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A novel coronavirus, named COVID-19, has become one of the most prevalent and severe
infectious diseases in human history. Currently, there are only very few vaccines and
therapeutic drugs against COVID-19, and their efficacies are yet to be tested. Drug
repurposing aims to explore new applications of approved drugs, which can significantly
reduce time and cost compared with de novo drug discovery. In this study, we built a
virus-drug dataset, which included 34 viruses, 210 drugs, and 437 confirmed related
virus-drug pairs from existing literature. Besides, we developed an Indicator Regularized
non-negative Matrix Factorization (IRNMF) method, which introduced the indicator matrix
and Karush-Kuhn-Tucker condition into the non-negative matrix factorization algorithm.
According to the 5-fold cross-validation on the virus-drug dataset, the performance of
IRNMF was better than other methods, and its Area Under receiver operating
characteristic Curve (AUC) value was 0.8127. Additionally, we analyzed the case on
COVID-19 infection, and our results suggested that the IRNMF algorithm could prioritize
unknown virus-drug associations.

Keywords: COVID-19, drug repurposing, non-negative matrix factorization, semi-supervised learning,
biological networks
INTRODUCTION

Human coronaviruses (HCoVs) are a large family of enveloped, single-stranded, and positive-sense
RNA viruses belonging to the subfamily orthocoronavirinae. They include a-coronavirus, b-
coronavirus, g-coronavirus, and d-coronavirus (1). Commonly, the a-coronavirus and the b-
coronavirus can only infect mammals, particularly humans (2). Besides, the spread of severe acute
respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus
(MERS-CoV) in the last 2 decades has brought considerable risks to human life and caused
substantial economic losses worldwide (3). At the end of 2019, another new pathogenic human
coronavirus was named COVID-19, because of its long incubation period, which caused the
infection to spread rapidly to all regions globally (4–7). According to reports through media, the
total number of people infected with COVID-19 globally has reached 60 million and the number of
deaths has exceeded the 1,500,000 marks. Many researches have focused on the formation,
treatment, and vaccine of the COVID-19 (8–16). On October 22, 2020, Remdesivir has become
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the first officially approved COVID-19 treatment by the U.S
Food and Drug Administration (FDA). However, high medical
expenses prompt researchers to find alternative drugs with the
same or similar efficacy as Remdesivir.

Drug repurposing aims to explore new treatment strategies to
treat diseases based on the approved drugs that are outside the
scope of the original medical indication. It has gained
considerable attention that drug repurposing can significantly
reduce time and labor costs than de novo drug development (17–
19). For instance, the use of an anti-viral drug, like Ribavirin,
could be used to cure infectious diseases such as Hepatitis C
Virus (HCV), respiratory syncytial virus (RSV), and influenza B
virus (IBV) (20). Lim et al. proposed Ribavirin could be the
potential drugs for COVID-19 based on the clinical treatment
(21). Muralidharan et al. discovered that a combination of three
drugs was more effective than the use of any single drug alone
against COVID-19 with the binding energy increasing nearly to
100% using sequential docking (22). This evidenced that existing
drugs can be repositioned and used as a potential molecular
target for the treatment of COVID-19. However, so far, only a
few databases collate the potential related-drug, with the rapidly
growing researches on the repositioning of drugs to treat
COVID-19.

The success of traditional computational methods of
drug repurposing relies on protein targets, sequences, and
other biological data. However, the novel computational
methods focus on the relationship between drug-targets
using network approaches are dependent on the development
of high-throughput technologies. According to the respective
experimental validation, there is increasing evidence in
different studies indicating that these novel computational
methods are meaningful and useful. From the PPI network,
Zhou et al. combined the virus-related proteins and the drugs
that target the corresponding proteins to construct a network-
based method aimed at identifying potential drugs against
COVID-19 (23). Elsewhere, Gysi et al. developed multiple
network strategies for specific drugs with potential efficacy
against COVID-19 and utilized three rank aggregation
methods (Borda’s count, the Dowdall method, and CRank)
to assess the selected drugs and gave the final drug ranking
(24). Consequently, Wang et al. employed hierarchical virtual
screening methods to analyze the structure of COVID-19 and
used the MM-PBSA-WSAS method that calculates the binding
energy to obtain the prospective inhibitors of COVID-19 (25).
Therefore, research to identify and develop more effective
drugs to prevent and treat COVID-19 is urgently needed
(26). Also, it is imperative to use novel computational
methods to accelerate the corresponding research about the
large-scale test to show the association of different drugs with
COVID-19.

