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Introduction

Cytochrome P450 2E1 (CYP2EZ) plays an important role in alcohol and toxin metabolism by catalyzing the conversion of
substrates into more polar metabolites and producing reactive oxygen species. Reactive oxygen species-induced oxidative
stress promotes hepatocyte injury and death, which in turn induces inflammation, activation of hepatic stellate cells, and
liver fibrosis. Here, we analyzed mice expressing only the human CYP2EI gene (hCYP2E1) to determine differences in
hCYP2E1 versus endogenous mouse Cyp2el function with different liver injuries. After intragastric alcohol feeding,
CYP2E1 expression was induced in both hCYP2E1 and wild-type (Wt) mice. hCYP2E1 mice had greater inflammation,
fibrosis, and lipid peroxidation but less hepatic steatosis. In addition, hCYP2E1 mice demonstrated increased expression of
fibrogenic and proinflammatory genes but decreased expression of de novo lipogenic genes compared to Wt mice. Lipido-
mics of free fatty acid, triacylglycerol, diacylglycerol, and cholesterol ester species and proinflammatory prostaglandins sup-
port these conclusions. Carbon tetrachloride-induced injury suppressed expression of both mouse and human CYP2E1, but
again hCYP2E1 mice exhibited greater hepatic stellate cell activation and fibrosis than Wt controls with comparable
expression of proinflammatory genes. By contrast, 14-day bile duct ligation induced comparable cholestatic injury and
fibrosis in both genotypes. Conclusion: Alcohol-induced liver fibrosis but not hepatic steatosis is more severe in the
hCYP2E1 mouse than in the Wt mouse, demonstrating the use of this model to provide insight into the pathogenesis of
alcoholic liver disease. (Hepatology Communications 2017;1:1043-1057)

catalyzes the conversion of its substrates into more polar
metabolites for secretion or use as substrates for other
ytochrome P450 2E1 (CYP2E1) is a member of microsomal phase 11 enzymes.(3) CYP2E1 also transfers
the P450 enzyme family that plays a vital role in ~ active electrons from reduced nicotinamide adenine dinu-
alcohol, drug, toxin, lipid, and carcinogen metab-  cleotide phosphate (NADPH) or reduced nicotinamide

olism.™? CYP2E1, mainly expressed in hepatocytes, adenine dinucleotide to oxygen to produce reactive oxygen
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species (ROS).®) CYP2E1-induced toxic metabolites cou-
pled with oxidative stress from ROS are proposed to be
important mediators of liver injury by promoting an
inflammatory and fibrogenic milieu to facilitate recruit-
ment of leukocytes and activation of hepatic stellate cells
(HSCs).”

Chronic alcohol consumption induces the expres-
sion of CYP2E1 protein.”) During the pathogenesis
of alcoholic liver disease, metabolism of ethanol in
hepatocytes by CYP2E1 generates ROS, which in
turn facilitates lipid peroxidation, protein carbonyla-
tion, and formation of 1-hydroxyethyl radical and lipid
radical formation.” CYP2E1 also facilitates metabo-
lism of endobiotic chemicals, including steroids, fatty
acids, and prostaglandins (PGs), through -1 hydrox-
ylation.”” -1 hydroxylation is an alternative oxidation
pathway for long chain fatty acids within microsomes
instead of the classic fi-oxidation within mitochondria.
Of particular interest is w-1 hydroxylation of arachi-
donic acid (AA) because AA-derived eicosanoids pro-
mote proinflammatory responses, such as vasodilation,
inhibition of Na*/K"-adenosine triphosphatase, and
activation of nuclear factor kappa B transactivation.®”
The hydroxylation of AA and other polyunsaturated
fatty acids (PUFAs) within microsomes is increased
during alcohol consumption.”” Decreased AA content
within the liver is observed in both murine and human
alcoholic liver disease,"” and administration of
CYP2E1 inhibitor restores the AA concentration in
the liver.'V

