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A deep learning based approach 
for prediction of Chlamydomonas 
reinhardtii phosphorylation sites
Niraj Thapa1, Meenal Chaudhari1, Anthony A. Iannetta2, Clarence White1, Kaushik Roy3, 
Robert H. Newman4, Leslie M. Hicks2 & Dukka B. KC5*

Protein phosphorylation, which is one of the most important post-translational modifications (PTMs), 
is involved in regulating myriad cellular processes. Herein, we present a novel deep learning based 
approach for organism-specific protein phosphorylation site prediction in Chlamydomonas reinhardtii, 
a model algal phototroph. An ensemble model combining convolutional neural networks and long 
short-term memory (LSTM) achieves the best performance in predicting phosphorylation sites in 
C. reinhardtii. Deemed Chlamy-EnPhosSite, the measured best AUC and MCC are 0.90 and 0.64 
respectively for a combined dataset of serine (S) and threonine (T) in independent testing higher than 
those measures for other predictors. When applied to the entire C. reinhardtii proteome (totaling 
1,809,304 S and T sites), Chlamy-EnPhosSite yielded 499,411 phosphorylated sites with a cut-off 
value of 0.5 and 237,949 phosphorylated sites with a cut-off value of 0.7. These predictions were 
compared to an experimental dataset of phosphosites identified by liquid chromatography-tandem 
mass spectrometry (LC–MS/MS) in a blinded study and approximately 89.69% of 2,663 C. reinhardtii S 
and T phosphorylation sites were successfully predicted by Chlamy-EnPhosSite at a probability cut-off 
of 0.5 and 76.83% of sites were successfully identified at a more stringent 0.7 cut-off. Interestingly, 
Chlamy-EnPhosSite also successfully predicted experimentally confirmed phosphorylation sites 
in a protein sequence (e.g., RPS6 S245) which did not appear in the training dataset, highlighting 
prediction accuracy and the power of leveraging predictions to identify biologically relevant PTM 
sites. These results demonstrate that our method represents a robust and complementary technique 
for high-throughput phosphorylation site prediction in C. reinhardtii. It has potential to serve as a 
useful tool to the community. Chlamy-EnPhosSite will contribute to the understanding of how protein 
phosphorylation influences various biological processes in this important model microalga.

Phosphorylation is one of the most widely studied post-translational modifications (PTMs) and plays a major role 
in signaling in myriad biological pathways. Experimental approaches for the detection of protein phosphorylation 
include liquid chromatography-tandem mass spectrometry (LC–MS/MS)1,2, radioactive chemical labeling3, and 
immunological detection, such as chromatin immunoprecipitation4 and western blotting5. Among these, only 
LC–MS/MS has the ability for large-scale, discovery-based phosphoproteomics but requires enrichment strate-
gies for robust phosphorylation site identification as protein phosphorylation is transient, sub-stoichiometric, 
and can occur on very low abundance proteins. MS-based phosphoproteomics experiments are often costly, 
time-consuming, and labor-intensive. Therefore, computational predictions of phosphorylation sites offer an 
attractive complement to experimental-based approaches.

Machine learning (ML) approaches have been developed for prediction of phosphorylation sites recently6–8. 
These methods use manually extracted features and integrate feature selection or incorporate evolutionary infor-
mation. However, model performance greatly depends on the type of features provided. There is potential for 
biases against features that were not considered or were unknown altogether. Until all features contributing to 
phosphorylation are studied or generated, the true potential of these feature-based ML models remains limited.

Deep learning (DL) models have recently been used to predict various PTMs in proteins. Unlike ML-based 
models, DL architectures do not require manual feature extraction. For instance, MusiteDeep9 is a DL-based 
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predictor that utilizes one-hot encoding and convolutional neural networks (CNN)10 with attention layer, and 
exhibited improved performance compared to previous feature-based models. Recently, DeepPhos11 improved 
upon the performance of MusiteDeep, utilizing a multi-window approach. Both MusiteDeep and DeepPhos 
employ binary encoding, which is static in nature. Our previous DL-based predictors for succinylation12, 
malonylation13, and methylation14 instead utilize embedding15 for encoding, demonstrating significantly 
improved model performance compared to binary encoding.