In our study, we built a novel virus-drug dataset and
proposed the indicator regularized non-negative matrix
factorization (IRNMF) method to predict the potential drugs
for COVID-19, which is the first time to apply such algorithm
in this area. The FDA approved anti-viral drugs against viruses
like the a-coronavirus, b-coronavirus, influenza virus, and
Frontiers in Immunology | www.frontiersin.org 2
HIV was adopted to construct the virus-drug association
dataset, which comprised of 34 viruses, 210 drugs, and 437
confirmed related virus-drug pairs. We used the virus-drug
dataset to research the relationship between the existing drugs
and COVID-19. Several studies have outlined that the
association relationship between miRNA or lncRNA and
biological processes or diseases could effectively be predicted
by the non-negative matrix factorization (NMF) method (27,
28). Based on this framework, we proposed the IRNMF
method to investigate the relationship between the existing
drugs and COVID-19. Firstly, we calculated the drug and virus
similarities extracted from the molecular drug information
and the sequenced information on viruses. Secondly, we
constructed a virus-drug interaction network based on the
virus-drug association, the drug similarity matrix, and the
virus similarity matrix. Thirdly, we introduced the indicator
matrix into the non-negative matrix factorization algorithm to
constrain the final association matrix, which could select the
optimal related drug of COVID-19. Five-fold cross-validation
(CV) was used to evaluate the IRNMF performance and its
AUC value was 0.8127. Consequently, this IRNMF
performance AUC value was compared to that of other
methods: NMF (0.7968), IMC (0.7221), CMF (0.6470),
and RLSMDA (0.7384). The obtained prediction results
indicated that the proposed method owed the optimal
performance in predicting the virus-drug association with
the treatment of COVID-19. Moreover, we analyzed the
cases of COVID-19 and MERS-CoV infections, and our
results suggested that the IRNMF method could improve the
efficiency of the unknown virus-drug associations towards the
treatment of COVID-19.
METHODS

To detect the possible drugs against COVID-19, this study
proposed a novel method called IRNMF, which includes three
steps. First, we calculated the molecular similarity of the drugs
and that of viruses. Next, the virus-drug interaction network
based on the virus-drug association, drug, and virus similarity
were constructed. Lastly, to reveal the potential drugs against
COVID-19, we performed IRNMF. Figure 1 shows the IRNMF
method framework.

Virus-Drug Datasets Collection
It is beneficial to provide novel strategies for the development of
treatments against COVID-19 by conducting research on a
variety of viruses and examining their corresponding drug
targets. In terms of the virus collection, we preferred human
infectious viruses, like coronavirus, RNA viruses, DNA viruses,
and HIV. In the drug collection, original drugs against related
viruses and broad-spectrum anti-viral drugs were used as
therapeutic effects in treating viruses. About the above
discussions, we constructed a virus-drug dataset, that included
34 viruses, 210 drugs, and 437 confirmed virus-drug pairs, as
illustrated in Table 1.
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Virus Similarity Measure
Individual virus particles of the same strain of viruses have
genetic sequences that are very similar, but not completely
identical and this resemblance can be obtained by comparing
Frontiers in Immunology | www.frontiersin.org 3
different virus sequenced sequences. Multiple Alignment using
Fast Fourier Transform (MAFFT) algorithm, which is a multiple
sequence alignment program, is used for molecular biological
studies. The MAFFT algorithm has been iteratively upgraded
FIGURE 1 | The framework of the IRNMF.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Tang et al. Indicator Regularized Non-Negative Matrix Factorization
and has formed a complete system to help realize different
biological information after performing a similarity analysis.
This system has different methods like progressive, iterative
refinement, and structural alignment for RNAs (29, 30). Here,
we use the FFT-NS-1 algorithm to calculate the similarities of the
viruses, which are appropriate for medium-scale alignments.

Drug Similarity Measure
The existing drug similarity measurements were addressed based
on the different overlap of viruses-related drugs. As shown in
eq. (1), we adopted the Tanimoto coefficient (TC) to calculate
the similarity between all drug pairs (31). This was about the
molecular structure of drugs, which was downloaded from the
DrugBank website.

