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Abstract
The hippocampus is a heavily studied brain structure due to its involvement in
learning and memory. Detailed models of excitatory, pyramidal cells in
hippocampus have been developed using a range of experimental data. These
models have been used to help us understand, for example, the effects of
synaptic integration and voltage gated channel densities and distributions on
cellular responses. However, these cellular outputs need to be considered from
the perspective of the networks in which they are embedded. Using modeling
approaches, if cellular representations are too detailed, it quickly becomes
computationally unwieldy to explore large network simulations. Thus, simple
models are preferable, but at the same time they need to have a clear,
experimental basis so as to allow physiologically based understandings to
emerge. In this article, we describe the development of simple models of CA1
pyramidal cells, as derived in a well-defined experimental context of an intact,
whole hippocampus preparation expressing population oscillations. These
models are based on the intrinsic properties and frequency-current profiles of
CA1 pyramidal cells, and can be used to build, fully examine, and analyze large
networks.
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Introduction
Networks of excitatory and inhibitory neurons are essential compo-
nents constituting the functional structures of our brains. Dysfunc-
tion is thought to occur when inappropriate excitation-inhibition 
balances occur1. From a modeling perspective, these balances are 
determined by the choice of parameters in the equations represent-
ing neurons and networks. Mathematical models of neurons and 
networks are developed so that they can be used to determine the 
mechanisms underlying brain functions. However, it is difficult 
to assess whether the mechanisms determined from mathematical 
models actually occur biologically2,3. Furthermore, it is well known 
that cellular models used in building network models affect and can 
dictate the network output4,5. To address this recognized difficulty 
we are developing models that are based on well-defined experi-
mental contexts in which both the cellular and the network aspects 
of the model can be considered simultaneously6,7. Using such mod-
els, we aim to help determine, predict and test biologically based 
mechanisms.

Here we use a well-defined experimental context of an in vitro 
intact, whole hippocampus preparation in which spontaneous popu-
lation theta and theta-gamma rhythms are expressed8,9. Access to 
many cellular details is possible in vitro, and with a physiologically 
relevant output of theta and theta-gamma rhythms, a reasonable and 
functional scenario is also present. We have previously developed 
models of CA1 fast-spiking inhibitory cells in the same experimen-
tal context, and used them to show that model inhibitory networks 
of these fast-spiking cells exhibit sharp transitions between random 
and coherent firings at high frequencies (>90 Hz) when connectiv-
ity constraints were imposed6. In this article, we present the result 
of CA1 pyramidal cell models developed in the same context of 
this in vitro whole hippocampus preparation. Similar to our previ-
ous cellular model developments6, the models presented here are 
biologically-based at the cellular level, but do not have a biophysi-
cal representation in terms of conductance-based model representa-
tions. These CA1 models use a simple two variable mathematical 
formulation based on Izhikevich10 and they include rebound firing 
and adaptation characteristics. Using these simple, yet biologically-
based models, we can build and examine several large network 
models that are aligned with the biology. Subsequent analyses of 
these large network models could determine the mechanisms by 
which particular cellular characteristics critically contribute to the 
population activities observed in our experimental context.

Methods
Experimental data
Animals. Three mice (two female, post-natal day 20–29) were used. 
We used transgenic mice that expressed a fluorescent protein, tdTo-
mato, under the control of the PV promoter. PV-Cre homozygote mice 
(strain name: B6;129P2-Pvalbtm1(cre)Arbr/J, stock number: 008069, 
Jackson Laboratory) were mated with a reporter line, Ai9 homozygote 
mice (strain name: B6;129S6-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J, 
stock number: 007905, Jackson Laboratory) to generate PV-
tdTomato mice. The mouse lines are on genetic backgrounds that 
are mixtures of C57BL/6 and a type of 129 mice; PV-Cre mice are 
C57BL/6;129P2 and Ai9 mice are C57BL/6;129S6. Mice were 
bred in-house at the Douglas animal facility and kept in standard 

laboratory cages with standard bedding and environmental enrich-
ment. They were housed in a temperature-controlled room with a 
12:12 hours dark/light cycle with food and water provided ad 
libitum. All animals were treated according to protocols and guide-
lines approved by McGill University and the Canadian Council of 
Animal Care (CCAC). Ethical approval was obtained to conduct 
this study (approval number: 2010-5827). The authors note that the 
use of scissors to decapitate mice at that age without administering 
anesthesia (which could have altered synaptic transmission) was 
approved by the CCAC.