Although numerous computational tools for phosphorylation site prediction have appeared in recent years, 
most are not organism-specific phosphorylation predictors. Recently, there have been a few organism-specific 
predictors for some model organisms (NetPhosYeast16, PhosPhAt17, PhosTryp18, PhosphoRice19, Rice_Phos-
pho1.020, PreSSFP21). These organism-specific phosphorylation site predictors perform better than general phos-
phorylation site predictors.

Herein, we have focused our phosphosite prediction efforts on the unicellular alga Chlamydomonas rein‑
hardtii, a model organism for studying photosynthesis, chloroplast biology, cell cycle control, and flagellar 
structure and function22–26. Its short generation time, ability to reproduce sexually or asexually, and the ease 
by which it can be genetically manipulated have made C. reinhardtii an attractive model system for genomics 
analysis, evolutionary studies, and biopharmaceutical applications27. Considerable efforts have been focused 
on understanding how its biological processes are influenced by protein post-translational modifications28–32. 
Among these, interest in protein phosphorylation’s role in regulating C. reinhardtii cellular signaling arose with 
early studies detecting 52 phosphorylation sites in the eyespot33 and 126 phosphorylation sites in the flagella34. 
More recently, the phosphoproteome was extensively characterized, identifying 15,862 unique phosphosites with 
numerous phosphoproteins in key biological pathways35. While these studies suggest that protein phosphoryla-
tion plays an important role in regulating many cellular processes in C. reinhardtii, significant gaps still exist in 
our understanding of its phosphoproteome.

In this regard, we developed Chlamy-EnPhosSite, an organism specific DL-based predictor for C. reinhardtii, 
based on an ensemble approach, combining CNN and long short-term memory (LSTM)36 models. The perfor-
mance of our model was benchmarked using independent test sets and demonstrated superior performance 
for prediction of C. reinhardtii phosphorylation sites than feature-based and non-organism specific models. 
In addition, Chlamy-EnPhosSite was also applied to predict novel sites of phosphorylation within the entire C. 
reinhardtii proteome. Our predictions were compared to a dataset of phosphosites32 identified by LC–MS/MS 
in a blinded study. These studies demonstrate that Chlamy-EnPhosSite is able to effectively predict novel sites 
of phosphorylation.

Materials and methods
Dataset.  Phosphorylation sites for our benchmark dataset were identified C. reinhardtii serine (S), threonine 
(T), and tyrosine (Y) phosphorylation sites obtained from Wang et al.35. All phosphorylation sites captured in 
this dataset have been experimentally detected. This dataset was cross-referenced with the Joint Genome Insti-
tute’s Chlamydomonas reinhardtii database v.5.6 (19,523 entries, accessed 02/2020) appended with the NCBI 
chloroplast and mitochondrial databases (chloroplastic-NCBI: BK000554, mitochondrial-NCBI: NC_001638.1, 
77 entries, accessed 02/2020) to obtain complete protein sequences37.

Positive windows were generated with the provided phosphorylated sites in the middle and an equal num-
ber of amino acids upstream and downstream. Any remaining S, T, and Y sites that were not phosphorylated 
in the dataset were used to generate negative windows. In those cases where the phosphosite was located near 
the extreme N- or C-termini of the proteins, pseudo-residues ’-’ were added to the windows to maintain proper 
window size. Duplicates were removed from both the positive and negative datasets. Finally, to generate the 
combined ST dataset, the S and T datasets were combined. Table 1 shows the total number of positive and nega-
tive sites generated.

The positive and negative datasets for S, T, and ST were further divided using an 80:20 ratio to generate the 
training and independent test datasets, respectively. Further independent test was not carried out for Y due to its 
smaller dataset. Due to an imbalance in the datasets, both training and independent test datasets were balanced 
using under-sampling. Under-sampling trims the negative dataset randomly to match the number of positive 
datasets. This is done to prevent any biases in the model that may develop towards positive or negative sites.

Encoding.  Traditional methods generally require manual feature extraction from window sequences, which 
are then fed into classification algorithms, such as ML or DL models. In contrast, our DL methods take window 
sequences directly as an input after the encoding.

MusiteDeep9 utilizes one-hot encoding, which is basically binary encoding for the protein sequences. 
For example, Alanine (A) is represented as 100000000000000000000, Arginine (R) is represented as 

Table 1.   Positive and negative windows for phosphorylation in Chlamydomonas reinhardtii.