D(A,B) =
SC

SA + SB − SC
(1)

SA/SB belong to the value of drug A/B-related targets, genes
and structures. SC is the value of the Common parts between A
and B. D (A, B) is the value of Tanimoto coefficient, which ranges
from 0 to 1. The larger of the value, the more similar of the two
drugs’ structure are. This calculation depended on Open
Babel V2.3.1.

Indicator Regularized Non-Negative
Matrix Factorization
Several studies have focused on the matrix calculation found in
biological analysis (32–34). The NMF method decomposes the
origin matrix to a product of two non-negative matrices (35, 36).
It could be used to convert the matrix Y of a defined virus-drug
matrix Y ϵ Rn×m, to two matrices: U ϵ Rn×k and V ϵ Rm×k (k <<
min (n,m))

Y ≈ UVT (2)

Based on the NMF method, we introduced the indicator
matrix into the NMF to construct the IRNMF algorithm to
repurpose virus-related drugs. This indicator matrix is used to
ensure that both products of U and V are conversant with the
original matrix. This intervention aims at effectively avoiding any
noisy information, which only contains two values, either 0 or 1,
whereby, 0 means no value at this position of the matrix, and 1
means there is a value at this position of the matrix.

L = min
U ,V

1
2o

m

i=1
o
n

j=1
Iij(Yij − UT

i Vj)
2

      + a
2 Tr(U

TQdU) + b
2 Tr(V

TQvV)

      + l1
2 jjU jj2F+ l2

2 jjVjj2F   s : t :  U ≥ 0,V ≥ 0

(3)

Where I represent the indicator matrix, a, b, l1, and l2 are
the regularization coefficients, Ui and Vj are the ith and jth rows
Frontiers in Immunology | www.frontiersin.org 4
of U and V respectively, and Sif and Sjq are the ith and jth rows of
Sd and Svb respectively, which belongs to drug similarity and
virus similarity matrices respectively. The scaling factor ||‧||F is
the Frobenius norm. Tr (.) is the trace value of the matrix; Qd =
Dd –S

d and Qv = Dv –S
v are the Laplacian similarity matrix for Sd

and Sv; where the values of Dd and Dv represents the diagonal
matrices of Sd and Sv matrices, respectively (37).

L = I2

2 Tr(YY
T) − I2Tr(YUTV) + I2

2 Tr(U
TVVTU)

          + a
2 Tr(U

TQdU) + b
2 Tr(V

TQvV)

          + l1
2 jjU jj2F+ l2

2 jjVjj2F
          +Tr(dUT ) + Tr(ϵVT )

(4)

According to the corresponding Lagrange function, d and ϵ
belongs to the matrix of the Lagrange factor, which are defined as
d =[dik] and ϵ = [ϵjk]. Hence, it is easy to obtain the partial
derivatives of the Eq. (4) using the values of U and V. We
adopted the Karush-Kuhn-Tucker (KKT) condition to resolve
the Lagrange optimization process. Defined as dikUik = 0 and ϵjk
Vjk = 0, and then we could get the regularized non-negative
matrices U and V, which represented drug and virus matrices,
respectively.

uik
I2VY+aSdVð Þik

I2VVTU+aDdV+l1U+dð Þik ! uik

vjk
I2UYT+bSvVð Þjk

I2UUTV+bDvV+l2V+ϵð Þ ! vjk

(5)

According to the Eq. (5), we could get the corresponding
virus-drug association matrix by using the formula Y* = UTV,
and then selecting the optimal virus-related drugs based on the
matrix Y*.
RESULTS AND DISCUSSION

Performance Evaluation Metrics
To evaluate the performance of IRNMF and other methods with
5-fold CV (38). The virus-drug datasets were randomly divided
into five subsets with equal sizes. In the experiment, four subsets
were selected to train the model, respectively, and the last subset
was used to evaluate the performance of the model. after the
process was repeated for 5 times repeated, all the virus-drug of
association scores have been estimated and sorted once.

Subsequently, we set a threshold s. Here, if the association
score was higher than s, it was concluded that the prediction of
the positive sample value was correct. However, if the association
score was lower than s, it meant that the prediction of the
negative sample was correct. Consequently, this study adopted
the receiver operating characteristic (ROC) curve to assess and
compare these methods. The true positive rate (TPR) and the
false positive rate (FPR) were compiled as follow:

TPR =
TP

TP + FN
, FPR =

FP
TN + FP

(6)
TABLE 1 | The virus-drug dataset.