Intact hippocampal preparation. The acute preparation containing 
the whole hippocampus was obtained from PV-tdTomato mice 
according to a previously described protocol8. Briefly, after decapi-
tation using scissors, the brain was quickly removed from the skull 
and placed in ice-cold high-sucrose solution, containing (in mM) 
252 sucrose, 24 NaHCO

3
, 10 glucose, 3 KCl, 2 MgCl

2
, 1.25 NaH

2
PO

4
 

and 1 CaCl
2
 (pH 7.3, oxygenated with 95% O

2
-5% CO

2
). From a 

hemisected brain, the septum and hippocampus along with the inter-
connecting fibers were carefully and rapidly dissected out using 
a microspatula. The preparation was trimmed in ice-cold high-
sucrose solution (same contents as the high-sucrose solution listed 
above) using fine scissors to remove any remaining cortical tissue 
and the septum. Then, the surface of the preparation was cut at a 
~45° angle to expose the pyramidal layer of CA1. The cut enabled 
visually guided patch-clamp recordings of pyramidal cells which 
yielded a higher success rate for whole-cell recordings compared 
to the blind-patch technique used previously8. The visual approach 
allowed identification of CA1 pyramidal cells by their soma loca-
tion, morphology and the lack of PV-tdTomato fluorescence in the 
soma. The hippocampal preparation was then left to equilibrate in 
oxygenated room-temperature high-sucrose solution for 30 min - 1 h 
before recording. The preparation from only one hemisphere was 
used for recording from each mouse, and the preparation from 
either the left or the right hemisphere was chosen randomly for each 
experiment. Three mice were used in total; we used three intact hip-
pocampal preparations from these mice (one from each mouse) and 
one pyramidal cell was recorded from each preparation, except for 
one preparation from which two cells were recorded.

All electrophysiological recordings were performed at 30 ± 2ºC, 
using artificial cerebrospinal fluid (aCSF) containing (in mM) 126 
NaCl, 24 NaHCO

3
, 10 glucose, 4.5 KCl, 2 MgSO

4
, 1.25 NaH

2
PO

4
, 

0.4 ascorbic acid and 2 CaCl
2
 (pH 7.3, oxygenated with 95% O

2
-5% 

CO
2
). The hippocampal preparation was placed in a custom-made 

submerged recording chamber lined with a nylon mesh, and firmly 
stabilized by carefully placing several lead weights at both septal 
and temporal poles of the hippocampal preparation. We placed the 
hippocampal preparation in the recording chamber, such that the 
CA1 was the most superficial and accessible sub-region for visu-
alization and whole-cell recordings. Recordings were restricted to 
neurons located within the middle portion of the hippocampus (inter-
mediate between septal and temporal poles of the preparation). The 
preparation’s stability in the recording chamber was extremely 
important as aCSF was perfused at the rate of 20–25 ml/min during 
recordings. Since the tissue is several millimeters thick, such a fast 
perfusion rate is necessary to ensure sufficient oxygenation. This 
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fast perfusion rate is also required to generate intrinsic theta oscil-
lations from intact hippocampal preparations8. In order to achieve 
temperature stability, aCSF was pre-heated using an electric skil-
let and further regulated via an automatic temperature controller 
(Warner Instruments, Hamden, CT). The electrophysiology setup 
was equipped with an upright BX51W1 Olympus microscope, a 
20× water-immersion objective, Nomarsky optics, an infrared cam-
era (Cohu, San Diego, CA), a variable-wavelength fluorescence 
system (PTI, Monmouth Junction, NJ) and a monochrome digital 
camera for fluorescence imaging (DAGE-MTI, Michigan City, IN). 
Patch pipettes were pulled from borosilicate glass capillaries (2.5–
4 MΩ) and filled with the intra-pipette solution containing (in mM) 
144 K-gluconate, 10 HEPES, 3 MgCl

2
, 2 Na

2
ATP, 0.3 GTP, 0.2 

EGTA, adjusted to pH 7.2 with KOH. The patch electrode was con-
trolled using a motorized micromanipulator (Sutter Instruments, 
Novato, CA). An Axopatch-1C amplifier (Axon Instruments, Foster 
City, CA) and pClamp9 software (Molecular Devices, Sunnyvale, 
CA) were used for recording. The junction potential was estimated 
at -15.2 mV and was corrected for. All drugs were obtained from 
Sigma-Aldrich (St. Louis, MO), unless otherwise noted.