Steatohepatitis, a major pathology for alcohol-
induced liver injury, is characterized by hepatocyte bal-
looning and lymphocyte infiltration. Accumulation of
lipid droplets within hepatocytes results from disrup-
tion of homeostasis between de novo lipid synthesis
and lipid f-oxidation during alcohol consumption.
During ethanol metabolism, up-regulation of sterol
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regulatory element binding protein 1c (SREBP-1c)
and down-regulation of peroxisome proliferator-
activated receptor alpha (PPARx) expression lead to
the induction of fatty acid synthesis and inhibition of
p-oxidation.** Mice subjected to alcohol feeding
develop more steatosis than pair-fed mice receiving the
same caloric intake, indicating that an alcohol-induced
metabolic disorder drives steatosis. Besides CYP2E1,
alcohol is also catalyzed by cytosolic alcohol dehydro-
genase and subsequently by mitochondrial aldehyde
dehydrogenase 2 to create reducing equivalents (red-
uced nicotinamide adenine dinucleotide and NADPH)
and acetyl-coenzyme A (CoA) equivalents (acetalde-
hyde and acetate). The ethanol metabolites NADPH
and acetate are the products of lipid f-oxidation but
are the reactants of de novo lipogenesis. Therefore, dur-
ing alcohol metabolism, lipid homeostasis is unbal-
anced and favors the direction of lipogenesis to
accelerate alcoholic steatosis. The rate-limiting enzyme
during lipogenesis is acetyl-CoA carboxylase (Acc),
and the transcription factor Srebp-lc directly up-
regulates Acc transcription.™ The de novo lipogenesis
machinery uses NADPH and acetyl-CoA to synthe-
size free fatty acids (FFAs). The excess FFAs are
incorporated into diacylglycerol (DAG) and triacylgly-
cerol (TAG) to form lipid droplets within hepatocytes.
Excessive lipid droplet accumulation and ROS produc-
tion cause hepatocyte ballooning and apoptosis. Dead
hepatocytes will induce inflammatory response within
the liver, triggering the recruitment of inflammatory
cells to the fatty liver, activation of liver macrophage,
and release of proinflammatory cytokines (tumor
necrosis factor alpha, interleukin [IL]-1p, IL-6, and
transforming growth factor [TGF]-$1).%517 Infiltra-
tion of neutrophils, which kill sensitized hepatocytes
by introducing massive ROS and further exacerbating
alcohol-induced liver injury, is a prominent feature of
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alcoholic hepatitis.*® Long-term alcohol consumption
may induce liver fibrosis in which HSCs are the major
source of myofibroblasts. ™

CCly, an environmental toxin, is metabolized by
CYP2E1 and produces the toxic metabolite trichloro-
methyl. Trichloromethyl is a free radical and reacts with
macromolecules to form DNA, protein, and lipid
adducts.?” The hepatotoxicity of CCly is mediated by
CYP2E1, and mice lacking CYP2E1 exhibit resistance
to CCly-induced liver injury,(21) but CYP2E1 itself
is destabilized by active CCly; metabolites in a
phosphorylation-dependent manner.*? The CYP2E1
inhibitor diethyldithiocarbamate or antioxidants attenu-
ate CCly-induced lipid peroxidation and hepatocyte
injury.? CCly-induced hepatocyte necrosis, liver
inflammation, activation of HSCs, and bridging fibrosis
is more extensive than with alcohol.?? CCl,-induced
liver fibrosis is mainly mediated by activated HSCs.*

The excessive accumulation of bile acids is toxic to
hepatocytes, resulting in cholestatic liver injury, which
is manifested by Froliferating bile ducts, biliary fibrosis,
and jaundice.?® Activated portal fibroblasts are a
major source of myofibroblasts during early biliary
fibrosis.*”) There are no reports establishing a correla-
tion between hepatic cholestasis and CYP2E1. Some
cases of drug-induced liver injury are reported to cause
cholestatic liver diseases, which suggests that the com-
bination of hepatotoxin and cholestatic liver disease
might be due to toxic metabolites by the CYP enzyme
family.?®