Datasets Virus Drug Virus-drug pairs

Numbers 34 210 437
January 2021 | Volume 11 | Article 603615
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TP and TN are the numbers of true positive and true negative
samples that the method could predict whereas FP and FN are
the numbers of false-positive and false-negative samples that the
method could predict. Lastly, the area under the ROC curve
(AUC) was used to calculate the performance of the different
corresponding methods.

Parameter of the IRNMF
In this work, the optimal parameters of the IRNMF method were
determined using the following values: k is the value of low rank,
which was set at 18. For a, b, l1, and l2, the values belonged to
the regularization coefficients. To simplify this method, we
assumed that a = b = 0.8 and l1 = l2 = 0.1. The value of
iteration was set at 1500.

Comparison With Other Methods
In this study, we adopted the IRNMF algorithm to select
potential drug targets against COVID-19. Here, the database
did not correlate the corresponding drug targets and COVID-19
and the predicted related drugs with other drugs and viruses. To
confirm the performance of the IRNMF, we compared four
algorithms based on the virus-drug network association
prediction using different methods such as non-negative matrix
factorization (NMF), Notably, all the above methods belonged to
the semi-supervised procedures. Luo et al. adopted the NMF
method and predicted small molecule-miRNA associations (28).
Natarajan et al. proposed that the IMC method predicts gene-
disease associations (39). The IMC method combines multiple
types of features to learn latent factors, and it can be applied to
the novel associations and it just needs the existing associations
networks rather than the traditional matrix completions.
Elsewhere, the CMF method was developed to predict the
drug-disease association model (40). This method joins
multiple matrices, which are factorized using the original
interaction matrices, and represents the association of different
classes, which helps to understand the potential characteristics of
different relationships. Additionally, Chen et al. developed the
RLSMDA algorithm to study the correlation between miRNAs
and diseases (41). To obtain the likelihood of the relationship of
miRNAs and diseases, this algorithm designed a continuous
classification function using regularized least squares. Of note,
before the experiments were performed in the above-stated
comparison methods, the optimal parameter settings were
adjusted accordingly.

Here, the proposed IRNMF method was compared with
NMF, IMC, CMF, and RLSMDA methods through 5-fold CV.
As illustrated in Figure 2, the IRNMF ROC curve value was
above that of NMF, IMC, CMF, and RLSMDA in most of the
experiments. The AUC values of IRNMF, NMF, IMC, CMF, and
RLSMDA were 0.8127, 0.7968, 0.7221, 0.6470, and 0.7384,
respectively. Notably, the AUC value of the IRNMF algorithm
increased on average than the other four methods were 2%,
12.5%, 25.6%, and 10.1%, respectively. It demonstrated that the
IRNMF mastered more knowledge about the similarity of viruses
and that of drugs than the other methods, particularly, it showed
a better prediction performance than NMF.
Frontiers in Immunology | www.frontiersin.org 5
We also selected the most frequent potential drugs for
COVID -19 through the IRNMF and the other 4 algorithms.
As was the Table 2 shown, Ribavirin, Nitazoxanide, Amantadine,
N4-Hydroxycytidine, Chloroquine, and Mizoribine were
predicted by all methods. Camostat, Niclosamide, Favipiravir,
Zanamivir, Artesunate, Umifenovir, and Gemcitabine appeared
3–4 times. Particularly, the 13 predicted drugs belonged to the
top16 potential drugs by the IRNMF method were the same as
the most frequent potential drugs, and the other drugs top16
drugs selected by the IRNMF method have been predicted at
least once by the four methods. The result showed that the top-
ranked predictive drugs were more important than the lower-
ranked predictive drugs and the valuable drugs were more
possible to selected by the other methods. Therefore, we attest
that the IRNMF algorithm is helpful for the prediction of drugs
against COVID-19.
FIGURE 2 | The comparison of methods. IRNMFVDA, NMF, IMCVDA,
CMFVDA, RLSMDAVDA of ROC curve and AUCs value based on 5-fold CV.
TABLE 2 | The most frequent potential drugs for COVID -19 by the five methods.