Intrinsic property characterization. Intrinsic properties were char-
acterized in current-clamp mode following published protocols with 
minor modifications11. A mixture of synaptic blockers was used to 
inhibit synaptic activity: 5 μM 6,7-dinitroquinoxaline-2,3-dione 
disodium salt (DNQX), 5 μM bicuculline and 25 μM DL-2-amino-5- 
phosphonopentanoic acid sodium salt (DL-AP5) (Abcam, Toronto, 
Canada). Data analysis was done using custom Matlab software 
(MathWorks, Natick, MA). Once the whole-cell configuration was 
achieved, the cell’s resting membrane potential was noted and its 
spontaneous firing, if any, was recorded for 30 s. Access resistance 
and resting membrane potential were checked at regular intervals 
(every ~5 min) throughout the recording of the cell.

The frequency-current (f-I) profiles of the pyramidal cells are impor-
tant to characterize, as we aim for our single cell model to respond 
to a variety of synaptic input strengths with frequencies similar to 
that observed experimentally. These f-I curves were determined by 
applying depolarizing current steps of 1 s duration to cells held in 
current clamp. Amplitudes were increased incrementally with step 
sizes of 25 pA for one of four cells, and 10 pA for three of four 
cells. The initial firing frequency was determined based on the 
inverse of the first inter-spike interval, and the final frequency was 
based on the inverse of the last inter-spike interval in the 1-second 
depolarizing step. For each cell, the approximate linear slope of the 
f-I curve above 5 Hz was determined using a least squares method. 
These values were chosen since above 5 Hz the slope was well-
approximated by linearization. In addition, the minimum amount 
of current required to initiate a spike, the rheobase current (I

rheo
 in 

pA), was determined. The action potential threshold was set to be 
the first voltage point such that the slope of the membrane poten-
tial exceeded 20 mV/ms12. The spike width was determined at the 
threshold value. In addition, the spike height from threshold and 
the minimum membrane potential reached following the spike were 
measured. Recordings were kept for analysis only if the neuron 
remained stationary; spikes overshot 0 mV (-15 mV junction poten-
tial corrected) and access resistance < 30 MΩ.

Mathematical model
We built a pyramidal cell model based on Izhikevich’s10 simple 
spiking model structure. We chose this model as it captures the 
cell’s ability to produce rebound spiking, the approximate spike 
shape, and the frequency-current profile of the cell, including spike-
adaptation. Thus, this model is relatively simple, but allows one to 
capture important biophysical properties of pyramidal cells.

The model has a fast variable representing the membrane poten-
tial, V (mV), and a slow “recovery” current given by the variable u (pA). 
In order to capture the spike width at threshold, we slightly modi-
fied the Izhikevich model by using a different “k” parameter above 
and below the spike threshold (k

high
 and k

low
 respectively). The model 

is given by:

C
m
V̇ = k(V–v

r
) (V–v

t
) – u + I

applied

     u̇ = a[b(V – v
r
) – u]                                           (1)

if   V ≥ v
peak

,       then  V ← c, u ← u + d

Where   k = k
low

   if  V ≤ v
t
;        k = k

high
   if   V > v

t

The parameters are as follows:

C
m
 (pF) is the membrane capacitance.

v
r
 (mV) is the resting membrane potential.

v
t
 (mV) is the instantaneous threshold potential.

v
peak

 (mV) is the spike cut-off value.

