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Obesity is a multifactorial metabolic disorder characterized by low-grade chronic
inflammation, hyper-permeability of the gut epithelium, and perturbation of the intestinal
microbiome. Despite the numerous therapeutic efficacies of Dictyophora indusiata
mushroom, its biological activity in alleviating obesity through regulation of the gut
microbiota and inflammatory cascades remain obscure. Henceforth, we determined the
modulatory impact of D. indusiata polysaccharide (DIP) in the high-fat diet (HFD)-induced
obesity mice model. The experimental subjects (BALB/C mice) were supplemented with
chow diet (Control group), high-fat diet (HFD group), or HFD along with DIP at a low dose
[HFD + DIP(L)] and high dose [HFD + DIP(H)]. Obesity-related parameters, including body
weight gain, epididymal adipocyte size, fat accumulation, adipogenic markers, lipogenic
markers, inflammatory associated markers, intestinal integrity, and intestinal microbiome,
were elucidated. Our findings demonstrated that the oral administration of DIP at low dose
partially and at high dose significantly reversed HFD-induced obesity parameters.
Furthermore, the body weight, fat accumulation, adipocyte size, adipogenic and liver
associated markers, glucose levels, inflammatory cytokines, and endotoxin
(Lipopolysaccharide, LPS) levels were reduced considerably. Moreover, the study revealed
that DIP treatment reversed the dynamic alterations of the gut microbiome community by
decreasing the Firmicutes toBacteroidetes ratio. These findings led us to infer the therapeutic
potential of DIP in alleviating HFD-induced obesity via regulating inflammatory cascades,
modulating intestinal integrity and intestinal microbiome community.
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INTRODUCTION

Obesity is oneof themajorhealth concernsacross theworld thathas
been implicated with multiple health problems and a reduced life
expectancy (1, 2). The prevalence of obesity has been strikingly
increased in recent years, and it has been estimated that by 2030
obesity rate will reach up to 20% of the adult population (3).
Approximately 500 million individuals are obese, and 1.4 billion
are overweight globally (4). Obesity is characterized by excessive fat
accumulation due to various factors, including genetic
predisposition, high-calorie energy intake, and sedentary lifestyle
(5). Obesity predisposes an individual to develop and aggravate a
broad spectrum of disorders, including type 2 diabetes, insulin
resistance, fatty liver disease, gastrointestinal problems,
cardiovascular disease, respiratory problems, and various kinds of
cancers (6–9). Considering the adverse impact of obesity on
individual health, it is of great challenge to reduce and halt
obesity in the modern world.

A growing body of evidence demonstrates that a common trait
identified in obese humans and animal studies is the hyper
permeable gut (10, 11). A leaky gut eventually causes local or
systemic inflammation due to increase susceptibility to antigens
leading to impairment of gut barrier function, reduced tight
junction protein (TJP) expression, and increased intestinal
permeability to pathogenic microorganism (12–15). Moreover,
high fat-induced obesity enhances lipopolysaccharide (LPS) levels
in the bloodstream, ultimately causing inflammation and insulin
resistance (13, 16, 17). LPS is the main component in synthesizing
the outer membrane of gram-negative bacteria that triggers several
transcription factors associated with inflammation resulting in
intestinal barrier damage (18). Furthermore, many reports have
shown enhanced pro-inflammatory cytokine production, such as
tumor necrosis factor-a (TNF-a), interleukin (IL)-1 b, IL-6, and
reduced anti-inflammatory cytokine secretion in obese animal
models (19, 20). Another study shows that a higher level of
cytokines triggers not only chronic inflammation but also insulin
resistance (7).

