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a b s t r a c t

Most countries are reopening or considering lifting the stringent prevention policies such as lockdowns,
consequently, daily coronavirus disease (COVID-19) cases (confirmed, recovered and deaths) are
increasing significantly. As of July 25th, there are 16.5 million global cumulative confirmed cases,
9.4 million cumulative recovered cases and 0.65 million deaths. There is a tremendous necessity of
supervising and estimating future COVID-19 cases to control the spread and help countries prepare
their healthcare systems. In this study, time-series models — Auto-Regressive Integrated Moving
Average (ARIMA) and Seasonal Auto-Regressive Integrated Moving Average (SARIMA) are used to
forecast the epidemiological trends of the COVID-19 pandemic for top-16 countries where 70%–80% of
global cumulative cases are located. Initial combinations of the model parameters were selected using
the auto-ARIMA model followed by finding the optimized model parameters based on the best fit
between the predictions and test data. Analytical tools Auto-Correlation function (ACF), Partial Auto-
Correlation Function (PACF), Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC) were used to assess the reliability of the models. Evaluation metrics Mean Absolute Error (MAE),
Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Percent Error (MAPE)
were used as criteria for selecting the best model. A case study was presented where the statistical
methodology was discussed in detail for model selection and the procedure for forecasting the COVID-
19 cases of the USA. Best model parameters of ARIMA and SARIMA for each country are selected
manually and the optimized parameters are then used to forecast the COVID-19 cases. Forecasted
trends for confirmed and recovered cases showed an exponential rise for countries such as the United
States, Brazil, South Africa, Colombia, Bangladesh, India, Mexico and Pakistan. Similarly, trends for
cumulative deaths showed an exponential rise for countries Brazil, South Africa, Chile, Colombia,
Bangladesh, India, Mexico, Iran, Peru, and Russia. SARIMA model predictions are more realistic than
that of the ARIMA model predictions confirming the existence of seasonality in COVID-19 data. The
results of this study not only shed light on the future trends of the COVID-19 outbreak in top-16
countries but also guide these countries to prepare their health care policies for the ongoing pandemic.
The data used in this work is obtained from publicly available John Hopkins University’s COVID-19
database.

© 2021 Elsevier B.V. All rights reserved.
∗ Corresponding authors.
∗∗ Correspondence to: 501 E Saint Joseph St.

E-mail addresses: eswararunkumar.kalaga@mines.sdsmt.edu
K.E. ArunKumar), dkalaga@ccny.cuny.edu (D.V. Kalaga),
imothy.Brenza@sdsmt.edu (T.M. Brenza).
ttps://doi.org/10.1016/j.asoc.2021.107161
568-4946/© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In the last week of December 2019, a group of patients at
local hospitals in Wuhan, China demonstrated novel a form of
viral pneumonia [1]. All the patients shared a common history

of visiting a wet market in Wuhan, China. The patients were not
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Nomenclature

yt Non-stationary time-series.
y′
t Time-series after first order differencing.

y′′
t Time-series after second order differencing.

yt−1 Observation at time t−1 in the past, one-time
step away from current time stamp t .

y′
s Seasonal time-series data.

yt−m Observation at t−m in the past, m time steps
away from the current time-stamp t .

m Number of time steps for a single seasonal
period.

yt Time-series data at time t .
C Intercept or constant.
φi or p Auto-regressive parameter at ith or pth

time-stamp.
φ1 Auto-regressive parameter at t − 1 time-

stamp.
φ2 Auto-regressive parameter at t − 2 time-

stamp.
θ1 Moving average parameter at t − 1 time-

stamp.
θ2 Moving average parameter at t − 2 time-

stamp.
Et Random error or residual term for the tth

day.
p Auto-regressive term of ARIMA model.
d Ordinary differencing term of ARIMA model.
q Moving average term of ARIMA model.
P Auto-regressive term of SARIMA model.
D Seasonal differencing term of SARIMA model.
Q Moving average term of SARIMA model.
ΦP Auto-regressive parameter of SARIMA model

at Pth time-stamp.
ΘQ Moving average parameter of SARIMA model

at Q th time-stamp.
B Backshift operator.
ϕ(B) Non-seasonal auto-regressive polynomial.
θ (B) Non-seasonal moving average polynomial.
ΦP(Bm) Seasonal auto-regressive polynomial.
(1−Bm)D Seasonal differencing.
ΘQ (Bm) Seasonal moving average polynomial.

L
(
θ̂

)
Likelihood of the candidate model given the

data evaluated at θ̂ .
θ̂ The set of model parameters.
k The number of estimated parameters in the

candidate model.
n Sample size or number of observations.

responding to medicine and the agent causing the disease was
identified as Severe Acute Respiratory Syndrome Corona Virus-2
(SARS-CoV-2) which is a strain of the coronaviruses family [2].
Sooner the outbreak was declared as a pandemic, the disease
is named as COVID-19, by World Health Organization (WHO)
on the 11th of March 2020 [3]. Ever since the outbreak was
declared as pandemic, many countries over the world were af-
fected severely by novel coronavirus disease (COVID-19) and took
various measures to control the spread. For example, countries
such as the USA, Australia, India took various preventive mea-
sures such as using facemasks, implementing stay-at-home order,
2

social-distancing, and lockdowns [4–7]. As a result of the control
measures the daily confirmed cases decreased drastically. For
example, due to the implementation of stay-at-home orders in
the USA, the daily confirmed cases on June 7h, 2020 was 19,370
which was decreased from 32,074 on April 9th, 2020 [8].

Currently, most of the countries are at the breaking point in
terms of health services, following the stay-at-home, mandatory
face masks, and social-distancing orders. This can be evident from
the surge in the reported 63000 daily confirmed new cases (5-
day average) on 15th July 2020, which was 3.2 folds of the cases
reported on 7th June 2020 [8]. Similarly, Italy’s health care system
has been pushed beyond the limits. The exponential rise in con-
firmed cases required exponential rise in health care supplies and
the deployment of healthcare personal [9]. Currently, there are 16
countries where 80% of the global COVID-19 confirmed cases are
concentrated. As there is no specific treatment for the COVID-19
illness, the preparation of the health care system and prevention
is of utmost urgency [10]. The healthcare system can be prepared
to control the outbreak, by accurately predicting the forecast of
the COVID-19 dynamics using statistical modeling tools. These
models can be used for making short-term and long-term forecast
of the disease spread thereby providing an idea on the amount of
additional healthcare resources will be needed.

Various statistical models are used to predict the upcoming
number of cases and forecast the spread of infectious disease in
the near future [11]. Zhang et al. [12] have used the SARIMA
model to forecast Typhoid fever. In another study Chen et al. [13]
have forecasted the influenza incidence in urban and rural ar-
eas of Shenyang, China using SARIMA model. Similarly, ARIMA
models were used to forecast infectious diseases such as tubercu-
losis [14], Dengue fever [15] and Brucellosis [16]. Recently, ARIMA
models were used to predict the prevalence, growth rate, the
life cycle of COVID-19 pandemic. Ceylan. Z [17] has used ARIMA
models to predict the epidemiological trend in Italy, Spain, and
France. Leila et al. [18] have used the ARIMA model to predict and
forecast the number of COVID-19 patients for the next 30 days
in Iran. They reported the number of daily cases would be 3,574
by April 20. Marbaniang S. P. [19] has reported the use of ARIMA
models and predicted and forecasted the total confirmed cases for
the next 20 days from May 18th, 2020. He reported that the cases
in India will increase to 2,45,000 in the first week of June 2020.
Perone [20] has used ARIMA models to forecast the cumulative
cases in Italy for more than 40 days. Their results showed that the
number of COVID-19 cases in Tuscany (Italy) will reach plateau on
55th day of the forecast.

Further, several researchers have reported the short-term fore-
cast of COVID-19 pandemic using the machine learning models
other than ARIMA and SARIMA Ghosal et al. [21] have used the
linear and multiple linear regression techniques to forecast the
number of fatalities in India for a short period for six weeks.
Authors have reported that the fatalities in India will be dou-
bled if the COVID-19 preventive measures are unchanged or
not implemented. Parbat and Chakraborty [22] have employed
the Support Vector Regression (SVR) for predicting the COVID-
19 cases in India for 60 days based on the time-series data
reported for the period of 1st March 2020 to 30th April 2020.
Their results indicate that the SVR model has an accuracy of ∼97%
in predicting the cumulative fatalities cases, cumulative recov-
ered cases, cumulative confirmed cases. Their model also able
to predict the daily new COVID cases with an accuracy of 87%.
Maleki et al. [23] have used Auto-Regressive (AR) models based
on two-piece scale mixture normal distributions to forecast the
confirmed and recovered COVID-19 cases. Their model performed
well in forecasting confirmed and recovered global COVID-19
cases. Ribeiro et al. [4,24] have used Cubist Regression, Random

Forest, Ridge Regression, SVR, and ARIMA models for short-term
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forecasting of COVID-19 confirmed cases in Brazil. Their findings
reveal that the best performing models are SVR, ARIMA. Salgotra
et al. [25] have used models based on genetic programming
for predicting the cumulative confirmed cases and cumulative
fatalities in India. Authors have found that their model is less
sensitive to the variables and highly reliable in predicting the
cumulative confirmed cases and cumulative deaths. Chimmula
and Zhang [26] have employed a deep learning Long Short-
Term Memory (LSTM) network to predict the COVID-19 trends in
Canada. It is reported that the pandemic in Canada will be ending
in about three months. Mehdi et al. [27] have employed LSTM
network, SARIMA and Holt winter’s exponential smoothing and
moving average methods to forecast COVID-19 cases in Iran. Their
comparative study reported that the LSTM model outperformed
other models. Ardabili et al. [28] have implemented a multi-layer
perceptron model and adaptive network-based fuzzy interface
system for predicting the COVID-19 outbreak. Their research
work has recommended developing individual machine learning
models for each country due to the existence of fundamental
differences among different countries.

