber of hand-written rules or hand-labeled examples. We
mark these works as possibilities for future improvements
of this area.

The most relevant studies to the present paper are the
works by Metke-Jimenez and Karimi [33], Miftahutdinov
et al. [4], and Stanovsky et al. [44]; all of them used the
CADEC corpus for training and testing. Metke-Jimenez
and Karimi [33] applied dictionary-based methods and CRFs
to identify ADRs from the CADEC corpus. They used
baseline features, including a bag of words, letter n-grams,
and word shapes (e.g., if the token composed of uppercase
letters). For evaluation, they applied strict and relaxed ver-
sions of the evaluation for each matching span. The authors
divided the corpus into training and testing sets, using a 70/
30 split. CRF outperformed knowledge-based methods on
the sentence level and achieved strict and relaxed F1-
measures of 60.2% and 84.9%, respectively. Miftahutdinov
et al. [4] applied CRF with a rich set of features to extract

all disease-related entities including drug indications, ADRs,
and patient history. For CRF features, they used hand-crafted
features including contextual features, dictionaries, and
cluster-based and distributed word representations. CRF out-
performed bidirectional 2-layer and 3-layer RNNs on review
level based on 5-fold cross evaluation and achieved F1-mea-
sures of 69.1% and 79.4% on recognition of disease-related
expressions in the exact and partial matching exercises,
respectively. They used word embeddings trained on social
media and on scientific literature separately. Stanovsky
et al. [44] employed RNN and word embeddings trained on
a Blekko medical corpus in conjunction with embeddings
trained on DBpedia. If a word was a lexical match with one
of the DBpedia entities, then the DBpedia embedding was
used as the input of RNN. Otherwise, Blekko embedding
was used. The authors used a 75/25 split and computed eval-
uation metrics for every word in a sentence instead of
extracted spans of ADRs. The knowledge-infused RNN
achieved F1-measures of 93% in the evaluation of each word.
The authors did not evaluate RNN in comparison with CRF
and LSTM in comparison with GRU. We also note that those
papers did not analyze the number of epochs for training
RNNs and did not apply the joint model of RNN and CRF.

Our work differs from the mentioned works in several
important aspects.

(1) We experiment with a joint model of CRF and RNN
as well as both models separately.

(2) In addition, we employ CNN to extract character-
level features instead of engineering of hand-crafted
features.

(3) We use word embeddings trained on social media
and on scientific literature.

(4) We present quantitative analysis as well as qualitative
analysis of extracted ADRs to demonstrate variation
in ADRs across different patient groups.

3. Model

This section illustrates our supervised model combining
recurrent neural network (RNN) and conditional random
fields (CRF) to the extraction of ADRs. We formulate the
disease-related entity extraction as a sequence labeling prob-
lem. In the following subsections, we describe the architec-
ture of the model.

3.1. Recurrent Neural Networks. RNNs are naturally used for
sequence learning, where both input and output are word
and label sequences. RNN has recurrent hidden states, which
aim to simulate memory, that is, the activation of a hidden
state at every time step depends on the previous hidden state
[45]. The recurrent unit computes a weighted sum of the
input signal.

Training RNNs to capture long-term dependencies is dif-
ficult due to the effect of vanishing gradients [46], so the most
widely used modification of RNN units is the long short-term
memory (LSTM) [47] that provides the “constant error
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carousel” and does not preclude free gradient flow. The most
common LSTM architecture contains three gates: input gate,
forget gate, and output gate, together with a recurrent cell.
LSTM cells are usually organized in a chain, with outputs of
previous LSTMs connected to the inputs of subsequent
LSTMs. A recent simplification of the LSTM architecture is
given by gated recurrent units (GRU) introduced by Cho
et al. [48]. GRU is very similar to an LSTM cell; GRU has a
single “update gate” instead of separate forget and input
gates, does not distinguish cell state and hidden state, and
always exposes the entire hidden state, without a special gate
for it.