The role of the gut microbiota in the predisposition of obesity
and related disorders is well recognized (21–23). The intestinal
flora maintains the host physiology via harnessing energy from
complex and indigestible dietary compounds such as
polysaccharides and polyphenols (24–27). The alteration of
bacterial composition leads to a condition known as gut
dysbiosis (28–30). Gut microbiome perturbation (dysbiosis)
has been implicated with several human ailments, including
inflammatory diseases, obesity, metabolic, and neurological
disorders (31–35). High fat dietary intake is associated with the
alteration of the composition of the intestinal microbiota
community, distinguished by reduced bacterial diversity and
richness, and increase abundance of Firmicutes to
Bacteroidetes ratio (15, 36–41). Various in-vivo studies have
demonstrated that gut dysbiosis is a major contributing factor in
obesity and type 2 diabetes (42–44). Furthermore, clinical studies
have also proven the association of intestinal dysbiosis in the
etiology of obesity and obesity-related disorders (45). Thus the
dynamic shift of intestinal flora due to high-fat diet consumption
not only develops obesity but also disrupts intestinal integrity
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and increases endotoxemia (LPS) levels (16). The enhanced LPS
levels eventually trigger inflammatory cascades andenhance insulin
resistance due to the activation of inflammatory signaling pathways
(13, 17, 46, 47). Nevertheless, the modulation of gut microbiome
through dietary interventions, including herbal plants, probiotics/
prebiotics, is promising strategies to reduce inflammatory-related
problems such as obesity and associated metabolic syndrome
(48–53).

Several drugs have been developed in recent years to combat
obesity and obesity-related health issues. Nonetheless, long term
dependency on anti-obesity drugs has been implicated with severe
side effects and weight regain upon discontinuation (54–56).
Henceforth researchers are focusing on finding novel therapeutic
arsenals to prevent this social and economic catastrophe and
overcome obesity-associated problems. In this regard, the role of
natural dietary compounds such as mushroom polysaccharides in
treating multiple diseases is drastically increasing, owing to the
plethora of health ameliorating properties. The prebiotic sources
such as mushroom polysaccharides that serve as a substrate for
microbes residing in the gastrointestinal tract enhance the growth of
microbes that exert a beneficial physiological impact on host
immunity (57–60). Additionally, dietary fiber encourages the
growth of short-chain fatty acids’ (SCFAs’) producing bacteria that
inhibit inflammatory reactions (15, 58, 61, 62). Moreover, prebiotics
not only exerts a beneficial impact on the gut microbial community
but alsomodulates gut barrier integrity via regulatingTJP expression
and reducing endotoxin levels in the bloodstream (63).

Accumulated pieces of evidence suggest that Dictyophora
indusiata mushroom derived polysaccharides possess a variety
of biological activities (64) such as anti-inflammatory, anti-
tumor, antioxidant, and immunomodulatory activities (65–68).
In our previous studies, we have reported the modulatory effect
of Dictyophora indusiata polysaccharide (DIP) in antibiotic
driven intestinal dysbiosis and DSS induced ulcerative colitis
(69, 70). The anti-obesity effect of DIP via regulation of obesity-
associated parameters and improving gut microbiome
community is yet to be explored. Given the protective effect of
Dictyophora indusiata mushroom in combating various health
problems, in the present study, we further investigated the effect
of DIP on HFD-induced obesity. Our findings revealed that
HFD-induced obesity was reduced upon DIP supplementation.
The intestinal integrity and inflammatory reactions were
ameliorated. Moreover, the gut microbiome shift was reversed.
These results thus demonstrate that the D. indusiata derived
polysaccharide (DIP) may be used as a potential prebiotic
compound in treating obesity and associated issues.
MATERIALS AND METHODS

Experimental Subjects and Housing
Specific-pathogen-free (SPF) level inbred male BALB/c mice
aged seven weeks old with similar initial body weight (20 ±
3 g) approved by the Animal Care and Research Ethics
Committee of Dalian Medical University, China (Approval
Number: SYXK 2016–2018) were randomly assigned to four
November 2020 | Volume 11 | Article 558874

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Kanwal et al. DIP Attenuates HFD-Induced Obesity
groups (eight mice per group). All the animals used in the study
were acclimated for a period of one week prior to
experimentation. All experimental procedures were approved
by the ethics committee of Dalian Medical University. The
experimental subjects of the respective group were housed
randomly in two separate cages (four mice per cage, so two
separate cages for each group). All the cages were maintained in
an environmentally controlled room (20–22°C) temperature and
55 ± 5% relative humidity with 12–12 h light/dark cycle). The
experimental design is presented in Figure 1. The mice were
placed on standard commercial chow diet (control group) or
60% high-fat diet (HFD groups) (Jiangsu Medison Biomedical
Co., Ltd., Yangzhou, Jiangsu Province, China) for 8 weeks. On 4th

week, the chow and HFD group were gavaged with water (200
µl). The crude polysaccharide (DIP) from D. indusiata was
administered (200 µl) daily at a low dose [HFD + DIP(L)
group] of 200 mg/kg body weight and a high dose [HFD+DIP
(H) group] of 400 mg/kg body weight via oral gavage from week
4th till the 8th week. The dosage and treatment duration are based
upon a previous study (71). The bodyweight of each subject from
the respective group was monitored once a week, and food intake
was measured every day in the morning. After 8 weeks, all the
experimental subjects were sacrificed. The organs, tissues, and
blood samples were collected for the subsequent analysis.