In this study, we made an attempt to forecast the cumula-
ive COVID-19 confirmed cases, recovered cases, and confirmed
eaths for the top-16 countries, where 70%–80% of global COVID-
9 cases concentrated. The top-16 countries were chosen based
n the total accumulative confirmed cases. The pie chart for the
ercentage distribution of COVID-19 cases per each country is
epicted in Fig. 1. The present study uses the COVID-19 cases are
eported for the period of Jan 22nd, 2020 to July 24th, 2020 and
he data was obtained from Johns Hopkins coronavirus resource
enter [29]. The rest of the paper is organized as follows: Section 2
escribes the statistical models, their underlying mathematics
long with the analytical tools, evaluation metrics. The compu-
ational framework of the model parameter selection procedure
s discussed in Section 3. In Section 4, the model parameter
election and parameter optimization procedure are discussed
n great detail by taking the time-series analysis of cumulative
onfirmed cases of the USA as a case study. Further, forecasted
rends of the cumulative confirmed cases, recovered and deaths,
ased on ARIMA and SARIMA models, are given in the results
nd discussion section (Section 5). Finally, Section 6 provides the
onclusions drawn from the present work.

. Statistical models and description

We have used ARIMA and SARIMA statistical models to gener-
te a 60-day forecast of cumulative COVID-19 cases for top-16
ountries, the proposed models are country-specific and were
ptimized by selecting the best model parameters. For each coun-
ry, we have considered the date on which the first case was
eported as the starting day of the time-series, hence, the date
f the first case reported varies from country to country. To
ave a statistically meaningful forecast of time-series data, the
inimum sample size of 30 observations is required [30]. The
umber of observations (i.e. sample size) used in the present
ork is much greater than the minimum size required to carry
ut the meaningful time-series forecasting, as the data collected
or the duration of seven months (22nd January 2020 to 3rd
ugust 2020).
Time-series data is a sequence of numerical values that has

time-stamp associated with each value [31]. Time-series data
an be classified into two categories namely stationary data and
on-stationary data. A stationary time-series data has no patterns
ith respect to the time whereas a non-stationary time-series
ata has patterns, also known as seasonality. Therefore, the mean
nd variance of the non-stationary data are not constant over
ime. The non-stationary time-series data can be converted into
3

stationary by calculating the difference between two successive
observations. This technique is called differencing, it removes
the changes in the level of the time-series thereby eliminating
the trends and seasonality. There are two widely used differ-
encing techniques, known as ordinary differencing and seasonal
differencing. The ordinary first-order differencing, second-order
differencing are mathematically represented as Eqs. (1) and (2),
respectively.

y‘t = yt − yt−1 (1)

y"t = yt − 2yt−1 + yt−2 (2)

here yt is non-stationary time-series data, y′
t is the time-series

fter first-order differencing, y′′
t is the time-series after second-

rder differencing, yt−1 is the observation at time-stamp t −

, yt−2 is the observation at time-stamp t − 2. Second order
ifferencing is needed when the data is not stationary after
irst order differencing. In seasonal differencing, the difference is
qual to the difference between an observation and the previous
bservation from the same season. The first order of seasonal
ifferencing can be written as follows.
′

s = yt − yt−m (3)

here y′
s is the seasonal time-series after first order differencing,

t−m is the observation at time-stamp t − m, m is the number
f time step corresponding to a single seasonal period. The time-
eries data was first subjected to differencing for removing the
easonality and then the resulted data frame is used for forecast-
ng. For developing the statistical models based on the time-series
ata the following assumptions were made:

1. Time-series data does not contain anomalies/outliers.
2. Data is univariate meaning the time-series data is com-

prised of only one variable, as both the ARIMA and SARIMA
model regresses a variable with its past values.

3. The model assumes that the data is stationary requiring the
mean and variance are constant over time.

4. Model parameters and error terms are assumed to be con-
stant with respect to time.

.1. Auto-Regressive Integrated Moving Average (ARIMA(p,d,q))

ARIMA(p,d,q) model was first introduced by Box and Jenkin
n 1976 [32], it can be used for forecasting the non-seasonal
tationary time-series data. An ARIMA model is characterized by
terms: p, d, q where p is the order of the Auto-Regression (AR)

erm, q is the order of the Moving Average (MA) term, d is the
rder of differencing required to make the time-series stationary.
uto-Regression is nothing but the regression of the variable
gainst itself to forecast the variable of interest. It correlates the
attern of the one-time period to its previous time periods. MA
s a regression-like model that uses the errors associated with
he forecast at a previous time-step to forecast a variable at a
ater time-step. The following are the generalized equations of
th order AR model (Eq. (4)) and qth order MA model (Eq. (5)).

t = C + φ1y t−1 + φ2yt−2 + · · · · · · + φp + yt−p + Et (4)

t = C + Et + θ1Et−1 + θ2Et−2 + · · · · · · + θqEt−q (5)

ARIMA models are built upon incorporating the AR model
Eq. (4)), integration (I) and the MA model (Eq. (5)). The in-
egration (I) is the reverse process of differencing to generate
he forecast. The generalized ARIMA model is mathematically
epresented as in Eq. (6).

= C +φ y+φ y +· · · · · ·+φ y +θ E +θ E +E (6)
t 1 p t−p n t−n 1 t−1 q t−q t
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Fig. 1. Pie-chart showing the percentage distribution of global COVID-19 data (A) confirmed cases (B) recovered cases (C) deaths.
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Where C is intercept, φi(i = 1, 2 . . . p) is auto-regressive model
arameters, θi(i = 1, 2 . . . p) is moving average model parame-
ers, yt is current time-series value, yt−1, yt−2...yt−p is past values
and Et is random error or residual term for the tth day and it is
given by the following equation:

Et = yt − yt−1 (7)

2.2. Seasonal Auto-Regressive Integrated Moving Average (SARIMA
(p, d, q)(P, D, Q))

Seasonal-ARIMA (SARIMA) model includes non-seasonal
ARIMA(p, d, q) and additional seasonal terms (P, D, Q)m to account
for the seasonality of the time-series data for m number of time
steps corresponding to a single seasonal period. The terms P, Q
and D are the order of seasonal AR term, seasonal moving av-
erage term, seasonal differencing term, respectively. The general
SARIMA model is mathematically represented as follows:

ΦP
(
Bm)

φp (B)
(
1 − Bm)D

(1 − B)d yt = ΘQ(Bm)θq(B)wt (8)

Where yt is the non-stationary time-series, wt is the Gaussian
white noise process, ϕ(B) is non-seasonal auto-regressive poly-
nomial and θ (B) is non-seasonal moving average polynomial, D
is seasonal differencing term is equal to 1 or 2 etc. However,
the value of D = 1 is sufficient to enforce stationarity into the
data, ΦP(Bm) is seasonal auto-regressive polynomial, and ΘQ (Bm)
is seasonal moving average polynomial. Where, B is defined as
the backshift operator which is expressed as follows:

Bkyt = yt−k (9)

The expressions for the non-seasonal auto-regressive model
(Eq. (10)), moving-average (Eq. (11)) model, seasonal terms for
seasonal AR model (Eq. (12)) and seasonal MA (Eq. (13)) model
are given below.

ϕ (B) = 1 − ϕ1B − ϕ2B2
− · · · − ϕpBp (10)

(B) = 1 + θ1B + θ2B2
+ · · · + θqBq (11)

P(Bm) = 1 − Φ1Bm
− Φ2B2m

+ · · · · · · + ΦPBPm (12)

Q(Bm) = 1 + Θ1Bm
+ Θ2B2m

+ · · · · · · + ΘQBQs (13)

.3. Analytical tools and model evaluation

The following analytical tools are used for assessing the reli-
bility of time-series analysis: Auto-Correlation Function (ACF),
artial Auto-Correlation Function (PACF), Akaike Information Cri-
erion (AIC) and Bayesian Information Criterion (BIC). These mea-
ures indicate the relation between the observations within the
ime-series. ACF gives the correlation of time-series data with
ts previous time-series data, whereas PACF correlates the time-
eries with its own lagged values separated by certain time units.
IC and BIC are both penalized-likelihood criteria, the lower the
IC and BIC values mean that the model is more likely to be
onsidered as a true model. The evaluation metrics used in this
tudy are Mean Absolute Error (MAE), Mean Square Error (MSE),
nd Root Mean Square Error (RMSE).

.3.1. Auto-Correlation Function (ACF) and Partial Auto-Correlation
unction (PACF)
The correlation between current observation with the obser-

ations from previous time-steps (lags) in a time-series data is
alled auto-correlation. The plot of auto-correlation vs lags in
he time-series is called an auto-correlation plot, and the ACF
escribes the linear relationship between observation at time t
 c

5

and observation at a previous time (t-k). To illustrate, the ACF for
time-series yt is given by:

ACF (yt , yt−k) =
Covariance(yt , yt−k)

variance(yt )
(14)

here k is lag, and it is defined as the difference between yt and
yt−k. Lag k auto-correlation means the correlation between the
observations that are k time periods apart. On the other hand, in
partial auto-correlation, the intermediate observations are con-
sidered while calculating the correlation between two observa-
tions at different times. For instance, consider that a time-series
yt . The PACF between two observations yt and yt−2 (assuming

= 2) can be written as shown in the equation.