Although ethanol and xenobiotic metabolic path-
ways of microsomal enzymes are conserved between
species, CYP2E1 protein has interspecies variations in
the Km, Vmax, and the scope of substrates.?%3V
Therefore, comparing the human CYP2E1 and mouse
Cyp2el in several pathologic conditions may provide
new insights into human liver diseases. Gonzalez and
colleagues®”  generated a humanized CYP2EI
(hCYP2E1) transgenic mouse by introducing a bacte-
rial artificial chromosome containing the human
CYP2E1 gene under the 2.3-Kb upstream promoter
region into a mouse with a knockout of the endoge-
nous CYP2E1 gene. The human transgene is respon-
sive to CYP2E1 inducers, such as acetone and
acetaminophen, in the mouse.®*? Here, we used this
hCYP2E1 mouse and wild-type (Wt) littermates to
compare the human and mouse CYP2E1 enzyme
under three liver fibrosis models: alcoholic liver fibrosis
by intragastric alcohol feeding, hepatotoxin-induced
liver fibrosis by CCl, administration, and biliary fibro-
sis by bile duct ligation (BDL).
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Materials and Methods

MICE

All mouse protocols were approved by the Institu-
tional Animal Care and Use Committee of the Univer-
sity of California San Diego and the University of
Southern California. Littermate male mice (Wt and
hCYP2E1) were used within current study.

EXPERIMENTAL MODELS
OF LIVER FIBROSIS

Alcoholic Liver Fibrosis

We used 2-month-old male Wt (n = 6) and
hCYP2E1 (n = 12) littermates. Alcoholic steatohepa-
titis accompanied with liver fibrosis was achieved by

intragastric alcohol feeding with a weekly binge
model.®?

Hepatotoxin-Induced Liver Fibrosis

Liver fibrosis was achieved by oral administration of
25% CCl, at 8 uLL per gram body weight twice a week
for 6 weeks. We used 2-month-old male Wt (n = 8)
and hCYP2E1 (n 8) littermates for CCl, admi-
nistration and 2-month-old male Wt (n = 4) and
hCYP2E1 (n = 5) mice for the corn oil control. The
mice were killed 48 hours after the last CCl; adminis-
tration to achieve the maximum fibrosis.

Cholestatic Liver Fibrosis

Cholestatic liver fibrosis was achieved by BDL for
14 days, as described.®¥ We used 2-month-old male
Wt (n = 6) and hCYP2E1 (n = 6) littermates for
BDL surgery and 2-month-old male Wt (n = 3) and
hCYP2E1 (n = 4) mice for sham surgery control.

HISTOLOGY AND
IMMUNOHISTOCHEMISTRY

Formalin-fixed paraffin-embedded liver tissues were
sectioned to 5 um thickness. The sections were stained
with hematoxylin and eosin or Sirius Red. Immuno-
histochemistry was performed on formalin-fixed livers
with anti-mouse Desmin (RB-9014-P0; Fisher Neu-
romarkers), alpha smooth muscle actin (¢-SMA)
(ab5694; Abcam), F4/80 (14-4801-82¢; Bioscience),
lymphocyte antigen 6 complex locus G (Ly6g) (9668,
eBioscience), 4-hydroxynonenal (4-HNE) (HNE11-
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S; Alpha Diagnostic International Inc.), and nuclear
erythroid 2 p45-related factor 2 (Nrf2) (SC-722; Santa
Cruz Biotechnology) antibodies followed by 3,3'-dia-
minobenzidine tetrahydrochloride staining (Vector
Laboratories) and counterstaining with hematoxylin.
The images were analyzed using Image ] (National
Institutes of Health, Bethesda, MD).

TARGETED HEPATIC
LIPIDOMIC ANALYSIS

Fresh liver samples (~7 mg protein) were homoge-
nized in 1 mL phosphate-buffered saline containing
10% methanol. For the various lipidomic analyses, ali-
quots were withdrawn and extracted using protocols
that were optimized for each lipid category.®”
Detailed analysis procedures for eicosanoids, FFAs,
and TAG, DAG, and cholesteryl ester (CE) are
described in the Supporting Materials and Methods.