Antibodies, Kits, and Reagents
The fruiting body of the mushroomD. indusiatawas obtained from
Anhui Joy Lok Food Co., Ltd., Ningde, Fujian Province, China. The
DNA extraction kit (QIAamp DNA Stool Mini Kit) and gel
purification kit (Agencourt AMPure XP 60 mL Kit) were from
Qiagen (Hilden, Germany) and Beckman Coulter (Brea, CA, USA),
respectively. The primary antibodies b-actin, claudin-1, occludin,
zonula occludens-1 (ZO-1), secondary antibodies, and the
Frontiers in Endocrinology | www.frontiersin.org 3
Radioimmunoprecipitation assay (RIPA) buffer were from
Proteintech (Wuhan, China). The horseradish peroxidase-
conjugated secondary antibody was from ZSGB-BIO (Beijing,
China). The bicinchoninic acid (BCA) protein assay kit was from
Pierce Rockford, IL, USA. Polyvinylidene difluoride (PVDF)
membranes were from Immobilon TM-P, Mill ipore,
Massachusetts, USA, and WesternBright™ ECL substrate was
from Advansta, Inc., Menlo Park, CA, USA. The ELISA kits were
purchased from Shang Hai Lengton Bioscience Co, Ltd., Shanghai,
China. All the other chemicals used in this study were of analytical
grade and purchased from standard commercial sources.

Extraction and Chemical Analysis of
Crude Polysaccharide DIP From the
Mushroom D. indusiata
The polysaccharide extraction method, chemical analysis, and
monosaccharide composition are described in our previous study
(69). Briefly, the sugar content and crude polysaccharide were
determined with bicinchoninic acid (BCA) and phenol sulfuric
acid method. The monosaccharide composition was determined
with high-performance liquid chromatography (HPLC). The
polysaccharide yield was 13.2%, and the main functional
components were glucose 59.84%, mannose 23.55%, and
galactose 12.95%.

Morphometry Analysis of Adipose Tissues
Histological analysis was performed to determine the size of
adipose tissue. Freshly isolated epididymal adipose tissues from
all the experimental groups were fixed overnight in 10%
formalin. The tissue sections were deparaffinized and
embedded in paraffin, followed by sectioning. 5 mm paraffin
sections were stained with hematoxylin and eosin, and images
were obtained using a microscope (Leica Microsystems, Wetzlar,
FIGURE 1 | Experimental design. Experimental mice were categorized into four groups (n = 8 each group). Control or vehicle group, HFD group, HFD followed by
DIP(L) group and HFD followed by DIP(H) group.
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Germany). For the measurement of adipocytes, the number of
adipocytes was counted for each sample from the respective
group, and the average adipocyte size was analyzed using the
Image J software (National Institutes of Health, USA) as
described previously (72).

Determination of Blood Insulin
and Glucose
Blood insulin levels of overnight fasted (12 h) mice were measured
using a commercial ELISA kit (Wuhan Cusabio Biotech Co., Ltd.,
China) according to the manufacturer’s recommendations. Blood
glucose of overnight fasted (12 h) mice was determined with a
glucose meter (Roche Diagnostics, Switzerland).

Biochemical Analysis and Cytokine
Level Measurement
Blood samples were centrifuged at 3,000× g for 10 min, and serum
was separated to evaluate serum endotoxin (lipopolysaccharide,
LPS) levels using a commercial kit based on the guidelines provided
by the supplier (LAL, Limulus amebocyte lysate assay; Chinese
Horseshoe Crab Reagent Manufactory Co., Ltd. Xiamen, China).
The pro-inflammatory cytokine levels including tumor necrosis
factor-alpha (TNF-a), interleukin 6 (IL-6), interleukin 1b (IL-1b),
and anti-inflammatory cytokines such as interleukin 4 (IL-4) and
interleukin 10 (IL-10) in the serum were determined using a mouse
ELISA kit (Shang Hai Lengton Bioscience Co., Ltd.) Shanghai, as
per manufacturer’s instructions. Alanine transaminase (ALT),
aspartate transaminase (AST), total cholesterol (TC), and
triglyceride (TG) levels were estimated using a chemical analyzer
(Hitachi, Tokyo, Japan). Serum free fatty acids (FFAs) were
measured using a commercial kit (Biovision, USA).