ACF(yt , yt−2) =
covariance(yt , yt−2|yt−1)

√
variance(yt |yt−1)

√
variance(yt−2|yt−1)

(15)

.3.2. Akaike Information Criterion (AIC) and Bayesian Information
riterion (BIC)
The generated models need to be tested for the goodness of

he model performance in terms of explaining the relationships
etween the variables. We have used the information criteria
o determine how well a model explains the relationships. Two
opular criteria are AIC and BIC, these information criteria access
he quality of the models by giving credit to models which has
ess error while applying penalty for models with too many
arameters. AIC is mathematically represented as follows.

IC = −2logL
(
θ̂

)
+ 2K (16)

og L
(
θ̂

)
represents the likelihood function and K is the total

umber of model parameters. Similarly, BIC is another model
election criterion. BIC imposes a lesser penalty on the number of
arameters when compared to AIC. In both AIC and BIC settings
he lower value represents the best model which has a higher
ikelihood value. Thus, assisting time-series analysts in choosing
he best model amongst the finite number of potential models
enerated. BIC is mathematically represented as follows.

IC = −2logL
(
θ̂

)
+ KlogN (17)

here N is the number of observations.

.3.3. Evaluation metrics
MAE, MSE, RMSE and MAPE are used often to evaluate the

ccuracy of the proposed model, which are given by the following
quations:

AE =
1
n

n∑
i=1

|yi − ŷi| (18)

MSE =
1
n

n∑
i=1

(yi − ŷi)2 (19)

MSE =

√1
n

n∑
i=1

(yi − ŷi)2 (20)

APE =
1
n

n∑
i=1

⏐⏐⏐⏐yi − ŷi
yi

⏐⏐⏐⏐ (21)

here, ŷi is model predicted value, yi is actual value.

. Computational framework for model development

In the first step, each time-series was checked for the pres-
nce of non-stationarity using ACF and PACF plots. If the auto-
orrelation reduces very marginally as the number of lags
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Fig. 2. Algorithm showing the methodology for developing ARIMA and SARIMA models.
ncrease, it indicates that the time-series is non-stationary. Such
ime-series with evidence of non-stationary was differenced be-
ore performing the ARIMA or SARIMA modeling. The raw time-
eries was used for modeling without any differencing if ACF
nd PACF plots indicate the presence of stationarity. The non-
tationary time-series was subjected to first-order differencing
o stabilize the mean of the time-series before performing the
orecast. However, in some cases the second-order differencing
as performed if the first order differenced time-series has a
rend or seasonality. The algorithm showing the stepwise proce-
ure for developing the ARIMA and SARIMA models were given in
ig. 2. The scripts were written in Python (Ver. 3.7.) programming
anguage installed in the Anaconda environment. The numerical
imulations were performed in the cloud computing platform
Google COLAB) and on a local computer (OS: Windows 10, Pro-
essor: Intel-I7). The snapshots of the Python script depicting the
mportant steps of the data analysis can be found in Appendix A.
he average computational time taken for each simulation on the
ocal computer is about 3 secs for the ARIMA model and 6 secs
or the SARIMA models.

Most of the countries’ cumulative cases required second-order
ifferencing except for confirmed cases of South Africa and Spain
Table 1), for recovered cases of UK (Table 3), for recovered cases
pain and UK (Table 4). ACF plot of stationary time-series was
sed to get a basic idea on whether AR terms or MA terms will
it to the data to deliver a superior model. If the ACF plot has
egative auto-correlation at the first lag, it suggests using MA
erms. If the PACF plot of the differenced time-series showed
sharp cutoff which is positive, we consider adding AR terms
6

to the model. Selecting the best parameter (p, d, q) manually
using ACF and PACF plots for ARIMA can be time-consuming as
the number of models to assess is a permutation of the number
of model order parameters, and it can be even more expensive
for selecting the parameters of SARIMA(p, d, q)(P, D, Q)m. To
select the proper combination of the model parameter values we
performed a grid search using pmdarima (Pyramid ARIMA) library
available in statsmodels (a python module). The pmdarima uses
AIC as an evaluation metric to choose the best model from various
ARIMA and SARIMA models. The seasonality of the data was
checked using the seasonal_decompose function that is available
in statsmodels. Then the stepwise parameter selection was per-
formed to identify the best combination by setting the seasonality
to ‘‘True’’ during the grid search. Since the cumulative COVID-
19 cases are of only few months, the parameter that represents
seasonality (m) was assigned to 3, 7, 12. Our data analysis showed
that seasonality terms varied from country to country. The model
with the best seasonal term was identified using information
criteria (AIC and BIC). Zohair Malki et al. [33] have used a similar
approach for identifying the seasonality term (m) for COVID -19
data by assigning it 3,7 and 12.

The time-series data of all the selected top-16 countries were
split into 80% training and 20% testing/validating datasets. The
model development and parameter selection were done using
the training dataset and the performance of the developed model
was tested with the validation dataset. The ACF and PACF plots
of the residuals were used to further determine the model’s
goodness of fit. If the ACF and PACF plots of the residuals dis-
played correlation coefficients that are significantly different from
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Table 1
Selected ARIMA models for forecasting cumulative confirmed cases.
Country ARIMA

(p,d,q)
AIC BIC MSE MAE RMSE MAPE

South Africa 7,2,1 1.93E+03 1.96E+03 1.33E+05 1.91E+02 3.64E+02 5.42E−02
Bangladesh 6,2,2 1.72E+03 1.75E+03 38,97,458 1.35E+03 1.97E+03 6.00E−01
Brazil 6,2,1 2.63E+03 2.65E+03 1.29E+09 2.99E+04 3.59E+04 1.39E+00
Chile 7,2.4 2.20E+03 2.24E+03 3,62,491 4.87E+02 6.02E+02 1.50E−01
Columbia 2,2,2 1.77E+03 1.77E+03 1.11E+07 3.30E+03 3.33E+03 1.82E+00
India 5,2,2 2.48E+03 2.50E+03 2.99E+07 3.52E+03 5.47E+03 3.28E−01
Iran 0,2,0 2.10E+03 2.11E+03 7.43E+04 2.22E+02 2.73E+02 8.06E−02
Italy 7,2,4 2.28E+03 2.32E+03 1.97E+04 1.23E+02 1.40E+02 4.50E−01
Mexico 6,2,2 1.96E+03 1.98E+03 8.08E+06 2.65E+03 2.84E+03 7.50E−01
Pakistan 4,2,1 2.26E+03 2.28E+03 4.25E+05 4.25E+02 6.52E+02 1.63E−01
Peru 0,2,1 2.14E+03 2.14E+03 9.02E+06 2.45E+03 3.00E+03 6.77E−01
Russia 3,2,3 2.36E+03 2.38E+03 8.66E+06 1.88E+03 2.94E+03 2.37E−01
Saudi Arabia 3,2,1 1.81E+03 1.83E+03 8.10E+05 6.42E+02 9.00E+02 2.57E−01
Spain 3,2,4 2.75E+03 2.77E+03 3.06E+08 3.97E+03 5.53E+03 1.55E+00
UK 7,2,1 2.26E+03 2.29E+03 8.71E+06 2.33E+03 2.95E+03 9.00E−02
USA 7,2,1 3.03E+03 3.06E+03 2.04E+08 1.17E+04 1.43E+04 9.91E−02
Table 2
Selected SARIMA models for forecasting cumulative confirmed cases.
Country SARIMA

(p,d,q)(P,D,Q,m)
AIC BIC MSE MAE RMSE MAPE

South Africa (2,1,2)(1,1,1,7) 1.87E+03 1.89E+03 2.12E+05 3.29E+02 4.60E+02 9.00E−02
Bangladesh (5,2,2)(2,1,2,7) 1.39E+03 1.43E+03 6.63E+04 2.13E+02 2.57E+02 1.84E−01
Brazil (3,2,2)(2,0,1,7) 2.30E+03 2.32E+03 2.69E+09 4.45E+04 5.18E+04 2.04E+00
Chile (0,2,1)(1,0,1,7) 2.04E+03 2.05E+03 3.59E+05 4.97E+02 6.00E+02 1.58E−01
Colombia (4,2,1)(2,1,1,7) 1.40E+03 1.43E+03 1.42E+08 9.71E+03 1.19E+04 4.83E+00
India (2,2,1)(1,1,1,7) 2.21E+03 2.23E+03 2.97E+09 3.87E+04 5.45E+04 3.10E+00
Iran (3,2,0)(2,0,1,7) 1.69E+03 1.71E+03 1.33E+07 3.06E+03 3.64E+03 1.09E+00
Italy (1,2,2)(2,0,1,7) 1.99E+03 2.02E+03 1.76E+06 1.13E+03 1.33E+03 4.55E−01
Mexico (1,2,1)(1,0,2,7) 1.73E+03 1.75E+03 4.35E+07 5.78E+03 6.59E+03 1.61E+00
Pakistan (2,2,2)(0,0,1,3) 2.50E+03 2.52E+03 1.35E+08 9.53E+03 1.16E+04 3.56E+00
Peru (0,2,1)(1,0,0,12) 1.95E+03 1.95E+03 2.73E+07 4.37E+03 5.22E+03 1.21E+00
Russia (4,2,4)(4,1,4,3) 2.09E+03 2.14E+03 5.73E+06 1.54E+03 2.39E+03 2.13E−01
Saudi Arabia (0,2,0)(1,0,0,3) 1.77E+03 1.77E+03 1.38E+07 3.01E+03 3.72E+03 1.17E+00
Spain (3,1,1)(2,1,1,3) 2.55E+03 2.57E+03 6.59E+06 1.80E+03 2.57E+03 6.71E−01
UK (1,2,1)(1,0,2,7) 2.32E+03 2.33E+03 9.05E+05 8.11E+02 9.51E+02 2.73E−01
USA (3,2,4)(2,0,4,7) 2.46E+03 2.50E+03 3.62E+08 1.60E+04 1.90E+04 4.00E+00
zero at higher lags, then we developed higher-order ARIMA or
SARIMA models, otherwise, the simple models suggested by auto-
ARIMA were used. The evaluation of the model was done using
the evaluation metrics: MAE, MSE, RMSE and MAPE (Fig. 2). The
actual vs predicted values were plotted to visually understand
the error. Once the finest model was identified by training on the
training dataset, the model was used to predict values of the test
data followed by forecasting for the next 60 days of cumulative
COVID-19 cases for top-16 countries.