Results

HEPATIC FIBROSIS WAS
INCREASED IN hCYP2E1 MICE
AFTER INTRAGASTRIC
ALCOHOL FEEDING

Intragastric alcohol feeding was performed in
hCYP2E1 and Wt littermates to induce alcoholic liver
fibrosis. Liver weight and the liver/body ratio increased
in mice fed alcohol, but there was no difference
between Wt and hCYP2E1 mice (Supporting Fig.
S1). Liver injury, assessed by serum alanine amino-
transferase (ALT), was increased in hCYP2E1 mice
versus Wt controls (Fig. 1A). The ethanol concentra-
tion in the serum was lower in hCYP2E1 mice (Fig.
1B), suggesting increased alcohol metabolism in these
mice. The protein expression of both human and
mouse Cyp2el was investigated, with antibody detect-
ing both species. Expression of hCyp2el protein was
higher than that of mouse Cyp2el from Wt liver fed
normal chow. In response to alcohol feeding, expres-
sion of both human and mouse Cyp2el was increased,
but the human protein was higher than the mouse
Cyp2el (Fig. 1C). Messenger RNA (mRNA) levels of
mouse or human Cyp2el were not induced by alcohol,
suggesting that the induction of Cyp2el in protein lev-
els was due to ;)osttranslational stabilization (Fig. 1D),
as described.”) In addition, CYP1A2, another CYP

member of the mouse microsomal ethanol oxidation
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system, was the same in Wt and hCYP2E1 livers
(Supporting Fig. S1).

Liver fibrosis, assessed by morphometric quantifica-
tion of Sirius Red staining, was increased 2-fold in
hCYP2E1 mice compared with Wt mice (Fig. 1E).
There were more Desmin” and a-SMA™ activated
HSCs in hCYP2E1 livers compared with Wt mice
(Fig. 1E). In addition, hepatic mRNA levels of fibrotic
genes, such as «-SMA, collagen type 1 alpha 1 (collal),
tissue inhibitor of metalloproteinase 1 (TIMP1), and
TGF-p1, were increased in hCYP2E1 mice compared
to Wt mice after intragastric alcohol feeding (Fig. 1F).

LIVER INFLAMMATION WAS
INCREASED IN hCYP2E1 MICE
AFTER INTRAGASTRIC
ALCOHOL FEEDING

After intragastric alcohol feeding, more Ly6g™ cells
(neutrophils) were observed in hCYP2E1 mice, but
there was no difference in the number of F4/807 cells
(macrophages) between Wt and hCYP2E1 mice after
alcohol consumption (Fig. 2A). Hepatic mRNA
expression was more elevated for inflammatory genes
(IL-6, tumor necrosis factor alpha, and IL-1p),
chemokines (monocyte chemoattractant protein 1,
macrophage inflammatory protein 1, and macrophage
inflammatory protein 2), and neutrophil markers (mye-
loperoxidase and Ly6g) in hCYP2E1 mice compared
to Wt littermates. mRNA expression of the anti-
inflammatory gene IL-10 was lower in hCYP2E1
mice (Fig. 2B). The proinflammatory PGs derived
from AA, such as PGD,, PGE,, and thromboxane
B2, were elevated in the hCYP2EL1 liver, while protec-
tin DX, a metabolite derived from docosahexaenoic
acid (DHA) with strong anti-inflammatory activity,
was decreased in the same animals after alcohol con-

sumption (Fig. 2C; Supporting Fig. S3).

OXIDATIVE STRESS WAS
INCREASED IN hCYP2E1 MICE
AFTER INTRAGASTRIC
ALCOHOL FEEDING

We measured the lipid peroxidation products 4-
HNE and malondialdehyde as parameters of oxidative
stress in the liver as well as hepatic mRNA expression
level of ROS production genes in Wt and hCYP2E1
mice under alcohol feeding. Immunohistochemistry

showed increased 4-HNE in hCYP2E1 livers (Fig.
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FIG. 1. Hepatic fibrosis is increased in hCYP2E1 mice after iG alcohol feeding. Wt and hCYP2E1 mice were subjected to iG alco-
hol feeding with weekly binges for 8 weeks. Wt and hCYP2E1 littermates fed with normal chow were used as controls. (A) Liver
function was assessed by ALT. (B) Ethanol concentration in serum was measured in Wt and hCYP2E1 mice after iG alcohol feeding.
(C) Immunoblotting of CYP2E1 in liver. (D) CYP2E1 mRNA expression in both Wt and hCYP2E1 liver. (E) Representative
images of Sirius Red staining, immunohistochemistry staining of Desmin, and a-SMA. The stained area was shown with quantifica-
tion of morphometric analysis of each staining. (F) Hepatic expression of fibrogenic genes was measured by mRNA-fold induction
level in Wt and hCYP2E1 livers. The P value was measured between Wt and hCYP2E1 with iG alcohol feeding; the data were
shown as mean * SEM; *P < 0.05. Abbreviations: EtOH, ethanol; iG, intragastric.
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3A), and malondialdehyde levels were higher (~2-
fold) in hCYP2ET1 liver (Fig. 3C). In response to alco-
hol feeding, hepatic mRNA levels of NADPH oxidase
(Nox)2 and p67 were elevated ~6-fold and ~3-fold,
respectively, in hCYP2E1 mice, but no significant dif-
ferences were found in other ROS production genes
(Nox1, Nox4, p47, p22) between hCYP2E1 and Wt
mice (Fig. 3B).