Phosphorylation Sites Positive Negative

S 17,732 361,218

T 3,951 213,802

Y 167 73,538

ST 21,683 434,756
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010000000000000000000, and so on. However, PTM classification models such as DeepSuccinylSite12, DL-
Malosite13, and DeepRMethylSite14 implemented an embedded encoding scheme15 with better performance 
metrics than one-hot encoding. In this study, we used an embedding layer for the encoding of protein sequences.

First, the 20 canonical amino acids and one pseudo-residue ’-’ were converted into specific integers ranging 
from 0 to 21. These are the inputs for the embedding layer that lies at the beginning of our DL architecture. 
Initially, the embedding layer contains random weights or values. With subsequent epochs, it learns better vector-
based representations during training. Identities are preserved, with each vectorization being an orthogonal 
representation in another dimension. Unlike static one-hot encoding, embedding is a dynamic encoding. The 
key arguments in the embedding layer are output_dim (size of vector space) and input_length (size of input 
windows). Hence, the output from the embedding layer has dimension input_length × output_dim.

Deep learning models.  CNN10 and LSTM36 were used as base DL models in this study. Likewise, the 
ensemble model38 named Chlamy-EnPhosSite was developed by combining these base DL models to obtain 
better results. A multi-window CNN model named Chlamy-MwPhosSite was also developed that comprises 
multiple CNN models based on different window sizes.

Convolutional neural network (CNN).  The encoded output from the embedding layer is fed into a 2D convolu-
tional layer with 128 filters. Filter size is selected in a way that includes the phosphorylation site in the middle in 
every stride. For example, window size 53 will have a filter size of 27 × 3. The activation function used is ReLU. 
Padding was disabled in this layer to reduce training time without a drop in performance. The dropout layer was 
used to minimize overfitting. Thereafter, a 2D max-pooling layer was used with size 2 × 2. The output was fed 
into the last convolutional layer with 256 filters. Filter size was kept at 3 × 3 with padding enabled for this layer. 
After one more 2D max-pooling layer and flattening, the total features extracted were 6144. These features were 
fed into the dense layer with three hidden layers and the final output layer. SoftMax was used as an activation 
function for the final output layer. The parameter information for the CNN model is given in Table 2. Model 
Checkpoint function was used to extract the best model out of all the epochs based on the validation dataset with 
the highest accuracy and lowest loss.

As mentioned previously by Kingma et al.39, Adam was used as the optimizer for our architecture. Adam 
utilizes adaptive learning rates to measure individual learning rates for each parameter. Since this classification 
is a binary classification problem, binary cross-entropy, which is the measure of uncertainty associated with a 
given distribution, was used as the loss function. The binary cross-entropy is given by:

where y is either 1 for positive or 0 for negative and ŷi is the predicted probability of the site being positive for 
all N points.

Long short‑term memory (LSTM).  The encoded output from the embedding layer was fed into the LSTM layer 
with a dropout of 0.4. The output from two consecutive LSTM layers was then fed into the dense layers with 
two hidden layers. ReLU was used as an activation function for LSTM layers while SoftMax was used for the 
final output layer. Adam was used as an optimizer, as described above. Model Checkpoint function was used to 
extract the best model out of all the epochs based on the validation dataset with the highest accuracy and lowest 
loss. The parameter information for the LSTM model is given in Table 3.
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Table 2.   Parameters description of CNN model with embedding layer.

Parameters Settings

Embedding Output Dimension 21

Learning Rate 0.001

Batch Size 256

Epochs 50

Dropout 0.4

Conv2d_1 filter (filter size) 128 (27 × 3 for window size 53)

MaxPooling2d_1 2 × 2

Conv2d_2 filter (filter size) 256 (3 × 3)

MaxPooling2d_2 2 × 2

Flatten_1 Output = 6144

Dense_1 768

Dense_2 256

Dense_3 64

Output layer activation function Softmax

Checkpointer Best validation accuracy
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Multi‑windows CNN model.  The Multi-windows CNN model, which we have named Chlamy-MwPhosSite, 
merges features extracted by our CNN models for different window sizes. It then feeds the combined features 
into the dense layer, and provides the output. It categorically ends the need to choose one window size for the 
classification, thus strengthening the model. As shown in Fig. 1, Chlamy-MwPhosSite combines features from 
five different CNN models with different window sizes.