In the first step, we checked for stationarity of the raw data
ollowed by differenced data of all the countries using ACF and
ACF plots as mentioned in the case study. As mentioned be-
ore, both seasonal and non-seasonal ARIMA models for all the
op-16 countries’ COVID-19 cases. The SARIMA models capture
oth trend and seasonality using non-seasonal differencing (d)
nd seasonal differencing (D) respectively. For COVID-19 cases,
e have considered seasonality in this time-series which is in
etween 3 to 12 days pattern. There are various factors that
ontrol and contribute to the seasonal pattern of the pandemics
uch as influenza and COVID-19. Some of those factors include
ocial distancing on weekdays vs weekends [34], climatic condi-
ions [35]. For example, the seasonality of the confirmed cases of
he USA has an oscillating pattern on every 7 days as discussed
n Section 4. For instance, in the case of the confirmed cases
f Peru a simple ARIMA model (0,2,1) was selected as the best
odel with the lowest AIC and BIC values of 2,139.9 and 2,143.3
s shown in Table 1. The selected ARIMA(0,2,1) model was used
7

to forecast the cumulative confirmed cases in Peru because the
ACF and PACF plot of the residuals did not show any correlation
coefficients that are significantly different from zero at least until
10 lags as shown in Figure S1B (supplementary document). For
any model such as ARIMA(0,2,1), with second-order differencing
(I or d = 2), implies that the forecast and the trend of the time-
series was adapted over time, hence the trend is equal to the
exponentially smoothed values of the previous slopes (change
in the process). Similarly, ARIMA(0,2,0) was the best model to
forecast cumulative confirmed cases of Iran, in the forecast pro-
cess of ARIMA(0,2,0), new observation is predicted based on the
most recent value and the trend is the most recent change in
the process. The predicted observation and trend determine the
value of the next period in the forecast [36]. Moreover, higher
order models such as ARIMA(6,2,2) are developed to fit the data
of countries such as Italy as shown in Table 1. ARIMA(6,2,2) for
Italy means that the response variable (y) is a combination of 6th
(p) order auto-regression model, 2nd (q) order moving average
model and the d value of 2 represents the integrative part of the
model. Similarly, SARIMA models were developed based on ACF
plots of differenced data as described in the case study (Fig. 3).
For example, SARIMA(2,2,2)(2,2,1,7) for Peru presented in Table 4,
has both second-order seasonal (D) and second-order ordinary
differences (d) as indicated by the 2’s in the second place of
each part of the model. It also has a 2nd order auto-regressive
model and 2nd order moving average model along with 2nd order
seasonal Auto-Regressive model and 1 seasonally lagged error.
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Fig. 3. The Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) plots of the cumulative confirmed cases of the USA as function of the Lag.
The shaded region represents the 95% confidence interval (CI). (A) ACF plot of actual data, (B) PACF plot of the actual data, (C) ACF plot of actual data after first
differencing, (D) PACF of data after first differencing (E) ACF of data after second differencing, (F) PACF of the data after second differencing.
In this study, we have reported the final optimized ARIMA and
SARIMAmodels used for forecasting COVID-19 cases of the top-16
countries. The complete details of these models are presented in
Tables 1–6 which has the information criteria (AIC, BIC) values,
and evaluation metrics (MSE, MAE, RMSE and MAPE) values.
Tables 1 and 2 have the details of ARIMA and SARIMA models
used to forecast cumulative confirmed cases of top-16 countries.
The details of models used to forecast cumulative recovered cases
are described in Table 3 (ARIMA models) and Table 4 (SARIMA
models). Similarly, Tables 5 and 6 provide details of the selected
models for forecasting cumulative death cases for 60 days using
ARIMA and SARIMA models, respectively. Such selected ARIMA
and SARIMA models were used to forecast the next 60 days from
the recent reported date of the COVID-19 cases. The following
section presents a case study based on the USA data, and the
60-day forecast of COVID-19 cases for top-16 countries.

4. Forecasting cumulative confirmed cases of USA: A case
study

This section describes the detailed forecasting procedure for
the USA’s confirmed cases. Fig. 3 displays the ACF and PACF
plots of the actual time-series data, first order and second order
differenced cumulative confirmed cases of the USA. Fig. 3A and 3B
are ACF and PACF plots of the actual data, respectively, the auto-
correlation coefficients gradually decrease as the number of lags
increase (Fig. 3A). This suggests that the data is non-stationary,
8

hence, there is a need to apply the differencing technique to
convert the data to stationary. The ACF plot (Fig. 3C) of the
time-series after first order differencing, shows the correlation
coefficients decreased gradually representing the existence of
non-stationarity in the time-series. So, the time-series was dif-
ferenced for the second time to introduce stationarity. Fig. 3D is
the PACF plot of the time-series data after first differencing, it
displays a sharp cutoff after lag 1. Moreover, on inspecting Fig. 3E,
the ACF plot of the second time differenced time-series shows
an oscillation indicating a seasonal series, the sharp significant
peak (greater correlation) occurs at lags of 7 days because the
data at 22nd January correlates with 29th January and so on.
This pattern strongly supports the existence of seasonality in the
time-series. This could be because of a greater number of social
distancing violations on weekends than on the weekdays. The
Fig. 3F is a PACF plot of second-order differenced data displayed
a sharp cutoff after lag 0. The second-order differencing indicated
an integrated order (I) of 2 must be used in developing the
model because taking the second-order differencing made the
USA data stationary. Similarly, we did second-order differencing
for recovered and death cases to stabilize the datasets whenever
required. The ARIMA(0, 2, 0) was the best ARIMA model with
the lowest AIC and BIC values 3,113.8 and 3,120.1, respectively.
However, while determining the goodness of the fit, the auto-
correlation plots of residuals displayed coefficients at higher lags
that are significantly different from zero. So, we developed a

higher-order ARIMA model (7,2,1) with AIC and BIC values of
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Table 3
Selected ARIMA models for forecasting cumulative recovered cases.
Country ARIMA

(p,d,q)
AIC BIC MSE MAE RMSE MAPE

South Africa (3,2,1) 1.77E+03 1.78E+03 2.15E+08 1.10E+04 1.47E+04 5.03E+00
Bangladesh (6,2,1) 2.08E+03 2.11E+03 2.33E+07 4.00E+03 4.83E+03 3.47E+00
Brazil (0,2,1) 2.58E+03 2.58E+03 9.00E+08 2.55E+04 3.00E+04 1.64E+00
Chile (0,2,1) 2.25E+03 2.16E+03 1.90E+08 1.18E+04 1.38E+04 3.81E+00
Columbia (6,2,1) 1.76E+03 1.79E+03 2.20E+08 1.16E+04 1.48E+04 1.14E+01
India (10,2,2) 2.49E+03 2.53E+03 3.25E+08 1.01E+04 1.80E+04 1.21E+00
Iran (1,2,6) 2.08E+03 2.10E+03 2.88E+07 4.48E+03 5.37E+03 1.84E+00
Italy (5,2,5) 2.22E+03 2.26E+03 2.27E+06 1.22E+03 1.51E+03 6.00E−01
Mexico (1,2,1) 2.06E+03 2.07E+03 1.66E+08 9.99E+03 1.29E+04 3.65E+00
Pakistan (6,2,2) 1.25E+03 2.19E+03 2.95E+07 3.97E+03 5.43E+03 1.92E+00
Peru (3,2,3) 1.98E+03 2.00E+03 9.42E+06 2.50E+03 3.07E+03 9.98E−01
Russia (6,2,2) 2.51E+03 2.54E+03 1.95E+08 1.23E+04 1.40E+04 2.19E+00
Saudi Arabia (5,2,2) 1.96E+03 1.98E+03 1.25E+08 1.05E+04 1.12E+04 5.18E+00
Spain (2,2,2) 2.35E+03 2.37E+03 3.00E−04 1.50E−02 1.70E−02 8.62E+00
UK (2,1,2) 1.49E+03 1.51E+03 3.85E+03 5.50E+01 6.20E+01 4.06E+00
USA (2,2,1) 3.18E+03 3.20E+03 2.54E+08 1.16E+04 1.59E+04 9.74E−01
Table 4
Selected SARIMA models for forecasting cumulative recovered cases.
Country SARIMA