I
applied

 (pA) is the applied current, and represents the applied input 
into the cell.

a (ms-1) is the recovery time constant of the adaptation current.

b (nS) describes the sensitivity of the adaptation current to sub-
threshold fluctuations. Greater values couple V and u more strongly 
resulting in possible subthreshold oscillations and low-threshold 
spiking dynamics. Further, the sign of b determines whether the 
effect of u is amplifying (b < 0) or resonant (b > 0).

c (mV) is the voltage reset value.

d (pA) is the total amount of outward minus inward currents acti-
vated during the spike and affecting the after-spike behaviour.

k (nS/mV) represents a scaling factor. k
high

 is used to adjust the spike 
width after the threshold.

As with the experimental frequency-current (f-I) curve frequencies, 
we exhibited the “initial” and “final” f-I curves for each model, 
where the initial curves were based on the inverse of the first inter-
spike interval (ISI) due to a one second current step, and the final 
curves were based on the inverse of the last ISI. A linear fit based on 
the least squares method (on frequencies over 10 Hz) was done for 
each curve (using 5 Hz gave essentially the same results). We then 
chose parameters in which our models exhibited similar initial and 
final f-I curves to those of the experimental pyramidal cells. To do 
so, we first set the resting membrane potential at the rheobase, the 
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spike threshold, the minimum potential reached by the spike after-
hyperpolarization, the spike peak, and the spike width at threshold 
(providing us with values for v

r
, v

t
, c, v

peak
, and k

high
 respectively) 

based on our experimentally determined values (see Results). The 
threshold is defined in “Intrinsic Property Characterization”. Since our 
pyramidal cells exhibited resonant properties, we considered b val-
ues such that b > 0. We initially held b and k

low
 constant (at 0.2 nS 

and 0.05 nS/mV), and varied a between 0 and 1 with an initial step 
size of 0.01, and d between 0 and 20 with a step size of 1. Choosing 
our a and d parameters that returned the best fits to our initial and 
final slopes, we then varied b between 0.1 and 10, and k

low
 between 

0 and 20 (both with a step size of 0.1). Noting that we required more 
adaptation, we then returned to vary a between 0 and 0.1 with an 
initial step size of 0.0001, and d again between 0 and 20 with a step 
size of 1.

Results
Using the described whole hippocampal preparation and recordings 
from four CA1 pyramidal cells (from three mice), we developed 
our simple biologically-based cellular models. Our goal is to obtain 
representative CA1 pyramidal cell models that capture the essence 
of the experimental data in the described experimental context. By 
biologically-based, we mean that passive properties and spike char-
acteristics are captured. Specifically, resting potential, spike thresh-
old, spike width, spike peak and after-hyperpolarization potentials 
were incorporated into our models. In addition, the adaptation char-
acteristics determined from the frequency-current (f-I) curves (see 
Methods) are captured. Although not directly characterized with 
experimental recordings here, our models express rebound firing. 
Rebound firing (from inhibition or hyperpolarization) has been 

shown in several experimental studies13,14 and is an important con-
sideration in population theta activities.

Analysis of the experimental data yielded the following: at rheobase, 
the pyramidal cell membrane potential rested at -61.8 ± 2.9 mV 
(mean ± SEM), the spike threshold was -57.0 ± 2.2 mV, the after 
hyperpolarizing potential reached a minimum of -65.8 ± 3.83 mV, 
and the spike reached a peak at 22.6 ± 19.9 mV (n=4 cells). The 
spike width at threshold, was 3.6 ± 0.48 ms. Thus, we set v