Ensemble model.  In this study, the Ensemble model, which we have named Chlamy-EnPhosSite, merges CNN 
and LSTM models using stacking38, as shown in Fig. 2. The stacked ensemble uses a meta-learning algorithm to 
find the best combination of these models. The meta models are trained on the results obtained from CNN and 
LSTM models. In our case, we used neural networks to combine them.

Model evaluation and performance metrics.  In this study, tenfold cross-validation was used to evalu-
ate the performance of the model and to determine its robustness and generalizability. During tenfold cross-
validation, the data are partitioned into ten equal parts. Then, one-part is left out for validation while training 
is performed on the remaining nine parts. This process is repeated until all parts are used for validation. For the 
results of tenfold cross-validation, unless otherwise noted, all performance metrics are reported as the mean 
value ± standard deviation.

Confusion Matrix, Matthew’s Correlation Coefficient (MCC), and Receiver Operating Characteristics (ROC) 
curve were used as performance metrics. The ROC curve is a graphical plot that illustrates the diagnostic abil-
ity of a binary classifier, whereas area under the curve (AUC) represents the degree or measure of separability. 
Since this is a binary classification problem, the confusion matrix size is 2 × 2 composed of true positives (TP), 
true negatives (TN), false positives (FP), and false negatives (FN). Its diagonal elements are true predicted val-
ues. Other metrics calculated using these variables were accuracy, sensitivity (i.e., the true positive rate), and 
specificity (i.e., the true negative rate).

Results
Performance of models trained on non‑organism specific phosphorylation sites.  To compare 
our models with existing phosphorylation site prediction models, we compared the performance of Chlamy-
EnPhosSite and Chlamy-MwPhosSite to that of existing DL-based predictors. For these studies, we used the 
combined ST dataset used during the development of MusiteDeep9 as a benchmarking dataset. This was done 
due to DeepPhos’s better overall performance with respect to MCC and other performance metrics compared to 
MusiteDeep. All the models were trained on the same training dataset and tested on the same independent test 
dataset. Interestingly, for all performance metrics tested, our base models exhibited higher values than Deep-

(2)Accuracy = TP + TN

TP + TN + FP + FN
× 100

(3)Sensitivity = TP

TP + FN
× 100

(4)Specificity = TN

TN + FP
× 100

(5)MCC = (TP)(TN)− (FP)(FN)√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Table 3.   Parameters description of LSTM model with embedding layer.

Parameters Settings

Embedding Output Dimension 21

Learning Rate 0.001

Batch Size 256

Epochs 50

LSTM layer 1 memory units 128

LSTM layer 2 memory units 64

LSTM layer 2 dropout 0.4

Dense layer 1 128

Dropout 0.4

Dense layer 2 64

Dropout 0.4

Output layer activation function Softmax

Checkpointer Best validation accuracy
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Phos. This may suggest that embedding provides additional enhancements in model performance compared 
to the binary encoding strategy used by previous DL-based phosphosite predictors. Further performance gains 
were observed for Ensemble (CNN Multi-window) and Ensemble-stacking (CNN + LSTM) for most metrics 
(Table 4). Rice_Phospho 1.020, an organism-specific model, has obtained significantly better MCC (0.62). Hence, 
for further possible improvement in performance for C. reinhardtii, we approach towards analysis of organism 
specific phosphorylation sites prediction.

Model evaluation using manually extracted features.  Next, we also investigated the performance 
of a ML model (Random Forest) and DL model on manually extracted features from the C. reinhardtii dataset. 
We generated physicochemical-based features like Pseudo Amino Acid Composition (PAAC), k-Spaced Amino 
Acid Pairs (AAP) and Composition, Transition and Distribution (CTD) as well as autocorrelation features like 
Moreau-Broto Autocorrelation (MBA) and Entropy Features, such as Shannon Entropy (SE), Relative Entropy 
(RE), and Information Gain (IG). Using Random Forest (RF), we selected 178 optimized features. Using these 
features both RF and DL models were evaluated. The results are shown in Table 5. Our performance suffered 
using the manually extracted features, even when compared to non-organism specifics models.

