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A B S T R A C T   

Moderate alcohol consumption is widespread but its impact on brain structure and function is contentious. The 
relationship between alcohol intake and structural and functional neuroimaging indices, the threshold intake for 
associations, and whether population subgroups are at higher risk of alcohol-related brain harm remain unclear. 
25,378 UK Biobank participants (mean age 54.9 ± 7.4 years, 12,254 female) underwent multi-modal MRI 9.6 ±
1.1 years after study baseline. Alcohol use was self-reported at baseline (2006–10). T1-weighted, diffusion 
weighted and resting state images were examined. Lower total grey matter volumes were observed in those 
drinking as little as 7–14 units (56–112 g) weekly. Higher alcohol consumption was associated with multiple 
markers of white matter microstructure, including lower fractional anisotropy, higher mean and radial diffusivity 
in a spatially distributed pattern across the brain. Associations between functional connectivity and alcohol 
intake were observed in the default mode, central executive, attention, salience and visual resting state networks. 
Relationships between total grey matter and alcohol were stronger than other modifiable factors, including blood 
pressure and smoking, and robust to unobserved confounding. Frequent binging, higher blood pressure and BMI 
steepened the negative association between alcohol and total grey matter volume. In this large observational 
cohort study, alcohol consumption was associated with multiple structural and functional MRI markers in mid- to 
late-life.   

1. Introduction 

Moderate alcohol consumption is very common yet conflicting as-
sociations with late-life brain and cognitive outcomes have been re-
ported (Visontay et al., 2021). Without disease-modifying treatments for 
neurodegenerative disease, there is a necessary focus on modifiable risk 
factors such as alcohol. Even small adverse effects of moderate drinking 
on the brain may have substantial public health relevance given the 
widespread exposure to alcohol. Here we assess relationships between 
alcohol consumption and neuroimaging indices. Structural MRI mea-
sures can serve as biomarkers before cognitive decline in people later 
developing dementia (Mcconathy and Sheline, 2015). Until the estab-
lishment of UK Biobank, costs have prohibited collection of imaging 
sample sizes necessary to examine the impact of drinking at such low 
levels. 

Whilst chronic heavy alcohol intake is known to associate with 

reduced brain volume (Pfefferbaum et al., 1992; Mackey et al., 2019), 
the impact of ‘moderate’ consumption (defined variably from < 14 (Kim 
et al., 2020) to < 25 units (Paul et al., 2008) weekly) has been 
contentious (Anstey et al., 2009; Sabia et al., 2018). This is reflected in 
alcohol guidelines which currently neglect the brain, relying solely on 
cardiovascular and cancer research (Care DOHaS, 2016). Previous work 
has reported associations with hippocampal atrophy in males drinking 
just 14–21 units weekly (Topiwala et al., 2017). Two UKB studies of 
alcohol consumption and structural neuroimaging have reported asso-
ciations between alcohol consumption, at even lower levels between 7 
and 14 units weekly, and grey and white matter measures (Evangelou 
et al., 2021; Daviet et al., 2022). The UK Biobank has high statistical 
power but also higher sensitivity to confound effects (Alfaro-Almagro 
et al., 2021). Thus residual confounding, which could cause spurious 
correlations, is a concern. Earlier analyses have controlled for only a 
limited number of (particularly image-related) confounders. Studies to 
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date have also failed to distinguish between never and ex-drinkers, 
raising the possibility that ‘sick quitters’ could be influencing results 
(Marmot and Brunner, 1991). Whether low levels of alcohol consump-
tion relate to the brain’s functional architecture has not been well 
studied. Functional connectivity of the brain, meaning synchrony of 
activity between regions, changes in dementia and has been observed in 
small studies of alcohol dependent individuals but not examined in large 
samples of non-dependent drinkers (Zhu et al., 2017). What is also un-
clear is whether certain clinical or demographic factors increase the risk 
of alcohol-related brain harm. This has public health relevance in terms 
of focusing interventions on those at greatest need (Paper, 2020). Un-
derstanding how medical comorbidities, such as hypertension and 
obesity, interact with alcohol use is unknown (Qizilbash et al., 2015). 
ApoE4 genotype is a well-established risk factor for Alzheimer’s disease 
(Belloy et al., 2019). It has been implicated in brain changes in later life, 
including in the hippocampus (Honea et al., 2009), a structure previ-
ously associated with alcohol consumption (Topiwala et al., 2017). 
Whether ApoE4 modifies effects of alcohol on the brain is unclear. There 
are a few substantiated claims that red wine has beneficial effects 
(Pignatelli et al., 2006). Conversely it is thought that certain drinking 
patterns, such as binging, may worsen the brain impact (Hunt, 1993). 

To address these unanswered issues, we investigated alcohol con-
sumption and brain measures in UKB. We had four main research 
questions: 

1) Are previous associations between alcohol consumption and struc-
tural neuroimaging indices reproducible in voxel-wise analyses, and 
robust to observed confounding?  

2) Does alcohol consumption associate with functional connectivity in 
the brain?  

3) Do the following factors increase risk of alcohol-related brain effects: 
ApoE4, hypertension, high body mass index, beer and spirit con-
sumption, and binge drinking?  

4) How robust are associations between alcohol and MRI markers to 
unobserved confounding? 

An exploratory objective was to investigate the functional signifi-
cance, in terms of cognitive performance, of any alcohol-brain 
associations. 

2. Methods 

2.1. Study population 

UKB comprises >40,000 subjects imaged among ~500,000 of the 
core study (40–69 years at recruitment, 2006–10). Participants were 
scanned at three centers with identical Siemens Skyra 3T scanners using 
a standard 32-channel head coil (Smith 2020). Imaging was performed 
9.60 ± 1.10 years after study baseline (2006–10). Subjects with at least 
one brain MRI by 28.1.21 (n = 43,572) were included (SFigure 1). Ex-
clusions were due to missing or insufficient quality data for analyses. 
Subjects who self-reported as “drinkers” but then reported 0 units 
weekly (n = 3760) were excluded from the analyses to avoid misclas-
sification. Those who reported being current non-drinkers but reported 
any frequency of binge drinking (n = 22), and lowest quartile drinkers 
who reported daily binging (n = 5), were assumed to have missing data 
and were excluded from the analysis. 