r
 = -61.8 mV, 

v
t
 = -57.0 mV, c = -65.8 mV, v

peak
 = 22.6 mV, and k

high
 = 3.3 nS/mV 

in our models (see Methods). The remaining model parameters 
were chosen such that the rheobase and f-I curves of the cell model 
were similar to those of the cell recordings. To do so, we first con-
sidered the f-I curves of the cell recordings (Figure 1). To demon-
strate the amount of adaptation that the cell exhibited, we created 
two f-I curves for each cell: one based on the first inter-spike 
interval (ISI) of the cell’s spiking during a one second current step 
(denoted initial curve, data points shown as asterisks in Figure 1), 
and one based on the last (final curve, data points shown as squares 
in Figure 1). If the cell only had one spike in the 1s trace, a fre-
quency of 1 Hz was given. We note that two of our recordings 
(Pyramidal cell 1 and Pyramidal cell 2, shown in red and blue in 
Figure 1) exhibited stronger adaptation than the other two (Pyrami-
dal cell 3 and 4, shown in green and black in Figure 1). Thus, we 
created pyramidal cell models based on the strongly adapting cells 
and the weakly adapting cells separately. While adaptation clearly 
exists (e.g., here,15,16), biological variability, precise protocols and 
contexts need to be considered. As such, we did not aim to exactly 
capture adaptation characteristics, but rather to capture strongly and 
weakly adapting cells as represented by the data here. Also, since 

Figure 1. The initial and final frequency current profiles for the four pyramidal cell recordings (from three mice) in the CA1 region of 
the intact hippocampal preparation in vitro. 10 pA depolarizing steps were taken for all cells except Pyramidal cell 2 (25 pA steps). The 
initial (final) frequencies are shown by asterisks (squares), and the lines interpolate between the data points. Pyramidal cells 1 and 2 (shown 
in blue and red) have higher initial frequencies, and exhibit more adaptation than Pyramidal cells 3 and 4 (shown in light green and black).
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our model has a simple, mathematical structure, it is limited in the 
extent of biologically-based characteristics that it can encompass.

Strongly adapting model
It is important that our model f-I curve captures two important 
properties of the experimental data: the rheobase current (i.e. the 
minimum amount of current required to initiate a spike), and the 
approximate slope of the curve. If these properties are captured, 
then the model will spike with similar frequencies as the physiolog-
ical cell given the same amount of synaptic input. We found that for 
the two strongly adapting pyramidal cells (1 and 2), the slope of the 
linear least squares approximation of the f-I curves above 5 Hz were 
0.376 and 0.385 for the initial curves, and 0.030 and 0.040 for the 
final curves. Again, the initial frequencies are based on the inverse 
of the first inter-spike interval due to a one second current step, and 
the final frequencies are based on the last inter-spike interval. A 
series of depolarizing (25 and 10 pA) steps were used to determine 
the rheobase currents, which were 1.2 pA and 38.7 pA for the two 
strongly adapting cells (f-I curves, red and blue curves in Figure 1 
or data in Figure 2).

We kept our previously determined parameters constant (i.e. v
r
 = 

-61.8 mV, v
t
 = -57.0 mV, c = -65.8 mV, v

peak
 = 22.6 mV, and k

high
 = 

3.3 nS/mV), and set our membrane capacitance to C
m
 = 115 pA. We 

then varied the parameters a, b, d, and k
low

 to produce multiple 

models. We determined the rheobase current and the slope of the 
initial and final f-I curve over 10 Hz (using a least squares approach) 
for each model in order to settle upon a final model in which our 
initial and final f-I slopes and rheobase approximated that which we 
determined biologically. We determined that a = 0.0012 ms–1, b = 
3 nS, k

low
 = 0.1 nS/mV and d = 10 pA. This gave us a model f-I initial 

slope of 0.432, a final slope of 0.099, and a rheobase of ~0 pA (see 
Figure 2). As shown in Figure 3, the model shows strongly adapt-
ing firing (Figure 3A) and rebound firing when hyperpolarized 
(Figure 3B).

Weakly adapting models
Following a similar methodology, we created two separate models 
for the weakly adapting pyramidal cells: the first better captures 
the cell’s weak adaptation, especially for larger currents, but has 
a steep final slope, whereas the second captures the more gradual 
slope of the final f-I curve, but doesn’t exhibit the cell’s weak level 
of adaptation.