HEPATIC STEATOSIS WAS
ATTENUATED AND LIPID
PROFILES WERE CHANGED IN
hCYP2E1 MICE AFTER
INTRAGASTRIC ALCOHOL
FEEDING

After intragastric alcohol feeding, lipid droplets
accumulated within hepatocytes as both macrovesicular
and microvesicular steatosis in both Wt and hCYP2E1
mice (Fig. 4A). Steatosis was ~35% less in hCYP2E1
mice compared to Wt mice (Fig. 4A). Hepatic mRNA
expression of Srebp-1c, fatty acid synthase, and Acco
were up-regulated in both genotypes after alcohol con-
sumption but less in hCYP2E1 livers (Fig. 4B).
PPARo, a surrogate for the key transcription factor
involved in fatty acid p-oxidation, was more highly
expressed in hCYP2E1 liver compared to Wt mice
(Fig. 4B). This gene expression profile is consistent
with increased lipogenesis and decreased f-oxidation,
which would produce increased FFA content in Wt
versus hCYP2E1 mice. Indeed, we observed higher
hepatic FFAs in the Wt mice fed alcohol than in the
hCYP2E1 mice (Fig. 4C).

We also undertook targeted lipidomic profiling of
individual FFA species (Fig. 4D). Diet-derived FFAs
(C14 and C15) and essential unsaturated fatty acids
(C18:2, C18:3, C18:4, C18:6, C20:3 n3, C20:3 n9)
were slightly decreased between Wt and hCYP2E1
groups (Fig. 4D); however, FFAs derived from de novo
lipogenesis (C16:0, C18:0, and C18:1), were decreased
significantly in the hCYP2E1 compared to the Wt
liver. Moreover, the de novo lipogenesis index (16:0/
18:2 ratio)®® was decreased in the hCYP2E1 liver
(Fig. 4D).

Excess FFAs will be incorporated into TAG, DAG,
and CE species to form lipid droplets within hepato-
cytes during steatohepatitis. All detected TAG species
were reduced in hCYP2EL1 livers compared to Wt liv-
ers (Fig. 4E,F). The most striking up-regulations of
TAG species were those containing unsaturated fatty

XU, MA, ET AL.

acids, like 50:4, 52:5, 54:4, 54:5, 54:6, 56:4, and 56:5
(a full version of TAG and DAG content profiles is
shown in Supporting Fig. 52). Although all DAG and
most CE lipid species were increased in Wt livers after
alcohol consumption, the extent of the increase of
TAG, DAG, and CE (Fig. 4E,F) suggested that
TAG lipid species were the major lipids contributing
to the difference in steatosis between Wt and
hCYP2E1 livers.

hCYP2E1 INDUCED Nrf2,
AN Acca INHIBITOR

Up-regulation of hepatic mRNA expression of Acco
and Srebp-1c (Fig. 4B) along with increased Acca pro-
tein (Fig. 5A) in Wt mice were greater than in
hCYP2E1 mice with intragastric ethanol (Figs. 4B,
5A). Expression of phosphorylated Acca (pAcca) and
its upstream kinase adenosine monophosphate—acti-
vated protein kinase (AMPK) was similar in the two
genotypes (Fig. 5A). Nrf2 mRNA after alcohol feeding
was increased to similar levels in Wt and hCYP2E1
liver; however, Nrf2 target genes Metallothionein 1,
heme oxygenase 1, NAD(P) dehydrogenase, quinone 1
and glutamate-cysteine ligase, catalytic subunit were
higher in hCYP2E1 mice (Fig. 5C). In agreement,
immunohistochemistry showed more abundant Nrf2
nuclear staining within hCYP2E1 hepatocytes than
within Wt hepatocytes (Fig. 5B). These results imply
that higher ROS induced by human CYP2E1 pro-
moted Nrf2 nuclear localization and sequentially inhib-
ited the transcription of Accu.