2.2. Alcohol consumption 

At baseline participants reported their average weekly or monthly 
alcohol intake in number of glasses. Guidance was given about glass 
numbers in the normal bottle. Glasses were converted to UK units and 
grams (see Supplementary Methods). Non-drinkers were subdivided into 
former and never drinkers. Drinkers were divided into quintiles of 
weekly alcohol intake (whole sample) for categorical analysis. Beverage 

consumed and frequency of binge drinking (>six units in one episode) 
was sought. 

2.3. Health-related data 

Variables of interest (measured at baseline unless otherwise stated) 
were included as potential confounders because of associations with 
neuroimaging measures (Maillard et al., 2012; Herrmann et al., 2019) 
(for more detailed information on tests and procedures see: https:// 
biobank.ndph.ox.ac.uk/ukb/field.cgi?id=6138 and https://www.gov. 
uk/what-different-qualification-levels-mean/list-of-qualification-level 
s): age at scanning and sex, smoking status (reported in categories: 
never/previous/current). Educational qualifications, from high to low, 
were reported as: college or university degree, A levels or equivalent, O 
levels or equivalent, CSEs (Certificate of Secondary Education) or 
equivalent, NVQ (National Vocational Qualification) or equivalent, 
other professional qualifications, or none (lowest level used as refer-
ence). Systolic (SBP) and diastolic (DBP) blood pressure were automated 
measurements. Body mass index (BMI) was calculated from measured 
height and weight. Townsend Deprivation Index was used as a contin-
uous measure of deprivation based on census information. Weekly ex-
ercise expenditure was measured in Metabolic Equivalent of Task (MET) 
summed minutes of moderate or vigorous activity. Diabetes mellitus 
diagnoses were generated by a UKB algorithm using self-report, hospital 
care records, and death certificates. Subtypes of diabetes mellitus (in-
sulin-dependent, noninsulin-dependent, unspecified were combined to 
generate a binary diabetes mellitus (present/absent) variable. For 
identification of depression and alcohol dependence cases, linked Hos-
pital Episode Statistics (summary diagnoses) were used. These represent 
distinct diagnosis codes recorded across all of participants’ hospital 
inpatient records. Depression cases were defined using ICD 9 & 10 codes 
for single or recurrent episodes of at least moderate severity (see Sup-
plementary Table for codes). Alcohol dependence cases were also 
defined using ICD 9 & 10 codes (see Supplementary Table for codes). 
Primary care records were not used as only half the UKB sample has 
linked records thus far. 

2.4. Biological data 

Total cholesterol and high-density lipoprotein (HDL) were measured 
from a blood sample at baseline. The number of copies of the ε4 allele of 
the apolipoprotein E gene (APoE4) were derived from v3 imputed ApoE 
genotype data (single nucleotide polymorphisms: rs429358 & rs7412) 
using qctool (version 2.0.7). 

2.5. Cognitive performance data 

Cognitive test data at imaging visit were: trail-making test (dura-
tions, reflecting executive function; numerical – ‘TMTA’; alpha-numeric 
– ‘TMTB’), tower rearranging (number attempted, reflecting executive 
function, digit span (maximum digits recalled, reflecting working 
memory), fluid intelligence (sum of correct answers), prospective 
memory (incorrect or correct on 1st/2nd attempt), pairs matching 
(number correctly associated, reflects visual memory), matrix pattern 
completion (duration spent answering each puzzle, reflects processing 
speed) and reaction time (mean time to correctly identify matches in a 
task based on the “Snap” card-game) (Fawns-Ritchie et al., 2020). 

2.6. MRI processing 

For details on MRI sequence parameters see Supplementary 
Methods. T1, DTI and rsfMRI images were used in this analysis. Details 
on UKB preprocessing and quality control pipelines can be found at: htt 
ps://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf, 
accessed on 18/05/22. 
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2.6.1. Structural T1-weighted images 
T1 structural images were gradient distortion corrected and regis-

tered linearly and non-linearly (using FMRIB’s Linear Registration Tool, 
FLIRT (Jenkinson and Smith, 2001) and FMRIB’s Nonlinear Image 
Registration Tool, FNIRT (Andersson et al., 2007) to MNI152 “nonlinear 
6th generation” standard-space. Brain extraction (using Brain Extraction 
Tool, BET, defacing and segmentation into tissue types (using FMRIB’s 
Automated Segmentation Tool, FAST (Zhang et al., 2000) were then 
performed. Total grey matter volume was extracted from FAST. T1 im-
ages underwent automated quality control (QC) as detailed in the UKB 
image processing and QC paper (Alfaro-Almagro et al., 2018). The UKB 
QC included checking the quality of warps, segmented tissue volumes, 
volumes of grey matter outside the brain mask and the amount of 
segmented tissue in the border of the brain mask. Volumes for subcor-
tical structures were generated by modelling using FMRIB’s Integrated 
Registration and Segmentation Tool (FIRST (Patenaude et al., 2011). 

The spatial distribution of associations between alcohol use and grey 
matter was investigated in a brain-wide hypothesis-free manner using 
FSL-VBM (Douaud et al., 2007) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki 
/FSLVBM), an optimised voxel-based morphometry (VBM) protocol 
(Good et al., 2001) carried out with FSL tools (Smith et al., 2004). This is 
an objective method to compare grey matter volume (estimated total 
intracranial volume adjusted) between individuals in each voxel 
(smallest distinguishable 3D image volume) of the structural image. 
Only participants with usable T1 images proceeded to the VBM analysis. 
After brain extraction, tissue segmentation and registration, images 
were averaged and flipped along the x-axis to create a left–right sym-
metric, study-specific grey matter template. Second, all native grey 
matter images were non-linearly registered to this study-specific tem-
plate and “modulated” to correct for local expansion (or contraction) 
due to the non-linear component of the spatial transformation. The 
modulated grey matter images were then smoothed with an isotropic 
Gaussian kernel with a sigma of 2 mm. With such a large sample size we 
chose to perform minimal smoothing in order to achieve higher 
anatomical specificity of results. We created a study specific average 
grey matter tissue map using unsmoothed and modulated grey matter 
images as per standard VBM protocol. By thresholding this map (at 0.01) 
a grey matter mask was created. This was used as an analysis mask. 