Figure 1.   Multi-windows model Chlamy-MwPhosSite combining features from five models with different 
window sizes.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:12550  | https://doi.org/10.1038/s41598-021-91840-w

www.nature.com/scientificreports/

Model development and tenfold cross‑validation.  We performed tenfold cross-validation using a 
base CNN with embedding model on different window sizes ranging from 9 to 61 on S, T and ST (Table S1-S3). 
Further window sizes were not analyzed due to the sheer size of the windows and the corresponding increase in 
the number of pseudo-residues ‘-’ that was required at higher window sizes.

From Fig. 3, a general trend for MCC of S, T and ST shows improvement with increasing window sizes up 
to around 45. Thereafter, it reaches a plateau with not much significant improvements in performance. Optimal 
window sizes of 57, 53 and 53 were chosen for S, T and ST respectively, for further study.

For Y, the results of tenfold cross-validation are shown in Table S4. The relatively high standard deviations 
observed for this dataset suggest that there is more variability in performance, which is not surprising given the 
smaller size of the Y dataset compared to the other datasets. From Fig. 3, MCC for Y does not follow specific 
pattern. For these reasons, the Chlamy-EnPhosSite and Chlamy-MwPhosSite models were not applied to the Y 
phosphorylation dataset, and an independent test was not performed.

Figure 2.   Ensemble model Chlamy-EnPhosSite combining CNN and LSTM models with stacking.

Table 4.   Performance metrics of different models using an independent test dataset for general 
phosphorylation sites S and T.

Models Sensitivity Specificity Accuracy AUC​ MCC

DeepPhos 0.72 0.73 0.75 0.82 0.52

LSTM with embedding 0.80 0.76 0.78 0.78 0.56

CNN with embedding (Trained on MusiteDeep Dataset) 0.83 0.75 0.79 0.87 0.58

Ensemble (CNN Multi-window) 0.84 0.76 0.80 0.88 0.60

Ensemble-stacking (CNN + LSTM) 0.86 0.73 0.79 0.88 0.59

Table 5.   Performance metrics of different models applying manually extracted features using an independent 
test dataset for S and T.

Models Sensitivity Specificity Accuracy AUC​ MCC

Random Forest (RF) 0.84 0.61 0.72 0.80 0.46

CNN 0.88 0.58 0.73 0.81 0.48
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Assessment of Chlamy‑EnPhosSite using independent testing.  Next, an independent test was car-
ried out with different models for S, T, and ST using 20% of each dataset that had been set aside for independent 
testing. For these studies, the window sizes that exhibited the best performance when evaluated by tenfold cross-
validation were used respectively, as described above. For independent testing, LSTM, CNN, Chlamy-MwPhos-
Site, and Chlamy-EnPhosSite models were trained on the 80% of the dataset set aside for training.

The results of the independent test with the S dataset are shown in Table 6 and the ROC curve is shown 
in Fig. 4. Both Chlamy-MwPhosSite and Chlamy-EnPhosSite exhibited improved performance compared to 
base models of LSTM and CNN. For instance, the highest AUC and MCC 0.89 and 0.62 respectively, were 
observed for Chlamy-EnPhosSite, although these values were only marginally better than those observed for 
Chlamy-MwPhosSite.

For the T dataset, the results of the independent test are shown in Table 7, and the ROC curve is shown 
in Fig. 5. Both Chlamy-EnPhosSite and Chlamy-MwPhosSite have improved performance on base models, 
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Figure 3.   Tenfold cross-validation mean MCC of S, T, ST and Y for different window sizes.

Table 6.   Performance metrics of different models using an independent test dataset for S.

Models SN SP ACC​ AUC​ MCC

LSTM with embedding 0.87 0.72 0.79 0.87 0.59

CNN with embedding 0.89 0.69 0.79 0.87 0.60

Chlamy-MwPhosSite 0.89 0.71 0.80 0.88 0.61

Chlamy-EnPhosSite 0.89 0.72 0.80 0.89 0.62

Figure 4.   ROC curve for different DL models for S.
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LSTM and CNN. The best values for AUC, MCC, and SN (0.86, 0.56, and 0.92 respectively) were attained by 
Chlamy-EnPhosSite, whereas the best values for SP and ACC (0.79 and 0.78 respectively) were attained by 
Chlamy-MwPhosSite.