RNA Extraction and Quantitative Real-
Time Reverse-Transcription PCR
The RNA was extracted using TRIzol reagent (Invitrogen Life
Technology Gaithersburg, MD, USA) according to the
manufacturers’ instructions. Quantitative real-time reverse-
transcription PCR (qRT–PCR) was performed in triplicate
using SYBR Green (Kapa SYBR Fast Master Mix) and Real-
Time PCR thermocycler (Applied Biosystems StepOnePlus™).
The total volume of the reaction mixture for each tube was 10 µl
containing 1.5 µl of cDNA, 1 µl of target primers, 2.5 µl of
nuclease-free water, and 5 µl of SYBR Green Master Mix. RT-
PCR was performed for 50 cycles, and PCR conditions were as
follows: Initial pre-incubation at 95°C for 10 min, denaturation
for 15 s at 94°C, annealing for 30 s at 60°C followed by elongation
for 30 s at 72°C. The relative gene expression was quantified by
using the 2–DDCt method (73). GAPDH was used as an internal
control, and all the reactions were performed in triplicate. The
primer sequences used in the study are shown in Supplementary
Table S1.

Immunoblotting Assay
Intestinal tissue samples (100 mg) were homogenized using RIPA
lysis buffer containing a protease inhibitor (Transgene Biotech,
Beijing, China) and then centrifuged at 12,000 g for 5 min at 4°C.
The supernatant containing protein was removed from the pellet,
Frontiers in Endocrinology | www.frontiersin.org 4
and the protein concentration was determined using the BCA
protein assay kit (Pierce, Rockford, IL, USA) according to the
manufacturer’s instructions. 10% sodium dodecyl sulfate-
polyacrylamide gel (SDS PAGE) was employed for fractionation of
protein lysates followed by blotting onto Polyvinylidene difluoride
(PVDF)membrane. 5%non-fatmilk inTBSTwas used for blocking
non-specific binding for 1 h at room temperature. After blocking,
membranes were probed overnight at 4°C with primary antibodies
including b-actin (catalog no. 20536-1-AP, 1:2000), claudin-1
(catalog no. 13050-1-AP, 1:500), occludin (catalog no. 13409-1-
AP, 1:2000), andZO-1 (catalog no. 21773-1-AP, 1:500).Membranes
were then incubated with horseradish peroxidase-conjugated
secondary antibody (IgG) (catalog no. SA00001-2, 1:6,000) for 1 h
at room temperature. Protein bands were developed with
WesternBright™ ECL substrate (Advansta, Inc., Menlo Park, CA,
USA), and images were captured by ChemoDocTMXRS + Imager-
Bio-Rad (Bio-Rad Laboratories, Inc., Hercules, CA, USA).

DNA Extraction and 16S rRNA Gene
Amplification (Illumina MiSeq Sequencing)
Metagenomic DNA extraction, 16S rRNA gene amplification, and
sequencing were executed as described in our previous study (69).
Briefly, the 16S rRNA gene V4 region was amplified from genomic
DNA using the universal bacterial primers: (515F, 5′-
GTGCCAGCMGCCGCGGTAA- 3 ′ a nd 8 0 6R , 5 ′ -
GGACTACHVGGGTWTCTAAT-3′). The amplicons were
normalized, pooled, and sequenced on the Illumina Hiseq4000
sequencer (2 × 150 bp paired-end). Libraries were prepared using
Library Quant Kit Illumina GA revised primer-SYBR Fast Universal
(KAPA,Wilmington,MA,USA) and sequenced for 600 cycles on an
Illumina MiSeq using the MiSeq Reagent Kit (Illumina, San Diego,
CA, USA). For bioinformatics analysis, high-quality reads were
selected, and effective reads were clustered into OTUs based on
97% sequence similarity. Sequence read processing was performed
usingQuantitative Insights intoMicrobial Ecology (QIIME) (version
1.9.0). Low-quality reads that did not align to the reference alignment
were removed. Chimeras identified using Chimera.UCHIME were
also eliminated. Taxonomic assignment of individual datasets was
performed using the SILVA128. Operational taxonomic units
(OTUs) were generated using Vsearch v1.11.1 with a dissimilarity
cutoff of 0.03. Bacterial diversity within the community, such as the
relative abundance of bacterial flora, species richness, and evenness,
was determined using alpha diversity (a-diversity) indices, including
Shannon index, observed species, and rank abundance curve with
QIIME.Todemonstrate variation amongdifferent treatment groups,
beta-diversity (b-diversity) indices were determined, including
cluster dendrogram and principal coordinate analysis (PCoA)
using QIIME.