(p,d,q)(P,D,Q,m)
AIC BIC MSE MAE RMSE MAPE

South Africa (4,2,2)(3,2,2,7) 1.49E+03 1.52E+03 2.20E+08 1.17E+04 1.48E+04 5.46E+00
Bangladesh (0,2,1)(1,0,0,7) 1.96E+03 1.96E+03 1.15E+07 2.92E+03 3.40E+03 2.57E+00
Brazil (2,2,1)(1,1,1,12) 2.26E+03 2.28E+03 5.46E+07 2.13E+03 2.34E+03 3.12E+00
Chile (1,2,1)(1,0,1,7) 2.28E+03 2.28E+03 8.23E+07 7.80E+03 9.07E+03 2.53E+00
Colombia (5,2,2)(4,2,2,7) 1.12E+03 1.15E+03 5.71E+04 1.16E+02 2.38E+02 1.30E−01
India (7,2,6)(3,2,6,3) 1.98E+03 2.05E+03 1.46E+08 7.15E+03 1.21E+04 8.70E−01
Iran (4,2,4)(3,1,2,3) 1.86E+03 1.87E+03 2.16E+07 3.80E+03 4.65E+03 9.50E−02
Italy (4,2,2)(1,1,1,7) 1.96E+03 1.98E+03 3.78E+06 1.79E+03 1.94E+03 9.23E−01
Mexico (1,2,1)(1,0,1,7) 1.93E+03 1.93E+03 1.19E+08 8.82E+03 1.09E+04 3.24E+00
Pakistan (4,2,2)(2,1,2,7) 1.97E+03 1.98E+03 9.44E+04 1.58E+02 3.07E+02 7.80E−02
Peru (2,2,2)(2,2,1,7) 1.53E+03 1.55E+03 5.82E+06 1.99E+03 2.41E+03 7.70E−01
Russia (5,2,0)(1,0,1,7) 2.51E+03 2.54E+03 1.95E+08 1.23E+04 1.40E+04 9.70E+01
Saudi Arabia (5,2,2)(4,0,2,7) 1.47E+03 1.51E+03 1.32E+09 1.08E+04 1.15E+04 8.00E−02
Spain (1,1,3)(2,0,1,7) 2.35E+03 2.37E+03 5.00E−04 2.00E−02 2.00E−03 9.88E−01
UK (4,1,2)(2,0,1,3) 1.41E+03 1.44E+03 2.10E+02 1.25E+01 1.45E+01 8.00E−01
USA (2,2,2)(1,0,1,7) 2.99E+03 3.01E+03 6.03E+08 1.72E+04 2.46E+04 1.41E+00
3,025 and 3,056 respectively (Table 1) for prediction and forecast-
ing the cumulative confirmed cases in the USA. An ARIMA(7,2,1),
the auto-correlation plots of the residuals did not display lags that
are significantly different from zero as shown in Figure S1B, S2B.

To further investigate the ARIMA(7,2,1) model, we have used
he Quantile–Quantile (Q–Q) plot and the probability density Q–
plot was constructed using the residuals (Fig. 4). The residual

rrors have a normal distribution as shown in Figs. 4B and 4D
he linear plot of residuals with respect to quantiles follow a
inear relationship except few blue dots at the ends but all other
ots lie close to the straight line. This bell-shaped distribution
f residuals suggests that the data came from a normal dis-
ribution. Higher-order model ARIMA(7,2,1) was selected and
sed to predict the cumulative cases and forecast to the near
uture. However, when we considered seasonality in the model
.e. SARIMA(3,2,4)(2,1,4,7), the Q–Q plot displayed lesser outliers
t the tails when compared to ARIMA(7,2,1). The Kernel Den-
ity Estimate Plot (KDE) of the residuals of ARIMA(7,2,1) and
ARIMA(3,2,4)(2,1,4,7) has a gaussian-like distribution but it is
harper suggesting an asymmetric exponential distribution as
hown in Fig. 4(B & D). Moreover, the KDE plot of
ARIMA(3,2,4)(2,1,4,7) (Fig. 4D) shows that the distribution of
esiduals is more normal/gaussian than that of ARIMA(7,2,1)
Fig. 4B). The results of diagnostic plots (Q–Q plot and KDE plot) of
he residuals are in strong support of choosing
ARIMA(3,2,4)(2,1,4,7) as the better model to fit with zero-auto
9

correlated errors as shown in ACF and PACF plots of the residuals
in Figures S3B & S4B (supporting document).

The Fig. 5 displays the comparison between the test data (20%
of the actual data) and the predictions of the test data obtained by
ARIMA, SARIMA models, along with the LSTM (Long–Short Term
Memory) and GRU (Gated Recurrent Unit) models, developed
in our recent work [37]. The model evaluation was carried out
by calculating the MAE, MSE, RMSE and MAPE using the Eqs.
(18), (19), (20) and (21), respectively. The calculated errors are
reported in Tables 1 and 2.

From Fig. 5, it is evident that both the ARIMA and SARIMA
models predicted the test data reasonably well. Further, SARIMA
model outperformed the complex deep learning models such
as LSTM and GRU models confirming that the simple machine
learning models are sufficient to accurately predict the test data.
The predictions of SARIMA(3,2,4)(2,1,4,7) matched the test data
better than the ARIMA(7,2,1) predictions. Therefore, the predic-
tion for test data and forecast for the next 60 days of cumulative
confirmed cases of the USA was done using the ARIMA(7,2,1) and
SARIMA(3,2,4)(2,1,4,7) models. Fig. 6(B) and Fig. 7(B) shows the
60-day forecast with 95% (CI) using ARIMA(7,2,1) and
SARIMA(3,2,4)(2,1,4,7), respectively. Both models’ forecast sug-
gests that the USA’s actual cumulative confirmed cases might
continue to increase exponentially in 60 days. Our best forecast
ARIMA and SARIMA models for the USA projects the number
of cumulative confirmed cases might reach 7.5 million by the

end of September. According to ARIMA(7,2,1) the cumulative
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Fig. 4. Diagnostics for the models used in the case study — prediction and forecast of cumulative confirmed cases of the USA. (A) Normal Q–Q plot of residuals of
ARIMA(7,2,1), (B) KDE of residuals of ARIMA(7,2,1), (C) Normal Q–Q plot of residuals of SARIMA(3,2,4)(2,0,1,7), (D) KDE of residuals of SARIMA(3,2,4)(2,0,1,7).

Fig. 5. Comparison of ARIMA and SARIMA models’ predictions with test data of cumulative confirmed cases in the USA.

10
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Fig. 6(A). 60-day ahead forecast of the cumulative confirmed cases in the top-16 countries (1–8) generated on July 26th of 2020 based on the best ARIMA models
selected for each country.
confirmed cases will increase to 6,478,221 on September 1st,
2020. Whereas SARIMA(3,2,4)(2,1,4,7) indicates that the cases
will be 2,677 lesser than what ARIMA(7,2,1) predicted on 1st
September. Before forecasting 60 days into the future, a similar
robust analysis was done for all three (confirmed, recovered,
deaths) cumulative COVID-19 cases for proposing an optimized
model for each country in top-16 countries.
11
5. Results and discussion

The percentage distribution of cumulative COVID-19 cases
(confirmed cases, recovered cases and deaths) of the top-16 coun-
tries are present as shown in Fig. 1. We selected top-16 countries
based on the number of cumulative confirmed cases, the top-
16 countries include the USA, Brazil, India, Russia, Peru, Chile,
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Fig. 6(B). 60-day ahead forecast of the cumulative confirmed cases in the top-16 countries (9–16) generated on July 26th of 2020 based on the best ARIMA model
selected for each country.
Mexico, the UK, South Africa, Iran, Spain, Pakistan, Italy, Saudi
Arabia, and Turkey as of 25th July. From Fig. 1A, it is evident
that out of 16 countries the USA had 26.4% of global cumulative
confirmed cases followed by Brazil (15.1%), India (9.0%), Russia
(5.1%) and South Africa (2.8%). This work is accounted for 78.4% of
the total confirmed cases (≈16.5 M) which are reported in top-16
ountries but not accounted for those reported in the rest of the
12
world. The country-based percentage distribution of the cumu-
lative recovered cases is given in Fig. 1B. The order of countries
with high to low recovered cases is as follows: USA (18.7%), Brazil
(13.4%), India (9.5%), Russia (6.2%), South Africa (3.3%), Mexico
(3.1%), Peru (2.8%), Chile (2.7%), UK (2.6%), Bangladesh (2.5%), Iran
(2.3%), Pakistan (2.2%), Spain (2.1%), Saudi Arabia (2.0%), Colombia
(1.6%) and Italy (1.3%). The total percentage of recovered cases
recorded by these countries is 76% of the global cases (≈9.4
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Fig. 7(A). 60-day ahead forecast of the cumulative confirmed cases in the top-16 countries (1–8) generated on July 26th of 2020 based on the best SARIMA models
selected for each country.
M). Similarly, total deaths reported by the top-16 countries are
account for 78.7% of the global deaths (≈650,000). Countries have
uch as the USA, Brazil, India, Russia, South Africa have reported
high number of deaths. The present work has accounted for
pproximately 80% of the global confirmed cases, recovered cases
13
and deaths for developing a reliable statistical model. Hence, the

results from these models can be used for predicting the COVID-

19 trends in other countries, which are not considered in this

work, as well as for forecasting the global COVID-19 cases.
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Fig. 7(B). 60-day ahead forecast of the cumulative confirmed cases in the top-16 countries (9–16) generated on July 26th of 2020 based on the best SARIMA models
selected for each country.
5.1. Cumulative confirmed cases