HEPATIC FIBROSIS WAS
INCREASED IN hCYP2E1 MICE
AFTER CCl, INJURY

We next investigated the role of human CYP2E1 in
response to toxic hepatic injury induced by CCly admin-
istration in Wt and hCYP2E1 mice. Serum ALT levels
were elevated in hCYP2E1 mice compared with Wt
mice after CCly administration (Fig. 6A). Protein exp-
ressions of mouse and human Cyp2el were down-
regulated after CCly injury (Fig. 6B), reportedly due to
phosphorylation-dependent protein degradation.”? The
mRNAs of mouse and human Cyp2el were also sup-
pressed in response to CCLy (Fig. 6B). Compared to Wt
mice after CCly injury, hCYP2E1 mice had more fibrosis
and more Desmin" and «-SMA™ HSCs (Fig. 6C).
Hepatic lipid peroxidation was increased in the

hCYP2E1 mice under CCl; administration (Fig. 6C).
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alcohol consumption is a major pathology during alcoholic liver disease. (A) Representative images of immunohistochemistry staining
of 4-HNE are shown with quantification of the positive area. (B) Liver mRNA of ROS production genes was measured in Wt and
hCYP2E1 mice after iG alcohol feeding. (C) Hepatic lipid peroxidation was assessed by measuring TBARS formation. The data are
shown as the fold change of mRNA induction compared with Wt chow mice. The P value was measured between Wt and hCYP2E1
under iG alcohol feeding; the data were shown as mean = SEM; *P < 0.05. Abbreviations: EtOH, ethanol; iG, intragastric; TBARS,

thiobarbituric acid reactive substances.

No difference was observed in F4/80" cells in Wt and
hCYP2E1 livers after CCl; administration (Fig. 6C).
Levels of hepatic mRNA of fibrogenic genes, such as o-
SMA and TIMP1, were more elevated in hCYP2E1
mice in response to CCly compared to Wt mice, while
hepatic mRNA levels of Collal and TGF-$1 genes
were elevated equally (Fig. 6D).

HEPATIC INJURY WAS NOT
AFFECTED IN hCYP2E1 MICE
AFTER BDL INJURY

To investigate whether human Cyp2el affects cho-
lestatic hepatic injury, 14-day BDL and sham surgery
were performed in Wt and hCYP2E1 mice. Hepatic
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injury was equal in Wt and hCYP2E1 after BDL, as
reflected by increased serum ALT and alkaline phos-
phatase levels (Fig. 7A). Expressions of human and
mouse Cyp2el were down-regulated at both protein
and mRNA levels after BDL (Fig. 7B). Liver fibrosis
as assessed by Sirius Red staining showed no difference
between Wt and hCYP2E1 mice (Fig. 7C). Addition-
ally, no changes in hepatic mRNA level of fibrogenic
genes (0-SMA, Collal, and TIMP1) were found in
hCYP2E1 compared to Wt mice (Fig. 7D).

Discussion

We compared the contribution of mouse and

human CYP2E1 in three models of liver fibrosis:
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alcoholic liver fibrosis by intragastric alcohol feeding
plus multiple binges, hepatotoxin-induced liver fibrosis
by CCly administration, and biliary fibrosis after 14
days of BDL. The CYP2E1 enzyme played different
roles in the different models. Both mouse and human
CYP2E1 were induced by alcohol consumption, but
the hCYP2E1 mice had increased CYP2E1 protein
levels, lipid peroxidation, oxidative stress, inflamma-
tion, and development of liver fibrosis. Although CCly
administration inhibited hepatic CYP2E1 expression
as reported,?") greater fibrosis was generated in the
hCYP2E1 mice than in the Wt littermates but with
equal levels of hepatic inflammation. During BDL-
induced cholestatic liver injury, the mouse and human
CYP2E1s did not change the development of fibrosis.