To explore the shape of alcohol-brain relationships the following 
image-derived phenotypes (IDPs), based on previous literature (Top-
iwala et al., 2017; Evangelou et al., 2021; Daviet et al., 2022), were used: 
total grey matter volume (from FAST), right and left hippocampus, 
thalamus, amygdala and putamen volumes (from FIRST). Volumes were 
adjusted for estimated intracranial volume (see image-related confounds 
below). For a post-hoc examination of an unexpected positive alcohol- 
volume association close to the lingual gyrus in the VBM (see results 
for details), volume of grey matter in lingual volume (left and right 
hemispheres, derived from Freesurfer generated by parcellation of the 
white surface using Desikan-Killiany parcellation (Klein and Tourville, 
2012) was used. IDPs were standardized (z scores). 

2.6.2. Diffusion weighted imaging (DWI) 
Diffusion images (dMRI) were corrected for eddy currents, head 

motion and gradient distortion. Using the tool DTIFIT (https://fsl.fmrib. 
ox.ac.uk/fsl/fdt) a diffusion tensor was fitted at each voxel generating 
fractional anisotropy (FA), tensor mode (MO), axial (L1) radial (L2, L3) 
and mean diffusivity (MD) maps. Tract-Based Spatial Statistics (TBSS) 
were used in a 4-stage process (Smith et al., 2006). Pre-processing pre-
pared images for registration to standard space. Mean FA and the cor-
responding skeletonized image was created, and thresholded at 0.2. L2, 
L3, MD, MO skeletonized images were created, and projected onto the 
FA skeleton. Additionally, dMRI was fed into NODDI (Neurite Orienta-
tion Dispersion and Density Imaging (Mckee and Britton, 1998) to 
generate white matter microstructural parameters including intra- 
cellular volume fraction (icvf), isotropic water volume fraction (isovf) 
and orientation dispersion index (odi). Skeletonised images were 

averaged within a set of standard-space tract masks to generate mean 
values. 

2.6.3. Resting state functional MRI 
The pipeline for rsfMRI images used MELODIC (Beckmann and 

Smith, 2004) which performs EPI unwarping, gradient correction 
unwarping, motion correction, intensity normalization and high pass 
temporal filtering. Artefacts were removed using independent compo-
nent analysis and FMRIB’s ICA-based X-noiseifier (FIX) (Salimi-Khor-
shidi et al., 2014). 

Resting state fMRI was used to determine large-scale brain functional 
connectivity. Group-averaged independent components analysis of 
resting state networks was carried out using a subset of subjects (4100 
from first scanned participants (Alfaro-Almagro et al., 2018) using 
MELODIC at a dimensionality of 25. 21 of these components were used 
in further analyses, excluding 4 components identified as noise by the 
UKB processing team. The group-averaged ICA spatial maps were 
mapped onto each subject’s rfMRI timeseries data to derive a timeseries 
for each subject for each network. The standard deviations of these 
timeseries (‘nodes’) were used as a measure of within network functional 
connectivity (n = 21). The timeseries were also used to estimate subject- 
specific network matrices using FSLNets (Smith et al., 2013). Partial 
temporal correlations (aiming to estimate direct connection strengths 
better) between nodes’ timeseries (‘edges’, n = 210) were extracted from 
rsfMRI netmats. 

2.6.4. Image-related confounds 
Standard imaging-related confounders included site. Imaging site 

was regressed out, instead of using mixed effects models with a random 
term, given there were only three sites and imbalance between group 
sizes. Estimated intracranial volume (=T1 scaling factor estimated when 
transforming from native to standard space (Smith 2020) was used as a 
confound in IDP analyses (STable 1). Additional image-related con-
founders included in sensitivity analyses were: head motion, table po-
sition, scanner acquisition parameters (site, scanner software, protocol, 
scan ramp, head coil). Polynomic terms for age (age2 and age3), and age 
× sex, age2 × sex interactions were included on the basis of recent 
demonstration of their importance in confound modeling in UKB 
(Alfaro-Almagro et al., 2021). 

2.7. Statistical analyses 

An overview of analyses models is given in STable 1 (see Supple-
mentary Methods for additional details about statistical analyses). 
Diagnostic plots were used to check regression assumptions. For voxel- 
based analyses, data from single voxels in key areas of association 
were extracted to generate diagnostic plots. We examined differences in 
sociodemographic and clinical factors according to alcohol consumption 
using one-way ANOVA (normally distributed continuous variables), 
Kruskal-Wallis chi-squared for comparing medians, or χ2 tests of inde-
pendence (categorical variables). 

For VBM and TBSS, alcohol intake and covariates were demeaned (to 
avoid the mean signal being shared amongst many covariates) for the 
design matrix. 

The Big Linear Model toolbox was used to perform mass univariate 
OLS regression (parametric inference) voxelwise (see Supplementary 
Methods). A p-value threshold that capped the False Discovery Rate 
(FDR) at 0.05 was generated using FSL’s FDR (https://fsl.fmrib.ox.ac. 
uk/fsl/fslwiki/FDR) and used to threshold T statistic images. As an 
additional sensitivity analyses in view of the large spatial extent of as-
sociations in VBM, we used a more stringent FDR threshold of 1%. 
Unthresholded statistical maps were uploaded to Neurovault. 

Relationships between the IDPs and alcohol were assessed using 
linear (fixed effects) and non-linear regression models. Non-linear 
models comprised: 1) alcohol intake categorized into quintiles, and 2) 
restricted cubic splines (RCS – 5 knots, see Supplementary Methods) 
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being applied to alcohol intake. Non-linearity was formally tested (H0: 
β2 = β3 = … = βk − 1 = 0) with an F-test. Associations with cognitive 
test performance at the time of scanning were examined. For IDP based 
analyses (including rsfMRI and interaction analyses), multiple compar-
isons were adjusted for using a conservative Bonferroni threshold. This 
threshold was calculated by dividing 0.05 by the number of tests per-
formed (for example 0.05/9 in the case of subcortical ROIs). 