The 60-day forecast of confirmed cases for top-16 countries
re shown in Figs. 6 & 7. It is important to mention that the
ellow line represents the reported data, the blue line represents
he forecasted data and the shaded region is the 95% Confi-
ence Interval (CI) of the forecasted data. Fig. 6 displays the
0-day forecast of the top-16 countries based on ARIMA modes
14
whereas Fig. 7 shows the SARIMA based models’ forecasts of
cumulative confirmed cases of top-16 countries. From Fig. 6(A),
it is evident that South Africa will have a cumulative confirmed
case of ≈1,100,000 by September 22nd of 2020. The forecast
for Brazil has an exponential trend with a narrow 95% CI, the
ARIMA model predicted that the cumulative confirmed cases
will be ≈5,900,000 by the end of the 2nd week of September.
Similarly, a 60-day forecast of Colombia reveals that the number
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Fig. 8(A). 60-day ahead forecast of the cumulative recovered cases in the top-16 countries (1–8) generated on July 26th of 2020 based on the best ARIMA models
selected for each country.
of cumulative confirmed cases will reach ≈799,000 by the 3rd
eek of September, upper and lower limits of the 95% CI of the

orecast strongly follows the exponential growth of confirmed
ases as seen in Fig. 6(A). A similar exponential trend of the
umber of confirmed cases is observed in the case of the USA,
outh Africa, Colombia, Brazil, India, Mexico, and Bangladesh
Figs. 6(A) and 6(B)). However, the forecast of Saudi Arabia,
akistan, Chile, Russia, Peru, Iran shows a steep linear increment
15
in the number of cumulative confirmed cases at a steady pace.
Italy, the UK and Spain’s forecast showed very steady linear
increment in the number of cumulative confirmed cases. The
selected ARIMA models projected the number of cases in South
Africa, Brazil, Colombia, Chile, India, Iran, Italy, Mexico, Pakistan,
Peru, Russia, Saudi Arabia, Spain, UK, USA, and Bangladesh will
be ≈1,750,000, ≈5,800,000, ≈799,000, ≈401,000, ≈6,900,000,
≈425,000, ≈290,000, ≈820,000, ≈325,000, ≈505,000, ≈1200000,
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Fig. 8(B). 60-day ahead forecast of the cumulative recovered cases in the top-16 countries (9–16) generated on July 26th of 2020 based on the best ARIMA models
selected for each country.
≈401,000, ≈301,000, ≈330,000, ≈7,850,000 and ≈410,000 re-
pectively according to Figs. 6(A) and 6(B).
When seasonality is considered for SARIMA models, the sea-

onal forecast of the confirmed cases has captured the variance
nd seasonality in the time-series and projected well into the
orecast. This is more evident from the forecast of Brazil as shown
16
in Fig. 7(A). The SARIMA(3,2,2)(2,1,17) of Brazil has better cap-
tured the seasonality when compared to non-seasonal forecast
of Brazil as shown in Fig. 6(A). The forecasted data is capable
of recognizing the continuous seasonal patterns of the reported
data. The number of cumulative confirmed cases predicted by
SARIMA(3,2,2)(2,1,1,7) of Brazil is 2,000,000 greater than the
ARIMA predicted cumulative confirmed cases by the end of 2nd
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Fig. 9(A). 60-day ahead forecast of the cumulative recovered cases in the top-16 countries (1–8) generated on July 26th of 2020 based on the best SARIMA models
selected for each country.
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week of September. The SARIMA models’ predicted number of cu-
mulative confirmed cases of most of the countries are lesser than
that of the ARIMA models’ predictions. Such countries include
South Africa with ≈109,000, Colombia with ≈169,000, India with
200,000, Iran with 30,000, Mexico with 45,000, Russia with
100,000, Saudi Arabia with ≈20,000, UK with ≈35,000, USA
ith ≈350,000 and Bangladesh with ≈30,000 lesser cumulative
 t

17
onfirmed cases when compared to cumulative confirmed cases
redicted by their respective ARIMA models. Further, the coun-
ries including USA, Peru, Pakistan, Iran, Italy and Chile has broad
5% CI even after 3 weeks of forecast (Fig. 7(B)). The lower limit
f forecast’s 95% CI of these countries indicates the decline in the
umber of confirmed cases, whereas the upper limit indicates
he rapid exponential raise in the number of confirmed cases.
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Fig. 9(B). 60-day ahead forecast of the cumulative recovered cases in the top-16 countries (9–16) generated on July 26th of 2020 based on the best SARIMA models
selected for each country.
Certainly, most of the countries are reopening and loosening the
COVID-19 restrictions, we can see the rapid rise in the confirmed
cases in the next 60 days as suggested by the upper limit and not
the significant declining trend predicted by the models. Due to
the relaxation of preventive measures such as lockdowns, social
18
distancing and reopening of restaurants, and other local busi-

nesses, the fast-rising infection rates may lead to an exponential

growth of COVID-19 victims in these countries, the effect of the

reopening of the economy is clearly visible in various countries.
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Fig. 10(A). 60-day ahead forecast of the cumulative death cases in the top-16 countries (1–8) generated on July 26th of 2020 based on the best ARIMA models
selected for each country.
For example, the cumulative cases in India were less at the begin-
ning of the pandemic, which was due to the implementation of
the lockdown (April–May 2020). However, the cases rise as soon
as the lockdown was removed (June to August 2020). Whereas
in the USA, the reaction was relatively slow toward COVID-19,
leading to a continuous raise in COVID-19 cases. Similarly, Iran
19
has noticed a significant drop in new cases after implementing
stringent lockdown policies, Iran reopened in April 2020, due
to which the number of COVID-19 cases in Iran skyrocketed
again in May 2020 [18]. The forecast for cumulative cases in
Iran suggests that the cases might reach ≈450,000 by the second
week of September. Similarly, the forecasts of confirmed cases
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Fig. 10(B). 60-day ahead forecast of the cumulative death cases in the top-16 countries (9–16) generated on July 26th of 2020 based on the best ARIMA models
selected for each country.
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in India suggests that the cumulative confirmed cases will reach
≈65,00,000 according to ARIMA(5,2,2) but when we considered
the seasonality, SARIMA(2,2,1)(1,1,1,7), the projected cumula-
tive confirmed cases will be ≈70,00,000 which is ≈500,000
reater than the ARIMA(5,2,2) model’s prediction by 3rd week
f September 2020 (Figs. 6(A) & 7(A)). Similar to ARIMA models,
20
hree different trends in the forecasted profiles such as expo-
ential rise (USA, South Africa, Colombia, Brazil, India, Mexico,
nd Bangladesh), steep linear increment (Saudi Arabia, Pakistan,
hile, Russia, Peru, Iran) and gradual linear increment (Italy, UK
nd Spain) are observed. As shown in Figs. 7(A) and 7(B), the
elected SARIMA models projected number of cases of South
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Fig. 11(A). 60-day ahead forecast of the cumulative death cases in the top-16 countries (1–8) generated on July 26th of 2020 based on the best SARIMA models
selected for each country.
Africa, Brazil, Colombia, Chile, India, Iran, Italy, Mexico, Pak-
istan, Peru, Russia, Saudi Arabia, Spain, UK, USA, and Bangladesh
will be ≈950,000, ≈8,500,000, ≈625,000, ≈405,000, ≈6,250,000,
410,000, ≈220,000, ≈800,000, ≈356,000, ≈440,000,
1,500,000, ≈395,000, ≈300,000, ≈375,000, ≈7,600,000,
400,000 respectively. To avoid the surge in the number of new
onfirmed cases, local businesses, schools etc. should follow the
21
guidelines for organizing events and gatherings as published by
the Center for Disease Control and Prevention (CDC) [38].

5.2. Cumulative recovered cases

The ARIMA based forecasted trends of cumulative recovered
cases for all the top-16 countries are given in Fig. 8. It is clear
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Fig. 11(B). 60-day ahead forecast of the cumulative death cases in the top-16 countries (9–16) generated on July 26th of 2020 based on the best SARIMA models
selected for each country.
≈

≈

≈

r
c
r

from Fig. 8, that the recovery rate has shown three different
trends such as exponential rise, steep linear increase and grad-
ual linear increase were observed. After reviewing Fig. 8, the
selected ARIMA models projected that the number of recovered
cases in South Africa, Brazil, Colombia, Chile, India, Iran, Italy,
Mexico, Pakistan, Peru, Russia, Saudi Arabia, Spain, UK, USA,
and Bangladesh will reach ≈1,600,000, ≈4,500,000, ≈425,000,
 P

22
475,000, ≈4,000,000, ≈410,000, ≈210,000, ≈650,000,
610,000, ≈585,000, ≈1,150,000, ≈410,000, ≈150,000, ≈1,850,
2,510,000, ≈325,000 by the end of the September 2nd week,
espectively. Fig. 9 reports the forecasted recovered cases of 16
ountries based on the SARIMA model, it is evident that the
ecovered cases in South Africa, Brazil, Colombia, India, Mexico,
akistan, the USA, and Bangladesh are increasing exponentially.
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Table 5
Selected ARIMA models for forecasting cumulative death cases.
Country ARIMA