For the ST dataset, both Chlamy-EnPhosSite and Chlamy-MwPhosSite exhibited improved performance 
compared to the LSTM and CNN base models (Table 8 and Fig. 6). For model benchmarking, we also trained 
and tested the C. reinhardtii dataset using DeepPhos. It exhibited similar performance to our base CNN and 
LSTM models but did not perform as well as our ensemble approaches. For instance, both Chlamy-MwPhosSite 
and Chlamy-EnPhosSite attained AUC, MCC, and ACC of 0.90, 0.64 and 0.82, respectively. Interestingly, CNN 
with embedding achieved the best SN (0.91), whereas Chlamy-MwPhosSite performed the best with respect to 
SP (0.78).

Predicting phosphorylation sites in entire C. reinhardtii proteome using Chlamy‑EnPhos-
Site.  Our independent test results suggest that Chlamy-EnPhosSite (ensemble-based approach) is the best 
predictor (although marginally), thus we used Chlamy-EnPhosSite for subsequent analysis. To explore the util-
ity of Chlamy-EnPhosSite for predicting novel phosphosites, we applied Chlamy-EnPhosSite to predict S and 
T phosphorylation sites in the full C. reinhardtii proteome. Chlamy-EnPhosSite was applied to predict phos-
phorylation sites on a total of 1,809,304 S/T sites and it was able to perform these predictions in about an hour 
using a GeForce RTX 2080 machine. With 0.5 as a probability cut-off, Chlamy-EnPhosSite predicted 499,411 
phosphorylated sites and with cut-off value of 0.7, Chlamy-EnPhosSite predicted 237,949 phosphorylated sites.

In addition, we also validated the predictions made by Chlamy-EnPhosSite on the entire C. reinhardtii pro-
teome using a newly generated dataset of phosphosites from C. reinhardtii32. Like the independent test sets, 
our model was blind to this new dataset during training, therefore these studies serve as a second, completely 
independent test set of S/T residues. Within this new dataset, 2,663 novel C. reinhardtii S and T phosphorylation 

Table 7.   Performance metrics of different models using an independent test dataset for T.

Models SN SP ACC​ AUC​ MCC

LSTM with embedding 0.83 0.69 0.76 0.84 0.53

CNN with embedding 0.86 0.66 0.76 0.84 0.53

Chlamy-MwPhosSite 0.76 0.79 0.78 0.84 0.55

Chlamy-EnPhosSite 0.92 0.61 0.77 0.86 0.56

Figure 5.   ROC curve for different DL models for T.

Table 8.   Performance metrics of different models using an independent test dataset for S and T.

Models SN SP ACC​ AUC​ MCC

DeepPhos 0.83 0.77 0.81 0.88 0.61

LSTM with embedding 0.87 0.74 0.81 0.88 0.61

CNN with embedding 0.91 0.69 0.81 0.88 0.61

Chlamy-MwPhosSite 0.86 0.78 0.82 0.90 0.64

Chlamy-EnPhosSite 0.90 0.73 0.82 0.90 0.64
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sites were included since they were not present in the previous dataset. Using 0.5 as a cut-off, Chlamy-EnPhosSite 
was able to predict 2,362 out of 2,663 (89.69%) phosphorylated sites correctly. Using a more stringent cut-off of 
0.7, Chlamy-EnPhosSite still correctly predicted 2,046 out of 2,663 (76.83%) phosphorylated sites. By further 
increasing the cut-off, the probability of avoiding false positives increases, but there is a trade-off with a decrease 
in the number of true positives. Together, these data suggest that our DL-based model, Chlamy-EnPhosSite, 
could be used to predict novel phosphosites in C. reinhardtii.