2.7.1. Sensitivity analyses 
We did four sets of sensitivity analyses. First, we excluded non- 

drinkers from the sample and re-ran voxel-wise and IDP analyses. Sec-
ond, to investigate the possibility that systolic and diastolic blood 
pressure and non-HDL cholesterol could be mediators rather than con-
founders we examined linear regression models with and without these 
(entered all at once). Third, we included additional image-related con-
founds as covariates. Fourth, we tested to what extent associations were 
robust to unobserved confounding (see Supplementary Methods). Par-
tial R2 and robustness values were calculated using R’s sensemakr 
package, which estimates the necessary strength of an unobserved 
confounder required to fully account for alcohol effects on MRI marker 
(Cinelli and Hazlett, 2020). 

2.7.2. Subgroup and interaction analyses 
Linear regression models were run amongst three separate groups of 

drinkers consuming solely wine, beer, or spirits. The impact of binge 
drinking frequency (never[reference]/less than monthly/monthly/ 
weekly/daily) independent from total volume consumed weekly) was 
examined. Pre-specified subgroup analyses were performed. In-
teractions between alcohol (continuous) and age (continuous), sex (bi-
nary), blood pressure (continuous), BMI (continuous) and ApoE4 
genotype (number of copies of ε4) were tested. 

All analyses were completed in R (v3.6.0), unless otherwise stated. 

3. Results 

Participants with complete and usable imaging data included in the 
analysis comprised a lower proportion of females and had higher 
educational qualifications compared to the larger sample who attended 
the imaging assessment (STable 2). Most of the participants consumed 
alcohol (Table 1, SFigure 2). Median alcohol intake was 13.5 units (102 
g) weekly. Almost half the sample (48.2%) reported drinking above 
current UK guidelines (14 units (112 g) weekly), but few had an ICD 
diagnosis of alcohol dependence in linked HES records (n = 31). Non- 
drinking groups comprised more females, lower rates of smoking, 
higher material deprivation, and fewer educational qualifications. Cur-
rent drinkers had higher blood pressure and HDL levels but lower total 
cholesterol and BMI. Frequent binge drinking was associated with 
younger age, male sex, more educational qualifications, higher material 
deprivation, and smoking, independent of total alcohol consumed 
(STable 3). Wine drinkers were most frequent (76.9%) (SFigure 3) and 
significantly older, better educated, with lower BMI, material depriva-
tion, and smoking levels (STable 4). 

3.1. Alcohol and structural T1-weighted images 

Alcohol consumption was inversely associated with grey matter 
volume in a widespread distribution in the VBM analysis (Fig. 1). As-
sociations were evident in the cerebellum, brainstem, frontal, parietal, 
occipital and temporal lobes and several subcortical structures. The 
strongest effects were observed in pre- and post-central gyri, supple-
mentary motor cortex and the thalami. Although there were several 
significant voxels within the hippocampus, associations were not 
observed throughout the entire structure. Using a more stringent FDR 
threshold (1%) made little difference to the extent of the associations 
(690,096 vs. 883,960 significant voxels). A small number of voxels, 
many near the lingual gyrus and corpus callosum, showed positive 

associations with alcohol. However positive associations were not 
replicated in a post-hoc region-of-interest analysis of lingual volume, but 
rather negative associations were observed (left: beta = − 1.38, 95% CI: 
− 2.36 to − 0.41, p = 0.006; right: beta = − 1.76, 95% CI: − 2.78 to 
− 7.36, p = 0.0007). Structural associations were unchanged after 
adjustment for further MRI parameters (SFigure 4) or exclusion of non- 
drinkers (SFigure 5). 

While the effect size was small (partial R2 = 0.02; SFigure 6), alcohol 

Table 1 
Baseline characteristics for included sample (n = 25,377 [N = 1 subject included 
in the VBM analysis was excluded here due absence of alcohol status data.]) by 
drinking status. Mean (standard deviation) values are given for normally 
distributed continuous variables, median (interquartile range) for non-normally 
distributed variables, and numbers (percentages) for categorical variables. Only 
selected qualification categories are presented for brevity. Group differences 
were calculated using one-way ANOVA for continuous variables, Kruskal-Wallis 
rank sum test for comparing medians, and chi-square tests for categorical 
variables.  

Baseline 
characteristic 

Never 
drinkers 
(N =
691) 

Former 
drinkers (N 
= 617) 

Current 
drinkers (N 
= 24,069) 

Group 
differences 

Age band, N(%)     
40- <50 years 206 

(29.8) 
171 (27.7) 6083 (25.3) X2 = 16.1, df 

= 4,p = 0.003 
50- <60 years 215 

(31.1) 
241 (39.1) 8892 (36.9)  

60- <70 years 200 
(28.9) 

153 (24.8) 6756 (28.1)  

Sex, female N(%) 457 
(66.1) 

320 (51.9) 11,477 
(47.7) 

X2 = 94.8, df 
= 2,p < 2.2 ×
10− 16  

Smoking status, N 
(%)     

Never 603 
(87.3) 

315 (51.1) 14,119 
(58.7) 

X2 = 250.5, df 
= 4, p < 2.2 ×
10− 16 

Previous 61 (8.8) 253 (41.0) 8428 (35.0)  
Current 27 (3.9) 49 (2.9) 1522 (6.3)   

Educational 
qualifications, N 
(%)     

None 66 (9.6) 54 (8.8) 1264 (5.3) X2 = 55.9, df 
= 12, p = 1.24 
× 10− 7 

A level 86 (12.5) 87 (14.1) 3145 (13.1)  
Degree 301 

(43.6) 
263 (42.6) 11,813 

(49.1)  
Systolic blood 

pressure, mmHg 
134.28 
(18.8) 

134.02 
(17.8) 

137.3 
(18.7) 

F(2,25374) =
17.4, p = 2.9 
× 10− 8 

Diastolic blood 
pressure, mmHg 

79.7 
(10.8) 

79.7 (10.2) 81.7 (10.5) F(2,25374) =
21.5, p = 4.9 
× 10− 10 

Body Mass Index, 
kg/m2 

26.7 
(4.7) 

27.0 (4.7) 26.5 (4.0) F(2,25374) =
5.7, p = 0.003 

Total cholesterol, 
mmol/L 

5.6 (1.2) 5.54 (1.2) 5.73 (1.1) F(2,25374) =
13.1, p = 2.2 
× 10− 6 

Non-high Density 
cholesterol, 
mmol/L 

4.2 (1.0) 4.2 (1.1) 4.3(1.1) F(2,25374) =
0.001, p = 1.0 

Diabetes Mellitus, N 
(%) 