(p,d,q)
AIC BIC MSE MAE RMSE MAPE

South Africa (0,2,1) 9.27E+02 9.36E+02 1.30E+03 2.65E+01 3.60E+01 4.62E−01
Bangladesh (2,2,2) 7.18E+02 7.30E+02 1.65E+03 3.70E+01 4.00E+01 1.37E+00
Brazil (6,2,3) 1.45E+03 1.48E+03 2.04E+05 3.55E+02 4.52E+02 4.26E−01
Chile (0,2,1) 1.27E+03 1.28E+03 2.04E+03 3.60E+01 4.52E+01 4.20E−01
Columbia (1,2,1) 1.22E+03 1.23E+03 4.01E+02 1.40E+01 2.90E+01 2.10E−01
India (0,2,1) 1.75E+03 1.75E+03 1.47E+04 8.40E+01 1.21E+02 2.95E−01
Iran (2,2,1) 1.16E+03 1.17E+03 4.64E+04 1.80E+02 2.16E+02 1.22E+00
Italy (3,1,6) 1.55E+03 1.55E+03 3.61E+03 4.91E+01 6.01E+01 1.40E−01
Mexico (3,2,2) 1.44E+03 1.46E+03 2.43E+04 1.23E+02 1.56E+02 3.03E−01
Pakistan (3,2,3) 1.08E+03 1.10E+03 2.84E+03 4.27E+01 5.33E+01 7.77E−01
Peru (0,2,1) 1.81E+03 1.82E+03 5.95E+03 1.08E+03 1.87E+03 6.16E+00
Russia (5,2,1) 1.07E+03 1.09E+03 5.29E+03 5.27E+01 7.27E+01 4.68E−01
Saudi Arabia (1,2,0) 6.89E+02 6.97E+02 2.94E+02 1.38E+01 1.72E+01 5.46E−01
Spain (0,2,1) 1.80E+03 1.81E+03 1.27E+01 3.18E+00 3.56E+00 1.00E−02
UK (6,2,2) 1.57E+03 1.60E+03 2.39E+05 4.14E+02 4.88E+02 6.17E−01
USA (4,2,4) 1.88E+03 1.91E+03 1.33E+05 3.16E+02 3.65E+02 2.80E−01
Table 6
Selected SARIMA models for forecasting cumulative death cases.
Country SARIMA

(p,d,q)(P,D,Q,m)
AIC BIC MSE MAE RMSE MAPE

South Africa (2,2,2)(1,0,1,7) 8.56E+02 8.74E+02 1.94E+05 3.14E+02 4.41E+02 5.10E+00
Bangladesh (0,2,1)(0,0,1,7) 6.69E+02 6.77E+02 1.28E+02 9.20E+00 1.13E+01 3.50E−01
Brazil (5,2,2)(3,2,3,7) 9.96E+02 1.03E+03 2.33E+04 1.36E+02 1.53E+02 2.54E−01
Chile (1,2,1)(2,0,1,7) 1.35E+03 1.37E+03 6.25E+05 6.99E+02 7.90E+02 8.05E+00
Columbia (0,2,1)(2,0,2,3) 1.12E+03 1.13E+03 7.83E+04 2.19E+02 2.80E+02 2.90E+00
India (1,2,1)(1,0,1,12) 1.43E+03 1.44E+03 2.24E+06 1.20E+03 1.50E+03 4.02E+00
Iran (1,2,2)(1,0,1,12) 1.17E+03 1.18E+03 1.04E+05 2.60E+02 3.21E+02 1.74E+00
Italy (6,2,2)(1,0,1,7) 1.41E+03 1.44E+03 3.12E+04 1.47E+02 1.77E+02 4.20E−01
Mexico (0,2,1)(1,0,1,7) 1.34E+03 1.35E+03 1.36E+05 3.06E+02 3.68E+02 7.50E−01
Pakistan (2,2,3)(2,0,2,7) 1.03E+03 1.05E+03 3.65E+04 1.58E+03 1.91E+02 3.10E+00
Peru (1,2,1)(2,0,2,12) 9.01E+02 9.18E+02 3.71E+06 1.09E+03 1.93E+03 6.10E+00
Russia (0,2,2)(1,0,2,7) 9.09E+02 9.24E+02 2.81E+04 1.50E+02 1.67E+02 1.34E+00
Saudi Arabia (1,2,0)(1,0,0,3) 6.67E+02 6.75E+02 6.47E+03 7.20E+01 8.00E+01 2.80E+00
Spain (1,2,2)(0,0,1,3) 1.90E+03 1.92E+03 3.10E+00 1.48E+00 1.77E+00 5.00E−03
UK (6,2,4)(2,0,2,3) 1.42E+03 1.47E+03 1.63E+05 3.61E+02 4.03E+02 8.00E−01
USA (5,2,1)(1,0,1,7) 1.89E+03 1.92E+03 1.96E+05 4.07E+02 4.42E+02 2.00E−01
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Recovered cases in countries like Peru, Russia, Iran, and Saudi
Arabia are increasing at higher linear rate as compared to that
in the Chile, Italy, Spain, and UK. This observation is very similar
to the observation made by ARIMA (Fig. 8). The predicted num-
ber of cumulative recovered cases according to SARIMA models
(Table 4) is lesser than the prediction of ARIMA models of the
respective countries. The number of recovered cases in countries
such as South Africa, Brazil, Colombia, Chile, India, Iran, Italy,
Mexico, Pakistan, Peru, Russia, Saudi Arabia, Spain, UK, USA,
and Bangladesh will reach ≈2,560,000, ≈4,100,000, ≈790,000,
490,000, ≈6,100,000, ≈400,000, ≈210,000, ≈585,000,
605,000, ≈475,000, ≈1,000,000, ≈401,000, ≈150,000, ≈1,500,
2,500,000, ≈250,000 respectively (Fig. 9).
Interestingly in Spain, the number of cumulative recovered

ases remained constant. It can be explained due to the fact that
he constant number of the recovered cases in the forecast was
nfluenced by the constant recovered data reported by Spain,
ver a recent couple of months. If we observe the cumulative
ecovered cases between, May and July the number is constant.
he forecast of Spain remained same with ARIMA(2,2,2) and
ARIMA(1,1,3)(2,0,1,7) but the AIC and BIC values were decreased
hen we used the SARIMA model as shown in Tables 3 and
. From Fig. 8(A), it is evident that the number of recovered
OVID-19 patients is ≈4,000,000 in India. If we compare the
umber of recovered cases of India the with number of cu-
ulative confirmed cases in India (Fig. 6(A)), the percentage of

ecovered COVID-19 patients will be more than 65% by the end
23
f September. Whereas in the USA, the percentage of recovered
OVID-19 patients will be ≈35% by the end of September. In the
RIMA(1,2,6) forecast of Iran (Fig. 8(A)), there will be 410,000
OVID-19 patients recovered by the end of the second week of
eptember. Whereas the SARIMA(4,2,4)(3,1,2,3) of Iran (Fig. 9(A)),
redicted that the number of COVID-19 patients recovered will be
qual to 400,000. When SARIMA models were used the number
f predicted cumulative recovered cases was less than that of
he ARIMA models for countries — Brazil, Iran, Italy, Mexico,
akistan, Peru, Russia Saudi Arabia, USA, and Bangladesh (Figs. 8
nd 9). However, the cumulative recovered cases of countries —
outh Africa, Colombia, Chile, India increased after using SARIMA
odels for forecasting the 60 days. The SARIMA(1,2,1)(1,0,1,7)
odel of Chile predicted that a total of ≈490,000 will be recov-
red from the COVID-19 disease which is 10,000 greater than the
RIMA(0,2,1) (Table 3) predictions. In the case of USA, the cumu-
ative recovered cases were 900 less when SARIMA(2,2,2)(1,0,1,7)
as used.

.3. Cumulative death cases

As of today (09/08/2020), we are 33 weeks into the COVID-
9 pandemic. According to the CDC’s weekly summary released
n 14th august the current percentage of deaths attributed to
OVID-19 is 8.1% which is higher than the epidemic threshold.
he percentage of deaths are expected to increase in the coming
eeks as more the death certificates are being handled [39]
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which is also being supported by our results. The forecasted
trends of the confirmed cumulative deaths were very similar to
the trends observed for the confirmed cases and recovered cases.
Though the USA is leading the world with a high number of
confirmed deaths, it is found that the USA has a steep increase
in the number of deaths along with Pakistan and Saudi Arabia.
Countries such as Spain, UK, Italy have shown a gradual linear
increase in the number of deaths whereas, South Africa, Brazil,
Colombia, Chile, India, Iran, Mexico, Peru, Russia, and Bangladesh
have shown an exponential increase in the number of deaths
(Figs. 10 and 11). The selected ARIMA models projected the num-
ber of deaths for South Africa, Brazil, Colombia, Chile, India, Iran,
Italy, Mexico, Pakistan, Peru, Russia, Saudi Arabia, Spain, UK, USA,
and Bangladesh will be ≈23,000, ≈152,000, ≈23,000, ≈24,000,
80,000, ≈30,000, ≈38,000, ≈95,000, ≈7,900, ≈41,000, ≈24,500
,4,900, ≈29,000, ≈55,000, ≈210,000, ≈6,500 respectively

Figs. 10(A) and 10(B)). Similarly, selected SARIMA models pro-
ected the number of deaths for South Africa, Brazil, Colombia,
hile, India, Iran, Italy, Mexico, Pakistan, Peru, Russia, Saudi Ara-
ia, Spain, UK, USA, and Bangladesh will be ≈58,000, 150,000,
20,000, ≈16,000, ≈76,000, ≈28,000, ≈37,000, ≈85,000,
7,600, ≈52,000, ≈21,000, ≈5,600, ≈30,000, ≈50,000, ≈225,000
5,650 respectively (Figs. 11(A) and 11(B)).
For example, the cumulative death cases in South Africa might

ncrease exponentially to ≈40,000 (Fig. 10(B)) in the second
eek of September according to the SARIMA(2,2,2)(1,0,1,7) model

isted in Table 6. The SARIMA(5,2,2)(2,1,2,7) for Bangladesh, has
ower AIC and BIC values of 699 and 677 as shown in Table 6,
hen compared to ARIMA(2,2,2) model of Bangladesh which has
IC and BIC values are 718 and 730 as shown in Table 5. Similarly,
ther countries’ models are described in Tables 5 and 6. The sea-
onality has a key role in determining the number of cumulative
eath cases, which is evident from Figs. 11(A) & 11(B). When the
ARIMA models were used, the forecasts of the countries showed
he number of cumulative death cases was less than that of the
RIMA models’ forecasts. For instance, in case of Brazil, Chile,
ndia, Iran, Mexico, Pakistan, Russia, Saudi Arabia, Spain, and
angladesh the forecasted cases on 3rd week of September are
10,000, ≈8000, ≈6000, ≈1000, ≈8,000 ≈200, ≈3,900 ≈4000
nd ≈350 lesser than their respective ARIMA models’ predictions.
owever, in the case of the USA, South Africa, Colombia, Italy,
eru, the SARIMA models predicted the cumulative death cases
ere ≈20,000 ≈33,100, ≈6000, ≈10,000, ≈10,000 greater than
he predictions of their respective ARIMA models.