An important modification of the basic RNN architecture
is bidirectional RNNs, where the past and the future context
is available on every time step [49]. Bidirectional LSTMs,
developed by Graves and Schmidhuber [50, 51], contain
two chains of LSTM cells flowing in both forward and back-
ward direction, and the final representation is either a linear
combination or simply concatenation of their states.

3.2. Conditional Random Fields. CRF [52] is one of the state-
of-the-art methods that takes a sequence of tokens as input,
estimates the probabilities of labels (from a predefined set),
and returns the best scoring label sequence. We denote by
x1,…, xn, xi ∈ Rm corresponding to the input sequence and
by Y to the labels. The CRF is defined by a graph whose
vertices are indexes of Y and edge weights correspond to
the effects that X and Y have on each other, given that the
Markov property holds. A linear-chain CRF is a CRF with a
simple chain as the graph, where each edge has the form of
j − 1, j .

As shown in [52], the conditional probability of a label
sequence is computed as follows:

pλ,μ y∣x =
1

Z x
·∏
n

t=1
exp λyt−1yt + μyt , xt , 1

where Z x is the normalization, x is the feature vector, μ is
the matrix of size Y ×m, λ is the matrix of Y × Y , and
μyt is the yt row in the matrix μ. In the equation, the augend

represents the score of a transition from the tag yt−1 to the tag
yt . In our case, the addend represents the score of the tag yt of
the tth word. We define the addend to be the matrix of scores
output by the recurrent network. Maximum likelihood learn-
ing involves maximizing

y = arg max
y∈Y

1
Z x

·∏
n

t=1
exp λytyt−1 + μyt , xt 2

We use an implementation of the linear-chain CRF that
minimizes the loss function and trains the weights for
computing the global tag sequence scores. During testing,
the model applies the Viterbi algorithm to predict the best
scoring tag sequence.

3.3. Joint Model. The main idea of our proposed model is to
combine CRF with a neural network, using nonlinear poten-
tials modeled by a neural network instead of linear potential
functions based on sparse features. Figure 1 illustrates the
proposed architecture for ADR extraction.

First, word embeddings are fed into the bidirectional
RNN (e.g., LSTM). Circles represent LSTM cells. The net-
work returns a representation of the forward and backward
context for each word. Then, these output vectors go through
a dropout layer for regularization [53]. The result feeds into a
dense layer with linear activation, whose output size equals
the number of tags. The difference with standard RNN

Input text

Word
embedding

Additional
embedding

Bidirectional
LSTM

encoder

CRF

Did Gassy AbdominalCause Cramping

LSTM

LSTM LSTM LSTM LSTM LSTM

LSTM LSTMLSTMLSTM

I-ADRB-ADR I-ADR

Figure 1: The main architecture of our model. Word embeddings are given as input to the bidirectional LSTM network. Dashed arrows
represent the input and output vectors of the network with dropout. The labels follow the BIO (Beginning Inside Outside) tagging scheme.
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architecture is that we do not use the softmax output from
this layer directly but rather utilize the output of the dense
layer for an additional CRF layer to jointly decode the
sequence of context tags.

Another important part of the model is the extra vector
marked as “additional embedding” on Figure 1. In the
experiments shown below, we augmented the basic word
embeddings with an additional vector trained with a
character-level CNN [16], simply concatenating the two
vectors as input for the bidirectional LSTM; we will see
that this additional model also improves the final results.

4. Experiments and Discussion

4.1. Quality Metrics and Datasets. In this section, we evaluate
our model and compare it with baseline approaches. Since
the boundaries of expressions are hard to define even for
human annotators [54], we follow [55, 56] and conduct the
experimental evaluation as follows:

(1) Exact matching following CoNLL evaluation [57]

(2) Partial matching as described in [56].