Statistical Analysis
All the statistical analysis was performedwithGraphPadPrism7.04
software (La Jolla, CA, USA). The normal distribution for
parametric data is elucidated with the D’Agostino & Pearson
normality test. Statistical significance was determined by using
analysis of variance (ANOVA) one-way and two-way analysis of
variance followedbyTukey’s andBonferroni’smultiplecomparison
test, and p < 0.05 was considered to be statistically significant.
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RESULTS

DIP Intervention Reduced HFD-Induced
Obesity-Related Parameters in BALB/CMice
To study the effect of DIP on obesity-related parameters, we used
BALB/C mice model and fed mice with HFD for 8 weeks. HFD
feeding for 8 weeks led to a significant increment of the body weight,
liver weight, epididymal, and subcutaneous fat accumulation
compared with the control group (Figures 2A–F). Our findings
revealed a significant reduction of body weight, liver weight,
epididymal, and subcutaneous fat accumulation in DIP
intervention groups in a dose-dependent manner as compared to
the HFD alone group (Figures 2A–F). The mean body weight was
significantly higher in the HFD group (43.5 ± 3 g) as compared to
HFD + DIP(L) (41 ± 3 g) and HFD + DIP(H) (38 ± 3 g) groups
Frontiers in Endocrinology | www.frontiersin.org 5
respectively (Figure 2A). The statistically significant weight gain
reductionwas evidenced after 6 weeks uponDIP supplementation at
a high dose (p < 0.0001) and 7 weeks of DIP administration at a low
dose (p < 0.01) (p < 0.001) (Figures 2A, B). Moreover, epididymal
and subcutaneous fat accumulation was significantly reduced in DIP
treated groups in a dose-dependent manner (Figures 2D, E). A
significant increase in liver weight was witnessed in the HFD group
(p < 0.01) as compared to the control group. However, a substantial
reduction in liver weight was observed at a high dose of DIP (p <
0.01), and HFD + DIP(L) group didn’t reach statistical significance
(Figure 2F). These findings indicate that DIP decreases weight gain
andfat accumulation inHFD-fedmice.Furthermore, food intakeand
energy intakewere assessed inour study (SupplementaryFigureS1).
No significant difference was found among HFD alone and HFD
followed byDIP treated groups, hence, suggesting the effect ofDIP
A B

D

E F

C

FIGURE 2 | Effect of DIP on body weight and fat accumulation in HFD fed mice. HFD-induced obese mice were treated with 200 µl of DIP at various doses for 4 weeks
(n = 8 each group). (A) Effects of DIP administration on body weight (g), (B) body weight gain (%), (C) body weight gain (g), (D) epididymal fat (g), (E) subcutaneous fat (g),
and (F) liver weight are presented in the above panels. Data are expressed as mean ± SEM. Body weight differences in (A, B)were analyzed using two-way ANOVA
Bonferroni post hoc test. ##p < 0.01, ###p < 0.001, ####p < 0.0001 HFD group vs HFD+DIP(L) group; ****p < 0.0001 HFD group vs HFD + DIP(H). One-way ANOVA
Bonferroni post hoc was employed to determine statistical differences in (C–F). ##p < 0.01, ####p < 0.0001 HFD group vs control group; **p < 0.01, ***p < 0.001, ****p <
0.0001 HFD group vs HFD + DIP(L) and HFD + DIP(H) groups.
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on obesity-related parameters is not because of less intake of food
or energy acquisition. Thus, these findings demonstrate that DIP
has thepotency to reverseHFD-inducedobesity relatedparameters.