Previous liver fibrosis studies in mice relied on the
murine CYP2E1 enzyme, but human CYP2E1 has
distinctive enzymatic activity on several substrates,
such as chlorzoxazone,?”*” p-nitrophenol,®” and
FFAs.®" During alcohol consumption, CYP2E1
expression is induced by acetone, which is a toxic
metabolite from ethanol and stabilizes the CYP2E1
protein.®”) Indeed, we observed up-regulation of the
CYP2E1 protein but not mRNA from the alcohol-
consuming mice (Fig. 1C,D). Furthermore, hCYP2E1
mice had greater CYP2E1 induction by ethanol than
their Wt littermates at the protein level (Fig. 1C),
although the mRNA expression level of human
CYP2E1 was higher than mouse Cyp2el at the basal
level (Supporting Fig. S1). Human CYP2E1 has been
reported with higher enzymatic activity to alcohol than
mice Cyp2e1.5%%® In agreement with a previous
report, we observed a higher level of liver injury in the
alcohol-treated hCYP2E1 mice indicated by higher
serum ALT level (Fig. 1A), higher ethanol metabolism
rate (Fig. 1B), and increased lipid peroxidation within
hepatocytes (Fig. 3A). Furthermore, increased ethanol
metabolism by hCYP2E1 did not affect the expression
of Adh genes, which are enzymes that also oxidize eth-
anol to acetaldehyde.

The correlation between CYP2E1 activity and alco-
holic steatohepatitis has been controversial. This might
be due to different alcoholic mouse models applied by
different groups or by a compensatory increase of other
cytochrome P450s in the CYP2E1 knockout mouse.
For example, Kono et al.®” reported that CYP2E1
did not contribute to alcohol-induced early hepatic
steatosis, inflammation, and necrosis after 4 weeks of
intragastric alcohol feeding by comparing Wt and
Cyp2el knockout mice. In contrast, Cederbaum and
colleagues®® demonstrated decreased liver injury in
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Cyp2el knockout mice during alcohol consumption by
using the Lieber—Dicarli alcohol feeding method for 3
weeks. Here, we used intragastric alcohol feeding plus
weekly binges for 8 weeks to directly compare the role
of murine and human CYP2E1, and we observed
more severe inflammation and fibrosis in hCYP2E1
mice. Hepatic injury correlated with the level of
CYP2E1 induction and ROS production (Figs. (1 and
3)), but CYP2E1l expression and ROS correlated
inversely with hepatic steatosis (Fig. 4). The reduced
hepatic steatosis was associated with reduced expres-
sion of de novo lipogenesis genes, such as Srebp-lc,
Acca, and PPARy (Fig. 4B).

The contribution of ROS to the development of
alcoholic steatosis is complex as increased oxidative
stress during alcohol consumption regulates multiple
signaling pathways, which play opposing roles in lipo-
genesis. Knocking out Cyp2el reduces alcohol-induced
hepatic oxidative stress and prevents development of
alcoholic steatosis,®® and administration of antioxi-
dants could ameliorate alcoholic steatosis.*” In con-
trast to previous reports, Chen et al.*Y’ demonstrated
that depletion of glutathione promotes ROS accumu-
lation during alcohol consumption but protects the
liver from alcoholic steatosis. Increased ROS promotes
phosphorylation of 5 AMPK, which becomes acti-
vated and promotes phosphorylation and inactivation
of Accor (pAcca).*? In our study, up-regulation of
AMPK and phosphorylated AMPK were detected
after alcohol consumption in both Wt and hCYP2E1
liver to a similar level (Fig. 5A). In agreement with
this observation, the phosphorylation of Ser79 at Acco
showed no significant difference between Wt and
hCYP2E1 liver (Fig. 5A). Instead of pAcca, total
Acca was significantly increased in the Wt alcohol
group compared to the hCYP2E1 mice, and this was
consistent with the higher Acca mRNA expression in
the Wt mice (Fig. 4B). As a defensive mechanism,
increased ROS promotes nuclear translocation of Nrf2
by degrading the cytoplasmic Keap1-Nrf2.“® Nrf2
binds to antioxidant response elements, causing tran-
scription of antioxidant genes, such as superoxide dis-
mutases, peroxiredoxins, sulfiredoxin, and glutathione
reductase.*” Although the Nrf2 mRNA level was
increased to a similar level after alcohol consumption
in Wt and hCYP2E1 (Fig. 5C), Nrf2 nuclear localiza-
tion and up-regulation of Nrf2 direct-target genes was
higher in the hCYP2E1 liver (Fig. 5B,C). Our results
are consistent with studies demonstrating that Nrf2
nuclearization results in inhibition of Acca transcrip-
tion and Nrf2 knockout mice or Nrf2 inhibitor results
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in reduced steatosis in nonalcoholic steatohepatitis
rodent models.*”