We computed several model accuracy metrics such as
macroaveraged precision (P), recall (R), and F1-measure (F)
as follows:

P =
TP

TP + FP
,

R =
TP

TP + FN
,

F =
2 · P ·R
P + R

,

3

where TP is the number of correctly predicted annotations
and FP and FN are the numbers of false positives and false
negatives, respectively. Following [56], we used the following
formulas for partial matching:

P =
t ∩ ts
∣ts∣

,

R =
t ∩ ts
∣t∣

,
4

where ts is an extracted term which intersects with the term t,
ts ∩ t is the intersection between t and ts, and ∣t∣ is the length
of this term in tokens. For partial matching, we calculated
metrics for every sentence and averaged the resulting values.

We used the Keras library (https://keras.io/) to imple-
ment neural networks and the BIO (Beginning Inside Out-
side) tagging scheme on the sentence level. The batch size
was 128; we used the Adam optimizer with default parame-
ters [58]. We evaluated our network using the high-quality
annotations from the CADEC corpus. Similar to [33], we
excluded overlaps between spans of ADRs in the CADEC
corpus, selecting the longest continuous span and combining
these ADRs into a single annotation.

The corpus was split into two different datasets, leaving
70% for training (with a total of 875 reviews, 5264 sentences,

and 3933 ADRs) and 30% (375 reviews, 2356 sentences, and
1837 ADRs) for testing.

4.2. Experimental Results.We evaluate our model by compar-
ing with the following methods:

(1) CRF with the following baseline features: each word
itself with a part-of-speech tag, the suffixes and
prefixes to 6 characters in length, and a window of
two words in both directions (backward and forward)
from the current word

(2) Feature-rich CRF-based approach with parameters as
proposed in [4]; this method utilizes the following
features: baseline contextual features, dictionaries,
and cluster-based and distributed word representa-
tion. The authors used the following dictionaries:
the Unified Medical Language System (UMLS),
ADR lexicons, and a dictionary of multiword expres-
sions such as “feel tired,” and “feel sleepy.” The
Brown hierarchical algorithm was used for cluster-
based word representations (vector size of 150). The
authors trained Continuous Bag of Words model on
a corpus of health-related reviews with the following
parameters: vector size of 200, the length of local con-
text of 10, negative sampling of 5, and vocabulary
cutoff of 10. We used publicly available implementa-
tion of this feature-rich approach (https://github.
com/dartrevan/ChemTextMining/)

(3) Deep bidirectional RNNs with a softmax layer, in
particular, LSTM and GRU, where the combination
of the network’s outputs is fed into a fully connected
layer with softmax activation.

We used a maximum of 100 epochs to train each net-
work. For fair comparison, all networks used the same word
embeddings trained on 2.5 million of health-related reviews
[4]. We found 97% of words in the vocabulary, and for 3%
of words, the representations were uniformly sampled from
the range of embedding weights [59]. The results of different
methods are shown in Table 1.

Table 1 shows that the proposed model consistently
outperforms other approaches in terms of both precision
and F-measure, while staying roughly on par with the best
recurrent models in terms of recall. Therefore, we conclude
that a combination of RNN and CRF indeed leads to quality
improvements for ADR extraction from free-text reviews.
The second conclusion is that concatenating input word
embeddings with an extra embedding vector based on a
character-level CNN also significantly improves the results.
Another interesting conclusion from Table 1 is that GRU-
based recurrent architectures consistently outperform
LSTM-based architectures in the exact matching exercise.
Finally, another interesting conclusion is that F1-scores
of 3-layer GRU+CNN+CRF increased from 70.65% to
79.78% in the partial matching as compared to the exact
exercise due to boundary problems. Qualitative analysis of
results indicates errors associated with boundaries of enti-
ties due to the presence of negations (e.g., “I have no pain”),
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conjunctions, verbs, adjectives, or adverbs (e.g., “lowered
total cholesterol dramatically”).

We initially set the number of epochs for training models
to be 100 and explored the quality metrics for the number of
training epochs ranging from 20 to 100. Figure 2 presents the
results. It shows that training of deep LSTM and GRU can be
effectively achieved at around 60–80 epochs before the
performance becomes stable. The joint model of 2-layer
LSTM+CNN+CRF and 3-layer GRU+CNN+CRF out-
performed CRF starting at 30–40 epochs, and from here
on, performance improved slowly.