57 (8.3) 40 
(6.5) 

1139 (4.7) X2 = 21.5, df 
= 2, p = 2.2 ×
10− 5 

Townsend 
Deprivation 
Index2 4 

− 1.4 
(3.0) 

− 0.8 (3.2) − 2.0 (2.6) F(2,25374) =
72.7, p = 2.0 
× 10− 16 

Exercise, Metabolic 
Equivalent Task 
minutes weekly 

90 (118) 105(120) 100 (100) X2 = 7.1, df =
2,p = 0.03  
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made a larger contribution than any modifiable risk factor tested to total 
grey matter volume, including smoking, BMI and blood pressure (STa-
ble 6). Adjustment for additional cardiovascular factors did not change 
associations between alcohol and total grey matter volume (STable 5). 
To relate the cross-sectional effects of age and alcohol, discounting 
nonlinear effects of age and age-sex interactions, we determined the 
effect of a 1-year difference in age on total grey matter volume was the 
same as a difference in 12.9 UK (~7.3 US units, 102 g) weekly alcohol 
consumption (STable 7). 

Those drinking >7 units (56 g) weekly (quintiles 2–5) had smaller 
total grey matter volumes compared to those drinking <7 units weekly 
(Fig. 2). Previous drinkers also had less total grey matter than the 
lightest drinkers, whereas never drinkers were indistinguishable from 
light drinkers. 

The spline model did not offer significantly improved fit over a linear 
effect of alcohol in the model fitting total grey matter (df = 3, F = 1.6, p 
= 0.2; SFigure 7 – top left plot). Positive slopes between 0 and 5 alcohol 
units for the left putamen, right thalamus, and left and right hippocampi 
and amygdala were flattened upon excluding previous drinkers, possibly 
suggesting a “sick quitter” effect. Of the subcortical regions tested, as-
sociations between alcohol and bilateral hippocampi, putamen and 
thalamus survived correction for multiple comparisons. The strongest 
associations were found with thalamus volumes (STable 8). 

3.2. Alcohol and diffusion-weighted images 

Widespread negative associations were found with FA and mode, and 
positive associations with MD, L1, L2 and L3 across the skeleton (Fig. 3 
& SFigure 10-17). Adjusting FA analyses for global mean FA reduced 
associations in insula, temporal and frontal tracts (SFigure 11). 

Associations in other regions, such as the corpus callosum and fornix 
appeared to be specific and not dependent on global mean FA. 

3.3. Alcohol and resting state functional MRI 

Alcohol consumption was significantly associated with functional 
connectivity within seven resting-state networks (‘nodes’ 
3,4,5,6,9,13,21) (Stables 11 & 12). These nodes correspond to connec-
tivity within the default mode (nodes 5,6,9,13,21), attention (nodes 
3,5), central executive (nodes 3,5,6,9,21), visual (node 4) and salience 
(nodes 3,13) networks. In all cases, higher alcohol intake associated 
with increased connectivity within the network, except for the visual 
network where the inverse relationship was observed (SFigure 18). 
Alcohol intake was additionally associated with functional connectivity 
strength between several resting-state networks (‘edges’) despite mul-
tiple testing correction (Fig. 4, SFigure 19 & STable 13). 

3.4. Subgroup and interaction analyses 

Daily bingers had significantly lower total grey matter volume than 
never-bingers, even after controlling for total alcohol consumed weekly 
(Fig. 5). This was apparent in those drinking >18 (UK) units (~10 US 
units, 144 g) weekly. Associations with total grey matter volume were 
not significantly different whether the weekly units were consumed as 
wine, beer, or spirits (see overlapping 95% CI in SFigure 22). 

High blood pressure and BMI steepened the negative association 
between alcohol and total grey matter volume (SBP*alcohol: beta =
-0.01, 95% CI = − 0.02 to − 0.004, p = 0.005; DBP*alcohol: beta =
− 0.01, 95%CI = − 0.02 to − 0.004, p = 0.006; BMI*alcohol: beta =
− 0.01, 95% CI = -0.02 to − 0.002, p = 0.02) (SFigure 23). Adjustment 

Fig. 1. Associations between weekly alcohol intake and grey 
matter volume generated using voxel-based morphometry. T 
statistics are thresholded at 5% False Discovery Rate (0.028 
threshold on uncorrected p values for negative associations and 
0.001 uncorrected p values for positive associations). N =
25,378. Study specific grey matter mask is shown in green. 
Adjusted for: age, sex, age2, age3, age × sex, age2 × sex, im-
aging site, systolic and diastolic blood pressure, total choles-
terol, high-density lipoprotein, diabetes mellitus, smoking, 
body mass index, Metabolic Equivalent Task minutes weekly, 
Townsend Deprivation Index, depression, educational qualifi-
cations. Abbreviations: L – left, R – right, A – anterior, P – 
posterior.   

Fig. 2. Association of total brain grey matter volume 
(normalized to estimated intracranial volume) with 
weekly alcohol intake in units. N = 22,253 partici-
pants. Alcohol categorization was based on quintiles 
of intake for all subjects within the sample. Beta co-
efficients (95% confidence intervals) reflect grey 
matter volume difference in standard deviations 
compared to the reference group of those drinking <
7 units (56 g) weekly. Models were adjusted for: age, 
age2, imaging site, systolic and diastolic blood pres-
sure, total cholesterol, high-density lipoprotein, dia-
betes mellitus, smoking, body mass index, Metabolic 
Equivalent Task minutes weekly, Townsend Depriva-
tion Index, depression, educational qualifications.   
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for antihypertensive medication made no difference (STable 15). There 
were no significant interactions between alcohol and age, sex or ApoE4 
genotype that survived correction for multiple testing (STable 16). 

3.5. Robustness against unobserved confounding 

We estimated that to nullify the effect of alcohol, an unobserved 
confounder would need to explain both >12% of total grey matter 
volume and >12% of alcohol intake variation (robustness value = 0.12). 
The presence of an unobserved confounder which achieves this seems 
implausible given examination of the strongest known confounders. For 
example, whilst age explains 23% of total grey matter variation, it only 
explains 0.1% of alcohol intake, and an unobserved confounder with 
such characteristics would be unable to explain the alcohol-grey matter 
relationship (SFigure 8). Similarly, sex and smoking each explain only 
0.2% of total grey matter volume and 4% of alcohol intake variation, 
suggesting there is no likely unobserved confound that could account for 
the observed alcohol-grey matter relationship. 