We found that for the two weakly adapting pyramidal cells, the 
slope of the linear least squares approximation of the f-I curves were 
0.119 and 0.138 for the initial curves, and 0.013 and 0.044 for the 
final curves (values relating to experimental data, green and black in 
Figure 1 and Figure 4). A series of depolarizing (10 pA) steps were 
used to precisely determine the rheobase currents, which were 62.0 pA 

Figure 2. The strongly adapting pyramidal cell f-I curves (Pyramidal cells 1 and 2 shown in blue and red respectively) are shown 
against the strongly adapting pyramidal cell model (dark green). The initial data points are shown as asterisks and the final points shown 
as squares. The initial model curve is shown as a solid line (initial slope: 0.432), and the final curve shown as a dashed line (final slope: 0.099). 
The model rheobase (~0 pA) and slope approximate those determined experimentally.
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Figure 3. A: An example intracellular recording of Pyramidal cell 1 during current clamp with applied current of 188 pA (top, blue) is compared 
with the firing of our strongly adapting pyramidal cell model, also with an applied current of 188 pA (bottom, dark green). The firing rates and 
amount of adaptation of the model are similar to those of the experiment. B: Two examples of rebound firing in our strongly adapting model. In 
each case, a one-second step of hyperpolarizing input is applied (shown as dashed lines; top: 20 pA step, bottom: 50 pA step). In each case, 
the strongly adapting model produces rebound spiking (solid line), where more spiking occurs for larger amounts of hyperpolarizing input.
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Discussion and conclusion
We have developed simple, biologically-based cellular models of 
pyramidal cells from CA1 hippocampus. These models capture the 
frequency-current profiles of both strongly and weakly adapting 
cells. Importantly, we have used pyramidal cell recordings from a 
well-defined experimental context as a basis for our model develop-
ment. We note that even though other simple pyramidal cell models 
exist with a conductance-based biophysical representation17, there 
is not a clear link with adaptation or rebound firing characteris-
tics as exists in pyramidal cells. We note that while modifications 
have been done to such simple models (e.g., Stark et al.18 used the 
Olfusen et al. model19 which incorporated sodium currents, potas-
sium current, voltage-dependent M currents, and a leak current, and 
added an h-current based on20 to incorporate rebound capabilities), 
the resulting cellular model outputs constraints with respect to 
experimental data are unclear, and as such, we consider them not to 
be biologically-based per se.

Our models do not include the multiple voltage-gated channels known 
to be present in pyramidal cells, and are not spatially extended by 
being multi-compartment in nature. Multi-compartment, biophysical 

and -12.1 pA for the two weakly adapting cells. We kept our previ-
ously determined parameters constant (i.e. v

r
 = -61.8 mV, v

t
 = -57.0 

mV, c = -65.8 mV, v
peak

 = 22.6 mV, and k
high

 = 3.3 nS/mV), and set 
our membrane capacitance to C

m
 = 300 pA, which allowed us to ob-

tain the gradual f-I slope. We then varied the parameters a, b, d, and 
k

low
 to produce multiple models, and again determined the rheobase 

current and the slope of the initial and final f-I curve over 10 Hz 
(using a least squares approach) for each model. In addition, to 
obtain an appropriate rheobase current, we included a shift in the 
applied current (I

applied
 → I

applied
 + I

shift
). For our first model, we deter-

mined that a = 0.001 ms–1, b = 3 nS, k
low

 = 0.5 nS/mV, d = 5 pA, and 

I
shift

 = –45 pA. This gave us a model f-I initial slope of 0.136, a final 
slope of 0.089, and a rheobase of 5 pA (see purple solid and dashed 
lines in Figure 4). The second weakly adapting model is identical 
to the first, except that we explored smaller a parameter values in 
order to capture the gradual slope of the final f-I curve. For this 
model, a = 0.00008 ms-1, which gave an initial f-I slope of 0.136, a 
final slope of 0.048, and a rheobase of 5 pA (see purple solid and 
magenta dashed lines in Figure 4). An example of the weak adapta-
tion in this case is shown in Figure 5A, and rebound firing for model 
1 is shown in Figure 5B.