The 95% CI of the forecast of UK and Spain remain broad for
oth ARIMA and SARIMA based forecasts as shown in Figs. 10(B)
11(B). Moreover, the lower limit of 95% CI of the UK’s fore-

ast as shown in Fig. 11(B) declined to near zero deaths. This
cenario is a deviation from the current dynamics of the COVID-
9 pandemic. However, the upper limit of 95% CI of the UK is
more realistic projection as shown in Fig. 10(B). The deaths
ight increase to ≈99,000 by the end of September. A similar

rend was observed with Spain (Fig. 11(B)) with ≈45,000 deaths
y the end of September. In the case of the USA, ARIMA(4,2,4)
odel suggests the number of deaths will increase to 200,000

n the next few weeks, the upper limit of 95% CI implies that
he number of cumulative death cases might even cross 250,000.
hereas the lower limit indicates the number of cumulative
eaths might remain at 150,000. But by further inspection of
ARIMA(5,2,1)(1,1,1,7) forecast of the USA (Fig. 11(B)), we can see
he upper limit of 95% CI of the forecast reveals that the cumula-
ive death cases might increase to ≈310,000. On the contrary, the
ower limit of 95% CI of forecast displays a sharp decline in the
umber of deaths to less than 100,000. This decline in the trend
an be achieved by enforcing strict social and physical distancing

easures and implementing lockdowns at the federal level. By

24
mplementing lockdown at the country level, India was able to
ontrol the pandemic for a while [4,40].

. Conclusions

In this study, we have forecasted COVID-19 cases (confirmed,
ecovered and deaths) for 60 days, until 21st September 2020, us-
ng ARIMA and SARIMA statistical models. Our forecast indicates
hat the COVID-19 trends in top-16 countries can be classified
nto three classes as exponential, steep linear increase, gradual
inear increase. The reasons for this observation can be the pop-
lation density, infection rate, lifestyle etc. The exponential rise
f the COVID-19 forecast has a very narrow width of the shared
egion of the 95% CI, whereas the width of the shared region
ncreases for both linear increment cases.

Countries such as the United States, Brazil, South Africa, Colom-
ia, Bangladesh, India, Mexico and Pakistan have shown expo-
ential growth in confirmed cases and recovered cases for the
pcoming 60 days. In the case of deaths, countries such as Brazil,
outh Africa, Chile, Colombia, Bangladesh, India, Mexico, Iran,
eru, and Russia have shown an exponential increase in trends.
pain, UK, Italy the projections are stable with not much increase
n COVID-19 cases. It is found that the COVID-19 forecasted value
f the 60th day from the ARIMA and SARIMA models are more
r less the same but to capture the seasonality or trends of the
ata SARIMA models outperform the ARIMA models. For most of
he countries including the USA and India have a 7-day seasonal
attern, as selecting 7 in the SARIMA model generated the lowest
IC and BIC values. When we considered seasonality the SARIMA
odels predicted a number of COVID-19 cases was less than that
f the ARIMA models’ predictions. The SARIMA forecasts are more
ealistic numbers because they considered the variations that
ccurred in the past few weeks (June–July 2020) of the COVID-19
ime-series and projected into the future.

Based on our predictions and forecasts, health care strategy
dministrators should take proper decision on the right time in
upplying equipment to hospitals and other healthcare aids to the
ublic. To keep the COVID-19 pandemic under control all coun-
ries must be prepared with their health care workers and hos-
ital facilities. These results shed light on the approaching surge
n cases thereby emphasizing the importance of social distancing
nd implementation of preventive measures of COVID-19.
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# # # STEP 1: Data collection,Import required libraries and modules, Read data into dataframe, convert data into date–time format.
raw_excel_data = pd.read_excel("US_Data.xlsx")
df_complex=raw_excel_data.copy()
df_complex.date = pd.to_datetime(df_complex.Date, dayfirst = True)
df_complex.set_index("Date", inplace=True)
df= df_complex.asfreq(’d’)
df = df.rename(columns=’USA’: ’Actual_data’})

# # # STEP 2: Identify the data trends and seasonality, do differencing to introduce stationarity (identify ‘d’ in ARIMA parameters
(p,d,q))
seasonality = seasonal_decompose(df, model=’multiplicative’)
df["d1"] = diff(df["Actual_data"],k_diff = 1)
df[’d2’] = diff(df["Actual_data"],k_diff = 2)

# # # Step 3: Check the ACF and PACF plots of the actual data and compare them with differenced data
plot_acf(df["Actual_data"], lags = 40, label = "90");
plot_pacf(df["Actual_data"], lags = 40, label = "90");
plot_acf(df[’d1’], lags = 40);
plot_pacf(df[’d1’], lags = 40);

# # # Step 4: Split data into test and training data and build the basic model using auto_Arima
size = int(len(df)*0.9)
train_data= df_comp.iloc[:size]
test_data =df_comp.iloc[size:]
len(test_data)
step_fit = auto_arima(df[’Actual_data’], start_p=0, start_q=0,

max_p=6, max_q=6,
seasonal=False,# for SARIMA models seasonality is set to True

=None, trace=True,enforce_stationarity =False,enforce_invertibility = False,
error_action=’ignore’,
suppress_warnings=True,maxiter = 50,
stepwise=True)

tep_fit.summary()
et_ipython().run_cell_magic(’time’, ’’, ’model_base = ARIMA(train_data["USA"].astype(float),
rder =(0,2,0))\nresults_base = model_base.fit()\nresults_base.summary()’)

# # Step 5: Predict the test data using the basic model parameters and plot actual data vs predictions based on the basic model
tart=len(train_data)
nd=len(train_data)+len(test_data)-1
redictions_base = results_base.predict(start=start, end=end, dynamic=False, typ=’levels’).rename
’BASE_model Predictions’)
or i in range(len(predictions_base)):
rint(f"predicted={predictions_base[i]:<11.10}, expected={test_data[’USA’][i]}")
lt.rc(’axes’, axisbelow=True)
ig = plt.figure(figsize = (15,9))
est_data, = plt.plot(test_data[’USA’],"o",color = "#ff7f0e", label = "Test data (USA)")
redicted, =plt.plot(predictions_base, color = ’#1f77b4’, label = ’Predictions(Basic model)’, linewidth =2)

# # Step 6: Evaluation of the Basic model
rror_1 = mean_squared_error(test_data[’USA’], predictions_base)
rror_2 = mean_absolute_error(test_data[’USA’], predictions_base)
rror_3 = rmse(test_data[’USA’], predictions_base)

# # Step 7: Development of the basic model based on the ACF and PACF plots of the residuals
odel = ARIMA(df[’Actual_data’].astype(float),order=(7,2,1))
esults = model.fit(start_ar_lags = 8)
cast=results.predict(len(df),len(df)+60,typ=’levels’).rename(’ARIMA(7,2,1) Forecast’)
ig, ax = plt.subplots(figsize=(10, 5),dpi=900)
lot_acf(results.resid, lags =20,ax=ax,color =’#1f77b4’,linewidth =0.1)
ig, ax = plt.subplots(figsize=(10, 5),dpi=900)
lot_pacf(results.resid, lags =20,ax=ax,color =’#1f77b4’,linewidth =0.1)

# # Step 8: Plot predictions based on developed model and actual data.
tart=len(train_data)
nd=len(train_data)+len(test_data)-1
redictions = results.predict(start=(start-2), end=(end-2), dynamic=False, typ=’levels’).rename(’Selected
odel Predictions’)

lt.rc(’axes’, axisbelow=True)
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o
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fig = plt.figure(figsize = (15,9))
Test_data, = plt.plot(test_data[’USA’],"o",color = "#ff7f0e", label = "Test data (USA)")
predicted, =plt.plot(predictions, color = ’#1f77b4’, label = ’Predictions(ARIMA 7,2,1)’, linewidth =2)

# # # Step 9: Evaluation metrics for developed model
MSE = mean_squared_error(test_data[’USA’], predictions)
MAE = mean_absolute_error(test_data[’USA’], predictions)
RMSE = rmse(test_data[’USA’], predictions)

# # Step 10: Diagnosing the developed model with kde/q–q plots
fig, ax = plt.subplots(figsize=(10,5), dpi=900)
results.resid.plot(kind = "kde")

# # Step 11: Forecasting time-series data based on the selected model
figs, ax = plt.subplots(figsize=(10,5),dpi = 900)
model_fit = model.fit(disp = -1000)
figs = model_fit.plot_predict(10,235,dynamic = False,plot_insample = True, ax=ax)

# # # The procedure is same for ARIMA and SARIMA. The additional three parameters(p,d,q)(P,D,Q) of the SARIMA model were
optimized.

Appendix B. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.asoc.2021.107161.
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