IRNMF Drugs Statistics

1 Ribavirin 5
2 Amantadine 5
3 Chloroquine 5
4 Nitazoxanide 5
5 N4-Hydroxycytidine 5
6 Camostat 4
7 Niclosamide 4
8 Berberine 4
9 Favipiravir 3
10 Zanamivir 3
11 Artemisinin 3
12 Umifenovir 3
13 Remdesivir 3
14 Gemcitabine 3
January 2021 | Volume 11 | Arti
The statistics based on the Top16 predicted drugs by the five methods. The bold drugs
represent the predicted drugs by the IRNMF method.
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The Performance Influence of
IRNMF Parameter
Toassess the impact of IRNMFperformanceparameters, this study,
assumed that the 4 parameters of the regularization coefficients
were as follows; a = b and l1 = l2, and then the comparative
experiments were performed by adjusting these two parameters.
As shown inFigure3, when the value ofa/bwas in the rangeof 0.1–
0.4, the IRNMF performance could be improved if the value ofa/b
increased. However, when the value of a/b was fixed, the IRNMF
performance was weakened when the value of l increased.
When the value of a/b was in the range of 0.5-1.0, the IRNMF
performance was stable between 0.8 and 0.81, and the performance
of IRNMF fluctuationswasmaintained at a small range.Our results
showed that IRNMF had a stable generalization performance.
IRNMF Identified of Potential Drug
for COVID-19
In this study, we analyzed top16 predicted potential drugs against
COVID-19. As illustrated in Figure 4. drugs such as Ribavirin,
N4-Hydroxycytidine (NHC), Remdesivir, and Favipiravir, belong
to similar nucleoside analogs and they can bind to the RNA
dependent RNA polymerase (RdRps) enzyme which is crucial
during the life cycle of RNA viruses. Ribavirin, an anti-viral drug is
used to treat infections caused by influenza viruses and HCV.
Hung et al. (42) recommended that the clinical trials, among the
127 patients during the randomized control trial, on the joint use
of interferon beta-1b, lopinavir-ritonavir, and Ribavirin revealed
that the joint use of these anti-viral drugs was safer and more
effective than single medication used for the treatment of COVID-
19. Elsewhere, the N4-Hydroxycytidine (NHC) has been
demonstrated that it could treat infections caused by the
influenza virus, Ebola, and SARS-CoV. Moreover, Sheahan et al.
(43) noted that it could inhibit clinical isolates of COVID-19
infection through the replication of both Vero and Calu-3 cells.
This study resulted in a dose-dependent reduction on the
following; IC50 of 0.3 mM and CC50 >10mM in Vero cells, IC50
Frontiers in Immunology | www.frontiersin.org 6
of 0.08 mM in virus titers, and IC50 of 0.09 mM in viral genomic
RNA. Remdesivir which has been developed for the treatment of
the Ebola virus, has been of interest after it showed the capability
of metabolizing to Remdesivir triphosphate which competes for
incorporation through RdRps and the fact that it interferes with
the viral RNA replication of COVID-19 (13). Hillaker et al.
conducted a study that showed that Remdesivir has a
therapeutic effect on COVID-19 patients who stayed and
received treatment in a mixed medical intensive care unit of the
hospital (44). What’s more, Remdesivir has been recommended
the first therapeutic drug for COVID-19 by the FDA. Favipiravir is
an anti-viral drug, which is shown to treat the infections caused by
the H1N1, H5N1, and Ebola viruses. For instance, Cai et al.
confirmed that among the patients with COVID-19, before and
after conducting an open-labeled controlled study on them, the
administration of Favipiravir could significantly improve their
state in terms of disease progression and viral clearance (45).
Amantadine has been used for many years as one of the first-
choice anti-viral drugs against influenza A viruses. Some studies
have also proved that it could enter and block the viroporin
channel to protect the cell cytoplasm from the released viral nuclei
of coronaviruses like the SARS-CoV. Araújo et al. reported that if a
patient takes 100mg of amantadine twice a day for 14 days his or
her clinical status could improve (46). Umifenovir, is also widely
used in the treatment of influenza viruses such as RSV, and SARS-
CoV. A randomized clinical trial by Chen et al. confirmed that a 7-
day recovery rate was observed after using Umifenovir. Here, out
of 120 adult patients, 62 of them recovered from COVID-19 (47).