Figure 4. The weakly adapting pyramidal cell f-I curves (Pyramidal cells 3 and 4 shown in green and black respectively) are shown 
against the weakly adapting pyramidal cell models (model 1: purple; model 2: purple solid line and magenta dashed line). The initial 
data points are shown as asterisks and the final points shown as squares. The initial model curve is shown as a solid line (initial slope: 
0.136), and the final curves are shown as dashed lines. Model 1 exhibits less adaptation (final slope for model 1: 0.089; final slope for model 
2: 0.048), but higher final frequencies than model 2 (compare purple and magenta dashed lines). The model rheobase (5 pA) and slopes 
approximate those determined experimentally.
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Figure 5. A: An example intracellular recording of Pyramidal cell 3 during current clamp with applied current of 154 pA (top, light green) is 
compared with the firing of our weakly adapting pyramidal cell models, also with an applied current of 154 pA (model 1: middle, purple; model 
2: bottom, magenta). The firing rates and amount of adaptation of the model are similar to those of the experiment. B: An example of rebound 
firing in our weakly adapting model 1. A one-second step of 1000 pA hyperpolarizing input is applied (dashed line). The weakly adapting 
model produces rebound spiking (solid line), but requires a reasonably large amount of applied input. The weakly adapting model 2 does not 
produce rebound spiking following steps of hyperpolarizing input in the physiological range.

models of CA1 pyramidal cells exist21 as well as single-compartment 
biophysical models22 with various voltage-gated channels, but the 
goals in developing those models are different. Here, we are inter-
ested in capturing cellular characteristics in a well-defined experi-
mental context (for subsequent large network explorations that take 
advantage of the experimental context), whereas these other studies 
have considered, for example, conductance balances to understand 
how they contribute to cellular output. We further note that the rich-
ness of detail in CA1 pyramidal cells is expanding (e.g., see16 in 
which countermodulation by metabotropic receptors in bursting or 
regular spiking pyramidal cells was shown). In essence, it is always 
the case that the mathematical models are a limited representation 
of the biology.

In previous work, we used adaptation characteristics from the lit-
erature to develop simple models of CA3 pyramidal cell models, 
and showed that population bursting could occur in excitatory 
networks if the adaptation characteristics were in line with the 
experimental data23. In this work we had a full set of experimental 
recordings and so could capture appropriate cellular characteristics 
more directly. Although there should not be large differences in 
some cellular characteristics (e.g., spike widths etc.), there could 
be differences in characteristics such as rheobase and adaptation 
amounts due to varying experimental contexts (e.g., solutions, 
recording setup details and so on – see13–16). Coupled with bio-
logical variability, it would be additionally challenging to be clear 
about model limitations in subsequent model usage. Here, with our 
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simple mathematical model representation and knowledge of the 
biological variability in hand, one is easily aware of any changes 
in the parameters of the model that would result in large deviations 
from the experimental data.

We note that robust fitting strategies of experimental data to sim-
ple, mathematical representations of neurons are being developed24. 
However, there are some differences in the modeling goals. In the 
paper by Hertäg et al.24, the goal was to use the developed models 
based on in vitro recordings to predict spiking in an in vivo context. 
Here, we have developed our cellular models in the experimental 
context for which we build the network models to determine phys-
iologically-based mechanisms. One can consider using our models 
in other contexts, keeping in mind the limitations associated with 
the models as developed. In essence, when incorporating various 
cellular characteristics, one should express the choices, rationale 
and reasoning behind the model development, which naturally stem 
from the modeling goals.

In conclusion, with our simple, developed models as presented 
here, we can proceed to considering very large networks that 
include these models in this experimental context. Furthermore, our 
simple model representations will also allow us to take advantage of 
developed theoretical analyses25,26.
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The article presents minimal models for CA1 pyramidal cells, based on fitting the frequency-current
curves that had been experimentally recorded in whole hippocampus preparation.
There are two types of models, differing in some parameter values, to account for “strongly” and “weakly”
adapting cell varieties. The goal of the present work is to present the models and their basic fit to single
cell data, in preparation for future large network studies.

Comments:
I think this work would be much stronger if testable predictions were generated from the models. For
example, what would be the responses to time varying inputs and how the responses would differ
between  the strongly and weakly adapting cells?
 
It is not clear to me that obtaining one model for each of variety of cells is sufficient. For example, two
strongly adapting cells have very different rheobase current values. If you fit the model to each cell
individually, I expect that you will end up with two very different parameter sets. What would be the
consequences for responses to time varying inputs, for example? Considerations like these will be very
important when you decide how much variability and in which parameters to include in the  network
model. This is also related to the fact that a single model was not able to capture all desired properties of
the weakly adapting model. I would like to see more discussion on the consequences of the spectrum of
models for future network work.
 