4.3. Qualitative Analysis of Extracted ADRMentions.Adverse
drug reactions can differ significantly depending on the
patient. To investigate the difference between adverse effects
for various drugs, we collected reviews from a health
information service webmd.com. Each review contains the
following fields:

(1) Brand name of a drug used to treat this disease

(2) Condition/reason for taking treatment

(3) The free-text review given for the effects caused by the
use of the drug

(4) Demographic information about the author of this
review (age and gender).

We also note that such demographic information is not
commonly provided in discussion groups and websites. In a
recent study [60], several approaches to automated mining
of demographic information from texts about drugs were
evaluated including neural networks, supervised machine
learning, and topic modeling.

We selected reviews about the following health condi-
tions for analysis:

(1) 4,563 reviews about depressive disorder (drugs:
Cymbalta, Lexapro, Xanax, Zoloft, or Prozac)

(2) 5,422 reviews about high blood pressure (drugs:
lisinopril, atenolol, Bystolic, Diovan, and
hydrochlorothiazide)

(3) 10,914 reviews about fibromyalgia (drugs: Cymbalta,
Lyrica, tramadol, Prozac, amitriptyline, Savella, Paxil
CR, Ultram, Paxil, cyclobenzaprine).

In order to detect ADRs related to a particular demo-
graphic group, we extracted all ADRs that appeared in
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3‑layer LSTM
2‑layer GRU
3‑layer GRU
2‑layer LSTM
+ CNN + CRF

2‑ layer LSTM +CRF
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Figure 2: Performance on the testing data set or different number of
training epochs.

Table 1: Results of the proposed models and baseline methods.

Method
Exact Partial

P R F P R F

Baseline CRF 0.6254 0.5972 0.6110 0.8145 0.7539 0.7521

Feature-rich CRF 0.6726 0.6532 0.6628 0.8303 0.7646 0.7622

1-layer LSTM 0.5798 0.6587 0.6167 0.8121 0.8065 0.7809

2-layer LSTM 0.6362 0.7044 0.6686 0.8090 0.8495 0.8005

3-layer LSTM 0.6588 0.7022 0.6798 0.8247 0.8323 0.7997

4-layer LSTM 0.6689 0.7093 0.6885 0.8255 0.8280 0.8000

1-layer GRU 0.5862 0.6772 0.6284 0.7995 0.8368 0.7900

2-layer GRU 0.6384 0.7093 0.6720 0.8165 0.8338 0.8002

3-layer GRU 0.6675 0.7191 0.6923 0.8151 0.8373 0.8009

4-layer GRU 0.6565 0.7262 0.6896 0.8006 0.8665 0.8033

2-layer LSTM+CRF 0.6947 0.6973 0.6960 0.8191 0.8161 0.7872

2-layer LSTM+CNN+CRF 0.6809 0.7039 0.6922 0.8083 0.8488 0.7978

3-layer LSTM+CNN+CRF 0.6868 0.7066 0.6965 0.8270 0.8488 0.8115

3-layer GRU+CNN+CRF 0.7048 0.7082 0.7065 0.8219 0.8311 0.7978
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reviews more than four times and then excluded ADRs if the
exact match appears in reviews of authors with a different
demographic tag (e.g., “male”/”female” or “age 19–34” over
other ages). Tables 2, 3, and 4 present the results. The tables
indicate that key adverse reactions change with age or gender,
reflecting quite natural progressions that match well with
medical and commonsense intuition. Hence, our method
can also be used to mine qualitative information from a data-
set of medical reviews, perhaps uncovering new ADRs in a
certain user group.

5. Conclusion

In this work, we have proposed a novel approach to extract-
ing adverse drug reactions from user reviews: a combination
of a bidirectional LSTM-based recurrent neural network and
a CRF that operates on the scores extracted by this neural
network. We have evaluated our approach against state-of-
the art neural models on a representative ADR extraction
dataset and have found that the results have improved signif-
icantly. Moreover, further improvements were obtained by

Table 2: ADRs extracted from reviews for the drugs that treat depression.