Higher Acc expression in the Wt mice may contrib-
ute to the excessive production of FFAs in liver (Fig.
4C). The end product of de novo lipogenesis is palmitic
acid (C16:0), and elongase adds two more carbons to
produce stearic acid (C18:0). Stearoyl-CoA desaturase
converts stearic acid into oleic acid (C18:1). These
three fatty acids comprise the majority of FFAs that

enter an active metabolic pool for DAG, TAG, and
CE formation.®” Within alcoholic liver, TAG con-
tributed more than 90% of the glycerolipids within
both Wt and hCYP2E1 mice (Fig. 4F). In Wt livers,
the TAG content increased ~60-fold, while DAG
and CE were increased 2.2-fold and 1.6-fold, respec-
tively (Fig. 4F). This suggests that alcoholic steatosis
mainly resulted from the accumulation of TAG and
that the driving force for reduced steatosis within
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hCYP2E1 mice was due to reduced TAG formation.
Interestingly, the serum TAG was not changed
between Wt and hCYP2E1 mice after alcohol con-
sumption (Supporting Fig. S1), and the body weight
and liver were not significantly affected by hCYP2E1
(Supporting Fig. S1). The TAG content profile indi-
cated that most C48, C50, C52, and C54 species were
significantly reduced within hCYP2E1 liver compared
to Wt liver, and especially the TAGs containing unsat-
urated fatty acids, including C48:3, C50:4, C50:5,
C52:5, C54:3, C54:4, C54:5, and C54:6, had the great-
est reduction (Fig. 4E). These TAG species are mainly
composed of essential PUFAs, like linoleic acid (18:2
linoleic acid), AA (20:4 AA), eicosapentaenoic acid
(20:5 eicosapentaenoic acid), and DHA (22:6 DHA).
These w-3 and w-6 fatty acids cannot be synthesized
by mammalian cells, and the only source for these
PUFAs is from diet. Because in the intragastric alcohol
teeding model the mice passively consumed the same
liquid food within both groups, we expected that there
would be more PUFAs oxidized within hCYP2E1 liver
in the more oxidative environment. Indeed, eicosanoids,
more specifically PGD,, PGE,, and thromboxane B2,
were increased in the hCYP2E1 liver (Fig. 2C). These
PGs are derived from AA and are produced enzymati-
cally involving cycloox(ygenase 1- and cyclooxygenase 2-
dependent pathways.“*® Higher CYP2E1 activity
contributes to @-1 hydroxylation of AA after chronic
alcohol consumg;tion and is responsible for the decrease
of AA content.'%***? Our study demonstrated higher
metabolism of AA by human than mouse CYP2E1,
which would contribute to the increased proinflamma-
tory AA metabolites in hCYP2E1 liver.

Consistent with previous reports, we observed
decreased CYP2E1 mRNA and protein after CCly
administration (Fig. 6B). CYP2E1 is highly expressed
within the hepatocytes located around the pericentral
zone.®® Therefore, CCly-induced injury and cell
death might occur in the hepatocytes with high expres-
sion of CYP2E1, further causing reduced CYP2E1
mRNA in the liver. Similarly, we observed reduced
CYP2E1 protein and mRNA within the mouse liver
after BDL (Fig. 7B), consistent with previous reports
of reduced CYP2E1 mRNA expression in the liver of
patients with cholestatic diseases.*® However, because
CYP2E1 does not participate in biliary fibrosis, the
two different CYP2E1s have no effect on the pheno-
type of this model.

The present study demonstrates that CYP2E1
played different roles in varied experimental liver fibro-
sis models. Most dramatically, alcoholic liver disease
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had more severe ROS, inflammation, and fibrosis but
less steatosis in the hCYP2E1 mice. Future studies
on different types of liver injury may benefit by using
hCYP2E1 mice to more closely reflect human
biochemistry.

Acknowledgment: We thank Karin Diggle for her
excellent technical support.
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