Histological Examination of Epididymal
Adipose Tissue, Determination of
Adipogenic and Lipogenic Gene
Expression Upon DIP Supplementation
Since body weight gain was reduced after supplementation with
DIP in HFD fed mice, we further determined if the bodyweight
reduction was due to the decreased fat accumulation. Thus, the
weight of epididymal and subcutaneous adipocytes was measured
(Figures 2D, E), and hematoxylin and eosin (H&E) staining was
carried out to examine the histological alteration, i.e., adipocyte size
inHFD fed versusHFD+DIP treatedmice (Figure 3). Our finding
revealed a significant increase of epididymal and subcutaneous fat
accumulation, as presented in Figures 2D, E. Moreover, the
histological analysis revealed the degree of lipid accumulation in
the epididymal adipose tissue, which is proportional to the size of
the tissue.Thedistributionof adipocytes in theHFDgroupdepicted
larger adipocyte size as compared to the control group. On the
contrary, DIP treatment at a low dose and high dose (p < 0.0001)
depicted a significant adipocyte size reduction as compared to the
HFD group suggesting the regulatory effect of DIP in fat deposition
(Figure 3B). These findings were in agreement with previous
studies that have reported a higher magnitude of lipid
accumulation in HFD fed mice (58, 74).

Multiple research studies have shown that the key regulators of
adipogenesis include peroxisome proliferator activated receptor g
(PPAR-g), CCAAT/enhancer-binding protein alpha (C/EBPa), and
sterol response element-binding protein-1c (SREBP-1c) genes (15,
75–78). The overexpression of these genes promotes adipogenesis
and induces lipid accumulation. To elucidate the changes at
transcriptional level, we determined the expression of these genes
in HFD treated mice. In concordance with the earlier findings, our
study has shown that expression level of PPAR-g, C/EBPa, and
SREBP-1c is significantly enhanced in the HFD alone group
compared to the control group (Figure 3C). However, DIP
treatment at low dose (p < 0.001) and at high dose (p < 0.0001)
regulated these transcription factors via regulation of the adipogenic
genes. Furthermore, accumulated studies have suggested that the
lipidbiosynthesis associatedgenes includingacetyl-CoAcarboxylase-
1 (ACC-1) and fatty acid synthase (FAS) expression is higher in
adipose and liver tissue in HFD fed obese mice (15, 79). Henceforth,
we determined the relative expression of these lipogenic genes in the
adipose tissue (Figure 3D). Our results revealed that the expression
level of ACC-1 and FAS significantly increased in the HFD alone
group (p < 0.001, p < 0.0001) compared to the control group.
Notwithstanding, DIP treatment at low dose (p < 0.01) and at high
dose (p < 0.001, p < 0.0001) significantly decreased the expression of
lipogenic genes.

DIP Alleviated Liver Associated Markers
and Lipid Profile of HFD-Induced
Obesogenic Mice
Previously, studies have shown that theHFD-induced obesity leads
to higher serum alanine transaminase (ALT), aspartate
Frontiers in Endocrinology | www.frontiersin.org 6
transaminase (AST), triglycerides (TGs) and free fatty acid (FFA)
levels (15, 80, 81). Therefore, we investigated the effect of DIP
intervention on ALT, AST, TG and FFA (Figures 4A–D). Our
findings revealed that the HFD resulted in significant increase of
serumALT,AST, TGandFFA (p< 0.0001) in theHFDalone group
as compared to the control group (Figure 4). However, DIP
treatment ameliorated liver health by reducing ALT (p < 0.01)
DIP + HFD(L), (p < 0.0001) DIP + HFD(H), and AST levels (p <
0.001) DIP + HFD(L), (p < 0.0001) DIP + HFD(H). Moreover,
lipid markers such as TG (p < 0.01) DIP + HFD(L), (p < 0.0001)
DIP + HFD(H), and FFA (p < 0.001) DIP + HFD(H) were also
attenuated significantly. Altogether, our results infer that DIP
attenuates liver and lipogenic markers in obesogenic mice.