Group Adverse drug reactions

All authors
Anxiety, depression, panic attacks, depressed, pain, weight gain, nausea, headaches, dizziness, insomnia,
dizzy, mood swings, tired, dry mouth, sweating

Gender group “female”
Rash, gained weight, could not sleep, heartburn, severe nausea, lost weight, restless, very irritable, heart racing,
disconnected, stiffness, upset, severe migraines, cramping, neck pain, twitching, fever, skin problems

Gender group “male”
Erectile dysfunction, pins and needles, burning sensations, loose bowels, urination, uneasiness, trouble with
dizziness, severe drowsiness, night sweat, chest pressure, blisters, clammy hands

Age group “19–34”
Couldn’t sleep, anger issues, loss of sex drive, cramps, unmotivated, jaw pain, frequent headaches, fever,
stomach pains, crying for no reason, severe dizziness, intrusive thoughts

Age group “45–64”
Nervous breakdown, aches and pains, swelling, muscle aches, delayed ejaculation, profuse sweating,
indigestion, ringing in my ears, spasms, trouble urinating, palpitations

Table 3: ADRs extracted from reviews for the drugs that treat high blood pressure.

Group Adverse drug reactions

All authors
Cough, coughing, dizziness, dizzy, headaches, dry cough, fatigue, tired, headache, weight gain, hair loss, nausea,
anxiety, shortness of breath, tiredness, diarrhea, chest pain, depression, joint pain, rash, swelling, very tired, light
headed, blurred vision

Gender group
“female”

Heart palpitations, hives, gagging, hot flashes, extremely tired, nightmares, chronic cough, cold hands and feet,
panic attacks, exhausted, weight loss, blurry vision, heartburn, sleepy, persistent cough, severe headaches, stomach
pain, numbness

Age group “45–64”
Bloating, muscle aches, persistent cough, indigestion, stomach pain, post nasal drip, sick, lack of sleep, ringing in my
ears, stomach pains, foot cramps, tightness in chest, falling out, severe coughing, faint, nagging cough, no energy

Age group “25–44”
Short-term memory loss, slight weight gain, fast heartbeat, lost sex drive, cramp, unusual tiredness, bad dreams,
numbness in my toes, pain in my side, dazed feeling, intense salt cravings, lip to swell, chronic headaches, throat and
neck swelled

Table 4: ADRs extracted from reviews for the drugs that treat fibromyalgia.

Group Adverse drug reactions

All authors

Pain, depression, anxiety, weight gain, nausea, headaches, depressed, dizziness, dizzy, panic attacks, nerve pain,
insomnia, dry mouth, constipation, sweating, tired, headache, fatigue, back pain, mood swings, hot flashes, nightmares,
suicidal thoughts, severe pain, blurred vision, muscle pain, vomiting, chronic pain, suicidal, neuropathic pain,
drowsiness, trouble sleeping, sex drive, diarrhea, seizures, crying, anxious, nauseous, numbness, swelling, leg pain,
night sweats, vertigo, tremors, joint pain, itching, burning, panic attack, sleepiness, drowsy

Gender group
“female”

Severe migraines, water retention, severe panic attacks, suicidal ideation, exhaustion, stiff, inability to sleep, rapid
heartbeat, crazy dreams, sweaty, nervous breakdown, extreme sweating, fogginess, flushing, major weight gain,
increased my appetite

Gender group
“male”

Blisters, premature ejaculation, foot neuropathy, burning discomfort, can barely walk, pain in my toes, anger problems,
loss of libido, pancreatitis, pain in lower back, hiccups, shock sensations, couldn’t walk, can’t walk, panic problems,
“shock” sensations, hangover, short-term memory, severe trouble urinating
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extending input embeddings with a character-level model.
Thus, our final model successfully combines three different
approaches to statistical modeling in NLP. In further work,
we plan to experiment with other neural models in similar
general architectures and further improve the state of the
art in ADR extraction from free-text reviews.
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