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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We would like to thank the reviewer for their helpful comments, which we will be taking into
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We would like to point out that we focused on the single cell model and did not try to also include

network simulations in this article as it was originally submitted as a 'Short Research Article' type.
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network simulations in this article as it was originally submitted as a 'Short Research Article' type.
 
However,  recently replaced the 'Short Research Article' category with a shorterF1000Research
'Research Notes' article type. As this article did not fit the criteria of a 'Research Note', it appears
as a 'Research Article' instead. 
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A simple mathematical yet biological model of hippocampal CA1 pyramidal cell has been developed to
capture the cellular characteristics (f-I curve, rheobase current, firing rate adaptation and rebound spiking)
of those neurons in an intact preparation of hippocampus. 

Although this study does not examine any biological question or hypothesis directly, the simplified models
of CA1 pyramidal cells, in conjunction with a similar model of the fast spiking interneurons previously
developed by this lab, can be used in future modeling studies that explore the network properties in the
hippocampus.  

Comments:
First paragraph of the Introduction:

"To address this recognized difficulty we are developing models that are based on well-defined
experimental contexts in which both the cellular and the network aspects of the models can be
considered simultaneously." 

Please specify more clearly about the network aspects, you are referring to.
 
First paragraph of Introduction:

"Using such models, we aim to help determine, predict and test biologically based mechanisms."

This is a bit misleading. In this work, the model only replicates biological behavior of
neurons. There is no clear prediction of any biological phenomenon.
 
End of the second paragraph of Introduction:

"we can build and examine several large network models that are aligned with the biology.
Subsequent analyses of these large network models could determine the mechanisms by which
particular cellular characteristics critically contribute to the population activities observed in our
experimental context." 

It would be more exciting to construct network models and make biological predictions.

Construction of simple cellular models to capture biological characteristics of individual
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Construction of simple cellular models to capture biological characteristics of individual
neurons is not novel. In fact, the authors have used similar modeling approach to develop
models in references 6 and 23.
 
Second paragraph of Results - Stronger adaptation vs weaker adaptation - Has it been shown
before? If yes, please include some references here. If not, I am wondering if it would be
worthwhile to check the adaptation by comparing steady-state ISIs. Maybe different
neurons have different time course of adaptation but at the end they show same level of
adaptation.
 
If we run the model for longer duration, how does the behavior change, does it continue to
adapt or it reaches a steady-state?
 
Second paragraph of Strongly adapting model:

"If these properties (f-I curve, rheobase current and adaptation) are captured, then the model will
spike with similar frequencies as the physiological cell given the same amount of synaptic input." 

Is the applied protocol (continuous injections of currents for 1s) sufficient to characterize
the response of these neurons in the presence of synaptic inputs?
 
 Second paragraph of Weakly adapting models:

"In addition, to obtain an appropriate rheobase current, we included a short in the applied current." 

I do not understand why  term is included in  to adjust rheobase?I I
 
Third paragraph of Discussion and conclusion:

"In previous work, we used adaptation characteristics from the literature to develop simple models
of CA3 pyramidal cell models, and showed that population characteristics were in line with the
experimental data."
 
It would be interesting and more insightful to see how this work can be extended to
network models as has been done previously (in references 6 and 23) by the authors.
 
Third paragraph of Discussion and conclusion: 

"Here, with our simple mathematical model representation and knowledge of the biological
variability in hand, one is easily aware of any changes in the parameters of the model that would
result in large deviations from the experimental data." 

This is very important aspect. But that would only be possible if the effects of parameters
can be characterized. It would be interesting to see any such generalizations.
 
Fourth paragraph of Discussion and conclusion:

"Here, we have developed out cellular models in the experimental context for which we build the
network models to determine physiologically-based mechanisms." 

shift applied
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Building network models incorporating CA1 pyramidal cells and determining
physiologically-based mechanisms is clearly not presented in this paper and should be
indicated as future work.
 
In Figure 3, please also show rebound firing of recorded cells, if available.
 
In Figure 2,  the label pointing to green dotted line is misspelled. It should be final curve
instead of "finial curve".
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