These phosphorylation site predictions can elucidate protein modulation in important signaling cascades 
such as the target of rapamycin (TOR) signaling pathway. The TOR kinase is a conserved master regulator of cell 
growth whose activity is modulated in response to nutrients, energy, and stress40–42. This includes regulation of 
protein synthesis and degradation through the control of translation, ribosome biosynthesis, and autophagy43. 
In Arabidopsis thaliana, TOR directly phosphorylates ribosomal protein S6 kinase (S6K), which in turn phos-
phorylates ribosomal protein S6 (RPS6)44. A method to monitor TOR activity in C. reinhardtii through S6K 
phosphorylation has been difficult to obtain because S6K phosphopeptide identification has eluded MS detec-
tion and commercial anti-phosphoS6K antibodies have failed32,45. Instead, antibodies against the downstream 
C. reinhardtii RPS6 phosphosite S245, a conserved site that is phosphorylated by S6K in a TOR-dependent 
manner in yeast and humans46,47, has been used as a proxy to monitor TOR activity. Validation confirmed that 
this site is phosphorylated in a TOR-dependent manner and can be used to monitor TOR function in C. rein‑
hardtii. Interestingly, typical quantitative LC–MS/MS-based phosphoproteomics methods using TiO2 enrich-
ment failed to detect RPS6-S245 phosphorylation, and this site was only detected by orthogonal enrichment 
strategies and extensive fractionation. However, the model described herein, Chlamy-EnPhosSite was able to 
predict phosphorylation on RPS6 S245 with a probability of 0.65, displaying prediction accuracy and the ease 
of phosphorylation site identification compared to MS-based methods. This may be extended to other kinase/
signaling pathway intermediates whereby sites predicted could then lead to viable routes for validation/activity 
readouts in subsequent biologically focused experiments.

Conclusion and discussions
C. reinhardtii is the most intensively studied and well-developed model for the investigation of a wide range 
of microalgal processes. These efforts have identified that phosphorylation-based regulation of proteins in C. 
reinhardtii is essential for its underlying biology. However, the characterization of this organism’s phosphopro-
teome has been limited. Here, we have built a DL-based predictor, Chlamy-EnPhosSite, that is able to identify 
phosphorylation sites in C. reinhardtii using only the primary amino acid sequence as input. Because the DL 
architecture eliminates the need for manual feature extraction, these methods are less computationally expen-
sive and are not biased toward a particular feature or set of features. Importantly, consistent with our previous 
studies, embedding was found to be superior to binary encoding as an encoder for protein sequences, even in 
our base CNN and LSTM models.

Chlamy-EnPhosSite combines CNN and LSTM models using a stacking ensemble algorithm, whereas our 
other approach, Chlamy-MwPhosSite (which produces similar results as Chlamy-EnPhosSite) combines fea-
tures from five models (from five different windows) and feeds these data into the neural network. One of the 
main advantages of Chlamy-MwPhosSite is its ability to use multiple windows instead of using just one window 
sequence. Tenfold cross-validation was used to determine optimal window sizes between 9 to 61. Model bench-
marking was performed to determine how our DL-based models compared to the state-of-the-art models. Each 
of our models achieved some improvement in comparison to the existing DL-based models. In fact, even our base 
CNN and LSTM models exhibited improvements in most metrics, which is likely a function of our embedding 
strategy versus the binary encoding strategies used during the development of previous models. Likewise, all four 
methods were systematically validated with an independent test for S, T, and ST sites. Chlamy-EnPhosSite and 
Chlamy-MwPhosSite both improved on the performances of CNN and LSTM models, with marginal differences 
in their performances compared to one another.

Figure 6.   ROC curve for different DL models for S and T combined.
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There are still challenges for the development of better predictors. One of the main challenges is the size of 
the dataset, which we saw clearly with higher variance on predictor performance for the Y dataset due to its 
small size. In the future, with the increase in the number of experimentally verified Y sites, model prediction 
performance is also likely to increase. The other challenge is the predictability of features extracted by DL mod-
els. At this point, our models have a “black-box” nature, where protein sequences are entered, and predictions 
are produced. However, it is imperative to know about the features learned by these models for experimental 
improvements. To this end, explainable DL strategies48 could hold the key in the future.

Chlamy-EnPhosSite and Chlamy-MwPhosSite show a substantial improvement in predictive quality over 
models based on manually extracted features and non-organism specific phosphorylation site predictors for C. 
reinhardtii. The performance improvement for phosphorylation site prediction in C. reinhardtii using Chlamy-
EnPhosSite proves that models trained on organism-specific phosphorylation sites are better in predicting phos-
phosites for that particular organism which is in line with other organism-specific phosphorylation site predictors 
and highlights the importance of developing organism-specific predictors as the data for phosphorylation sites 
of these organisms become available. The predictions from our models may be used to guide experiments and 
facilitate hypothesis-driven interrogation of phosphorylation sites. Importantly, the use of these models could 
significantly cut down on the time and cost of phosphosite identification.

Data availability
The test model and data has been made available at http://​github.​com/​dukka​kc/​Chlamy-​EnPho​sSite.
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