3.6. Functional relevance 

Total grey matter volume was positively associated with matrix 
puzzle completion (beta = 0.04, 95% CI = 0.02–0.06, p < 0.001) and 
tower correlation (beta = 0.04, 95% CI = 0.02–0.06, p < 0.001), and 

negatively associated with duration of TMT A (beta = -0.05, 95% CI =
− 0.07 to − 0.03, p < 0.001) & B (beta = − 0.05, 95% CI = -0.07 to − 0.03, 
p < 0.001) as well as reaction time (beta = − 0.05, 95% CI = − 0.07 to 
− 0.03, p < 0.001) (Stable 9). Increased connectivity of several resting 
state networks (nodes 5, 6, 13 and 21 within CEN, attention, DMN, 
salience networks, STable 11) associated with performance on digit 
span, matrix puzzle, tower correlation and fluid intelligence after mul-
tiple testing correction (SFigure 20). Functional connectivity of node 3 
was positively associated with tower correlation but inversely correlated 
with digit span. Controlling for alcohol consumption did not alter the 
associations between functional connectivity and cognitive perfor-
mance, other than reducing that between digit span and connectivity of 
node 13 (SFigure 21). 

No direct associations between alcohol and cognitive test perfor-
mance were observed. There were weak interactions between alcohol 
and certain educational qualification categories, although none survived 
multiple testing correction (STable 10). 

4. Discussion 

In this large population-based neuroimaging study, alcohol was lin-
early and negatively associated with total grey matter volume. Higher 
alcohol intake was negatively associated with FA and mode, and posi-
tively associated with MD, L1-3. Increased functional connectivity 

Fig. 3. Negative associations between weekly alcohol 
intake and fractional anisotropy – a diffusion tensor 
imaging measure of white matter integrity. T statistics 
are thresholded at 5% False Discovery Rate (0.017 
threshold on uncorrected p values). Mean fractional 
anisotropy skeleton shown in grey. N = 24,030. 
Adjusted for: age, sex, age2, age3, age × sex, age2 ×

sex, imaging site, estimated intracranial size, systolic 
and diastolic blood pressure, cholesterol, high-density 
lipoprotein, diabetes mellitus, smoking, body mass 
index, Metabolic Equivalent Task minutes weekly, 
Townsend Deprivation Index, depression, educational 
qualifications. Abbreviations: L – left, R – right, A – 
anterior, P – posterior.   

Fig. 4. Associations between alcohol intake and be-
tween resting state network connectivity (‘edges’). 
Manhattan plot showing –log10(p) values for regres-
sion models with edge functional connectivity as the 
dependent variable and alcohol intake as an inde-
pendent variable, adjusted for: age, sex, age*sex, age2, 
age2*sex, systolic and diastolic blood pressure, dia-
betes mellitus, smoking status, Townsend Deprivation 
Index, body mass index, total cholesterol, high- 
density lipoprotein, imaging site, head motion and 
Metabolic Equivalent Task minutes weekly. Bonfer-
roni p-value threshold is shown by the red line (p <
0.0002) and edges passing this threshold are labelled. 
N = 17,587. Edges are represented by dots, coloured 
according to the resting state networks their 
compromising nodes reside in. Abbreviations: DMN – 
default mode network, CEN – central executive 
network.   
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within several networks associated with alcohol intake. Differences in 
total grey matter volume were observed in those drinking as little as 
7–14 units (56–112 g) compared to <7 units weekly. Relationships were 
robust against unobserved confounding. Frequent binging, higher blood 
pressure and BMI were associated with steeper associations between 
alcohol and total grey matter volume. In contrast, alcohol beverage type 
consumed appeared to have little significance. 

Non-drinkers comprised a higher proportion of females, higher mean 
material deprivation and lower educational qualifications compared 
with drinkers. Similar patterns have been observed in the wider UK 
population (Statistics OFN, 2017). The latest Office of National Statistics 
(ONS) data found higher proportions of females, those with lower in-
come and no formal educational qualifications amongst the teetotaler 
group. The one discrepancy is that in the ONS data a lower proportion of 
teetotalers had never smoked, whereas in this UKB sample lower 
smoking was reported amongst non-drinkers. 

Negative associations between alcohol and grey matter volume, as 
assessed with VBM, were spatially extensive. Older studies of non- 
dependent alcohol consumption and brain MRI have been somewhat 
conflicting (Topiwala and Ebmeier, 2018). Whilst some studies have 
reported lower white matter lesions and infarcts with light to moderate 
intake (den Heijer et al., 2004), others have reported higher atrophy 
(Mukamal et al., 2001) or lower grey matter volume in frontal, temporal 
and parietal lobes (Ewing et al., 2014). Our findings corroborate wide-
spread associations with alcohol previously reported in the UKB in 
frontal, parietal and insular cortices, temporal and cingulate regions, 
putamen, amygdala and the brain stem (Evangelou et al., 2021; Daviet 
et al., 2022). In this UKB sample the strongest subcortical associations 

with alcohol we and others (Evangelou et al., 2021; Daviet et al., 2022) 
observed were negative with thalamus volume. Whilst we previously 
observed inverse associations between alcohol localized to hippocampal 
size in a separate smaller cohort sample (Topiwala et al., 2017), asso-
ciations with hippocampal volume in UKB appear to be weaker. There is 
a great disparity in sample sizes, and therefore statistical power to detect 
small effects, between our previous analyses in Whitehall II (Topiwala 
et al., 2017) and studies in UKB. Daviet et al. found associations with 
alcohol in >90% of grey matter regions examined (Daviet et al., 2022), 
whereas Evangelou et al. reported a much narrower spatial distribution 
than we found, limited to cingulate, orbitofrontal regions, insula and 
thalami (Evangelou et al., 2021). Methodological differences may also 
play a role in explaining differing results. For example, our analyses 
have used FSL software in contrast to Evangelou et al. (Evangelou et al., 
2021) who used SPM. Modulation (full vs. non-linear only), smoothing 
kernel (4.6–8 mm) and multiple comparison correction methods also 
differ. Daviet et al. (Daviet et al., 2022) examined IDPs derived from 
parcellations from atlases rather than voxel-based analyses used in this 
study and previously (Evangelou et al., 2021). There are potential 
ramifications of choices we made in our analysis pipelines. For example, 
we employed a small amount of spatial smoothing which is more sen-
sitive to smaller anatomical differences and potentially less sensitive to 
differences of larger spatial extent. As cited previously, we found no 
evidence against associations with alcohol being monotonic (Evangelou 
et al., 2021). Furthermore, the observed widespread grey matter 
volume-alcohol associations in the current study persisted after addi-
tional sensitivity analyses not performed in previous studies, including 
adjustment for additional image-related confounders, and dividing 