Oseltamivir, an orally administered neuraminidase (NA)
inhibitor glycoprotein is majorly prescribed for persons with
infections caused by influenza A and B viruses. Kongsaengdao
et al. suggested that the combined use of oseltamivir, chloroquine,
and Favipiravir could be beneficial in the treatment against
COVID-19, and the clinical trial of this study showed an EC50
of 61.88 mMand CC50 > 400 mM (48). Zanamivir, a neuraminidase
inhibitor that disrupts viral exit from infected cells and has known
anti-viral activity that inhibits influenza viruses. Hall et al. found
FIGURE 3 | The performance influence of IRNMF parameter.
January 2021 | Volume 11 | Article 603615
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evidence that Zanamivir could be the 3CL protease proteinase
inhibitor against COVID-19 infection using silicon docking
models (49). Clinical trials on Nitazoxanide, which belong to the
anti-viral prodrug, showed that this drug exhibits an in vitro
activity against MERS-CoV and SARS-CoV infections, and
therefore it could be used as a potential drug for the treatment of
COVID-19 patients (50). Artemisinin is a potent anti-malarial
drug. Sardar et al. has established that it is effective for the
treatment of both COVID-19 and malaria co-infections (51).
Hence, it is imperative to validate the role Artemisinin plays in
the treatment of COVID-19. Artesunate- amodiaquine (AS-AQ), is
also an antimalarial drug. Bae et al. suggested that it is highly
effective against COVID-19 infection that develops in human lung
epithelial cells (52). Berberine, an isoquinoline alkaloid, inhibits
DNA synthesis and reverse transcriptase activity. In several studies,
it has proved that it has an anti-viral activity against HSV, RSV,
SARS-CoV, and HIV viruses (53). A certain study by Narkhede
et al. purported that this alkaloid has favorable drug-like properties
and it could be the potential drug against COVID-19 since it
inhibits viral proteases characterized by the lowest binding energy
(54). Ko et al. proved that Niclosamide, an anthelminthic drug
could be the potential drug against COVD-19, since it blocks the
endocytosis of COVID-19 and prevent its autophagy by inhibiting
the S-Phase kinase-associated protein 2 (55). Camostat, is a
synthetic serine protease inhibitor, which inhibits TMPRSS2 is
also a potential drug against SARS-CoV and MERS-CoV
Frontiers in Immunology | www.frontiersin.org 7
infections. Uno et al. recommended that if a patient takes a daily
dosage of 600mg it could effectively reduce the infections caused by
COVID-19 (56). Therefore, there is a need for scientists to perform
more experiments to validate this potential drug. Mizoribine is an
immunosuppressive drug, and its research shows that it could
inhibit the replication of SARS-CoV and MERS-CoV infections,
hence it could also be a potential drug against COVID-19.

In addition, Chloroquine, an antimalarial drug, is used in the
treatment of several other diseases. Gao et al. found that
chloroquine could interfere with the general endocytic
trafficking to inhibit both the replication and infection caused
by COVID-19 (57). However, Mehra et al. proposed that
chloroquine could not help patients’ recover when used alone
or with a macrolide (58). Based on these, we don’t recommend
this drug as a clinical treatment option.
CONCLUSION

In conclusion, COVID-19 is becoming one of the most prevalent
and infectious diseases in human history. Existing drugs can be
repositioned and used as a potential molecular target for the
treatment of COVID-19. However, so far, only a few databases
collate the potential related-drug to treat COVID-19. In this
study, we constructed the virus-drug dataset, which included 34
viruses and 210 drugs, which were obtained from 437 confirmed
FIGURE 4 | The predicted Top16 potential drugs by IRNMF. The dark color indicated the predicted drug has been validated. The light color indicated the predicted
drug has not been validated.
January 2021 | Volume 11 | Article 603615
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cases on the related pairs about the virus and drug. Besides, we
developed the indicator regularized non-negative matrix
factorization (IRNMF) algorithm to predict the potential drug
against COVID-19. In this IRNMF model, the known virus-drug
associations, the virus similarity networks, and the drug
similarity network were merged to calculate the prediction
score of each virus-drug pair. According to the 5-cross VDA,
the AUC value of IRNMF is 0.8127. Comparing this value with
that of NMF (0.7968), IMC (0.7221), CMF (0.6470), and
RSLMDA (0.7384), this proposed method achieved better
performance. The results suggest that the IRNMF algorithm
can deduce the unknown virus-drug associations.

In addition, IRNMF is restricted with the scale of the virus-drug
dataset, the predicted potential drugs might not be totally accurate.
Therefore, according to the corresponding drug and virus database,
our future work is to enlarge the virus-drug dataset of COVID-19.
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