Fig. 5. Relation between binging frequency 
(>6 units/48 g alcohol in one episode) and 
total grey matter volume (normalized to 
estimated intracranial volume), independent 
of alcohol consumption in units. N = 12,812. 
Points show standardized regression co-
efficients (estimates and their 95% confi-
dence intervals) for binging frequency 
category compared to the reference category 
(never binging) generated from regression 
models with grey matter volume as the 
dependent variable. Results are shown 
separately according to subjects’ weekly 
alcohol intake (divided into quantiles): 1) 
6.8–11.6 units (54.1–92.8 g), 2) 11.6–17.8 
units (92.8–142.4 g), 3) 17.8–28.4 units 
(142.4–227.2 g), 4) 28.4–163 units 
(227.2–1304 g). N = 14,685. Regression 
models were adjusted for: alcohol consump-
tion in weekly units, age, age2, age3, sex, age 
× sex, age2 × sex, diabetes mellitus, systolic 
and diastolic blood pressure, body mass 
index, total cholesterol, high-density lipo-
protein, smoking status, imaging site, Meta-
bolic Equivalent Task minutes weekly, 
depression, educational qualifications, 
Townsend Deprivation Index.   
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abstainers into previous and never drinkers. This gives more confidence 
to the interpretation that alcohol is responsible for the brain structure 
associations, rather than other confounds known to impact brain mea-
sures (Alfaro-Almagro et al., 2021). Findings were unchanged when 
excluding previous drinkers. This lessens the possibility that individuals 
who have stopped drinking due to ill health, so called ‘sick quitters’, 
could be elevating the risk of non-drinkers (Marmot and Brunner, 1991), 
therefore underestimating the risks of drinking. A small number of 
voxels had positive associations with alcohol intake. The post-hoc ana-
lyses of lingual volume IDPs did not have convergent results, in fact 
negative associations with alcohol were observed as has been found by 
others (Daviet et al., 2022). The positive associations observed in the 
VBM analyses may have resulted from misregistrations, not practical to 
manually check at this scale. This is indirectly supported by the opposite 
findings using the FreeSurfer IDPs which are thought to be less prone to 
such problems. Additionally, many of the voxels with positive associa-
tions with alcohol in the VBM analyses were bordering CSF spaces and 
sinuses or supratentorial meninges. This raises the possibility of partial 
volume effects, although on visualization they appeared cortical. 
Smaller total grey matter volume was observed in participants 
drinking>7 units of alcohol weekly. This level of drinking is lower than 
currently defined as ‘low risk’ by the UK drinking guidelines (<14 units 
weekly) (Care DOHaS, 2016). Within UKB, others have observed asso-
ciations with structural MRI at 7–14 units weekly and above (Daviet 
et al., 2022). Outside UKB, to our knowledge the lowest alcohol intake 
associated with MRI markers has been 14 units weekly (Topiwala et al., 
2017). We hypothesise that the greater sample size of UKB enables 
detection of smaller effects. Whilst the effect size of the alcohol-total 
grey matter association was small in comparison to age, it was largest 
of the modifiable risk factors examined in this sample, making it rele-
vant to public health. 

Lower fractional anisotropy and mode, and higher mean and radial 
diffusivity were associated with higher alcohol consumption in this 
study. These findings are suggestive of alterations in white matter 
microstructure such as loss of myelin or axonal membranes (Friedrich 
et al., 2020; Winklewski et al., 2018). The widespread associations we 
observed corroborate findings by another UKB study that examined DTI 
IDPs and also found associations with alcohol across many IDPs (Daviet 
et al., 2022). Furthermore, both studies highlighted strongest effects in 
the fornix. Previous studies reported more localized associations with 
alcohol in the corpus callosum (Topiwala et al., 2017) and corticospinal 
tracts (Evangelou et al., 2021). Somewhat surprisingly, a third UKB 
study did not find widespread associations between alcohol and diffu-
sion IDPs (Evangelou et al., 2021). In fact, they observed positive as-
sociations between alcohol and corticospinal tract FA, which they 
suggest relate to crossing fibres. Again, methodological differences may 
explain these discrepancies. Evangelou used a smaller UKB sample 
(~9000 participants vs. > 25,000 here and in Daviet et al.) thus had 
lower statistical power to detect small effects. Whilst our previous study 
(Topiwala et al., 2017) used, as in the current study, tract-based spatial 
statistics which allows examination of white matter microstructure in a 
finer grained manner, Daviet et al. (Daviet et al., 2022) and Evangelou 
et al. (Evangelou et al., 2021) examined multiple fibre tract IDPs. Cor-
recting for global mean FA, associations between alcohol and FA appear 
less widespread. Adjustment for cardiovascular risk factors did not make 
a material difference to the strength of the associations, suggesting they 
were neither confounders nor on the causal pathway in our sample. 
Exploration of these factors was important, given that alcohol has 
known effects on cardiovascular risk (Roerecke et al., 2017; De Oliveira 
et al., 2000) and cardiometabolic disease has been highlighted as a 
mediator of alcohol-dementia relationships previously (Sabia et al., 
2018). 

This is the largest study, to our knowledge, of non-dependent alcohol 
consumption and functional connectivity. Higher alcohol intake was 
associated with increased functional connectivity within the default 
mode, attention, central executive and salience networks, and lower 

connectivity within the visual network. Of the few studies in alcohol 
dependent individuals, reduced functional connectivity in visual, exec-
utive, salience and default mode networks has been reported (Chanraud 
et al., 2011). Many factors could underlie the observed associations 
between alcohol intake and functional connectivity. Associations be-
tween connectivity and baseline alcohol intake could be the result of a 
participants’ chronic exposure to alcohol and subsequent neural changes 
(Fairbairn et al., 2021). Alternatively, higher weekly consumption could 
theoretically associate with intermittent mild symptoms or subclinical 
(minimally recognizable clinical findings) alcohol withdrawal (Jung and 
Metzger, 2010). These symptoms could include nausea, tremor, anxiety, 
higher blood pressure and pulse, amongst others. 

The negative associations of binging with total grey matter volume is 
in keeping with other health outcomes, including mortality (Kauhanen 
et al., 1997), breast cancer (White et al., 2017), and cardiovascular 
disease (Mckee and Britton, 1998). Peak ethanol levels are higher during 
a binge. Binging followed by abstinence can precipitate alcohol with-
drawal (Day and Daly, 2022). Withdrawal increases glutamate release 
(Hermann et al., 2012), microglial activation, inflammatory cytokines 
(Marshall et al., 2013) and can lead to brain injury (Jung and Metzger, 
2010). Repeated binging-withdrawal cycles could magnify effects 
(Brown et al., 1988). Whilst most of our subjects were not alcohol- 
dependent, many reported binges, potentially resulting in subclinical 
withdrawal. Given the marked consequences for the brain of with-
drawal, this represents a potential explanation for our observed inter-
action between alcohol intake and binging frequency in predicting grey 
matter volume. 

Some studies have postulated protective effects of moderate drinking 
are strongest in wine (Gronbaek et al., 1995), due to polyphenols levels 
in grape skins. Our findings support the hypothesis that it is ethanol 
itself that is on the causal pathway of brain effects. Associations of wine- 
drinking with higher educational level and socioeconomic status may 
explain apparent health benefits (Mortensen et al., 2001). 

We observed steeper associations between alcohol consumption and 
total grey matter volume in those with higher blood pressure and BMI. 
Higher blood pressure and BMI have been previously implicated in 
reducing grey matter volumes (Qizilbash et al., 2015; Beauchet et al., 
2013) but their interaction with alcohol has not been explored. One 
mechanistic hypothesis is that hypertension may facilitate diffusion of 
ethanol throughout brain tissue. Animal models have demonstrated 
dysfunction of the blood brain barrier (BBB) in hypertension (Mackenzie 
et al., 1976; Biancardi et al., 2014). ApoE4 can also break down the BBB 
(Montagne et al., 2020), and therefore could hypothetically facilitate 
ethanol diffusion. We found no significant interaction between alcohol 
consumption and ApoE4, perhaps because of limited power due to the 
small number of E4 homozygotes. Animal models have shown syner-
gistic effects of obesity and alcohol on steatohepatitis (Xu et al., 2011). 
BMI may increase the adverse impact of alcohol via the generation of 
toxic ceramides through a liver-brain axis (De La Monte et al., 2009). 
Ceramides have been linked to hippocampal atrophy (Kim et al., 2017) 
and risk of Alzheimer’s disease (Mielke et al., 2012). Alternatively, 
obesity could impair the intestinal barrier, facilitating bacterial endo-
toxin entry and pro-inflammatory cascades (Yan and Schnabl, 2012; 
Frazier et al., 2011; Brown, 2019). 

MRI measures were associated with cognitive test performance, but 
direct associations between alcohol and cognition were only observed 
amongst participants with lower education. This could reflect a pro-
tective effect of education in line with cognitive reserve theory, or 
ceiling effects of certain measures (tower rearranging) (Stern et al., 
1999). MRI may be more sensitive to the effects of alcohol than 
behavioral measures, especially given UKB’s limited cognitive battery 
which does not cover certain domains known to be affected by alcohol, 
such as verbal fluency (Topiwala et al., 2017; Fawns-Ritchie et al., 2020; 
Nowakowska-Domagała et al., 2017). Additionally, an unmeasured 
confounder, positively correlated to ‘moderate’ drinking and cognition, 
such as premorbid IQ could mask associations (Topiwala et al., 2017). 

A. Topiwala et al.                                                                                                                                                                                                                               



NeuroImage: Clinical 35 (2022) 103066

9

4.1. Limitations 

UKB was selective, hence the proportion of participants who re-
ported drinking heavily, or had a diagnosis of alcohol dependence, was 
low. We cannot exclude possible residual confounding, but our sensi-
tivity analyses demonstrated the low likelihood of this obviating the 
observed associations. The age when alcohol was self-reported limits the 
interpretation estimates to the impact of mid- to late-life consumption. 
Self-reported alcohol may suffer misclassification bias, including desir-
ability bias with individuals underreporting their intake. However, self- 
report is the only realistically available method at scale (Conigrave 
et al., 2003) and is used in clinical practice. Random measurement error 
would bias associations towards the null, whereas desirability bias could 
overestimate associations at low levels of alcohol. Neuroimaging was 
cross-sectional and therefore we cannot examine the impact of alcohol 
on changes in brain measures over time. We are mindful of greater power 
to detect associations amongst wine drinkers than amongst spirit 
drinkers. As with any observational study, we cannot make causal claims 
about the directionality of associations between alcohol and neuro-
imaging markers. However, reverse causation is unlikely because the 
earliest detectable brain changes occur in the late 40′s, by which time 
there have usually been decades of alcohol exposure. 

In this large neuroimaging sample, alcohol consumption was nega-
tively associated with total grey matter volume, multiple markers of 
white matter microstructure and higher functional connectivity. Lower 
total grey matter volume amongst drinkers was evidenced even within 
current UK ‘low risk’ drinking guidelines (<14 units weekly). Because 
moderate drinking is highly prevalent, even small associations could 
have substantial population impact. A realistic estimate of the potential 
effects of population interventions has to wait for the results of ran-
domized intervention studies. It remains unclear how duration of 
drinking affects associations, and whether particular life periods repre-
sent heightened vulnerability (Mewton et al., 2020). Studies in alcohol- 
dependent drinkers suggest at least some damage is reversible upon 
abstinence. We do not know whether the same follows for moderate 
intakes. 
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