DIP Supplementation Ameliorated Serum
LPS, Glucose, and Insulin Levels and
Improves Intestinal Tight Junction Protein
(TJP) Expression in HFD-Induced Obese
Mice
Previously, studies have reported that theHFD-induced obesity leads
to higher serum lipopolysaccharide (LPS) levels (13, 15). Therefore,
we investigated the effect of DIP intervention on serum endotoxin
levels (Figure 5A). Our findings revealed that HFD resulted in
elevated serum endotoxin levels (p < 0.0001) in the HFD group as
compared to the control group (Figure5A).However,DIP treatment
led to a significant reduction of LPS levels in DIP + HFD(L) (p <
0.01) and DIP + HFD(H) (p < 0.0001) groups. Moreover, glucose
and insulin levels were also elevated in obesity (58, 74, 82, 83). To
determine DIP outcomes on glucose homeostasis, we assessed
fasting glucose and insulin levels. Our findings demonstrated a
significant increase in fasting glucose and insulin levels in HFD
alone group as compared to the control group (Supplementary
Figure S2). Nonetheless, upon supplementation with DIP,
glucose and insulin levels were reduced markedly.

The fundamental role of tight junction proteins in maintaining
mucosal integrity is widely recognized, given that higher endotoxin
levels increase the intestinal permeability and disrupt mucosal
integrity (15). Hence, we comprehensively analyzed the tight
junction protein (TJP) expression including claudin-1, occludin,
and zonula occluden (ZO-1) of four experimental groups (Figures
5B, C). Immunoblot analysis was performed to demonstrate the
robust alterations in TJP expression. The HFD alone group
presented decreased TJP expression as compared to the control
group (Figures 5B, C). However, after DIP intervention, the
expression patterns of claudin-1, occludin, and zonula occluden
(ZO-1) were upregulated significantly at high dose, and partial
modulatory effectwasobserved at a lowdose.Conclusively, ourdata
suggest that HFD-induced obesity resulted in increased mucosal
permeability and reduced TJP expression; nonetheless, DIP
supplementation had a modulatory effect on intestinal integrity
via decreasing endotoxin levels and increasing TJP expression.

DIP Supplementation Reduced
Inflammatory Cytokines in Obese Mice
Previously, in-vivo studies have suggested that pro-inflammatory
cytokine secretion is elevated in obese animals as compared to
non-obese animals (58). Moreover, the upsurge of pro-
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inflammatory cytokines results in chronic inflammation and
insulin resistance (7, 16, 58, 84). Hence we measured the level
of pro-inflammatory including tumor necrosis factor-a (TNF-
a), interleukin (IL-1b), (IL-6) and anti-inflammatory cytokines
(IL-4, IL-10) (Figure 6). In concordance with the previous
findings, we also found that TNF-a, IL-1b, and IL-6 levels
Frontiers in Endocrinology | www.frontiersin.org 7
were significantly enhanced in the HFD alone group as
compared to the control group. On the contrary, anti-
inflammatory cytokine secretion, such as IL-4 and IL-10 levels,
was reduced in the HFD group. Nonetheless, DIP treatment
significantly reduced the level of pro-inflammatory cytokines
and enhanced anti-inflammatory cytokines in DIP supplemented
A

B

D

C

FIGURE 3 | Histologic analysis and lipogenic gene expression of epididymal adipose tissue in HFD-induced obese mice. Adipocyte structural analysis and size
estimation through H&E staining and ImageJ software. Scale bar, 50 mm. (A) The differences in the histology of adipocytes in various treatment groups are evident in
representative H&E stained images. (B) The distribution of adipocytes area indicates HFD has greater adipocytes area (>20,000 mm2). On the contrary, DIP treated
groups revealed smaller adipocytes size (<20,000 mm2). Data are expressed as the mean ± SEM, (n = 8) in each group based on one-way ANOVA Tukey post hoc
analysis. Significant differences were identified at ####p < 0.0001, HFD group vs control group, and ****p < 0.0001, HFD group vs HFD + DIP(L) and HFD + DIP(H)
groups. (C) Effect of DIP supplementation treatment on the adipogenic genes expression PPAR-g, C/EBPa, and SREBP-1c in adipose tissues was determined with
qRT-PCR. (D) Effect of DIP supplementation treatment on the lipogenic gene expression ACC-1, and FAS in adipose tissues was determined with qRT-PCR. The
data is expressed as mean ± SEM (n = 8) based on one-way ANOVA Tukey post hoc analysis. Significant differences were identified at ###p < 0.001, ####p <
0.0001, HFD group vs control group; **p < 0.01, ***p < 0.001 and ****p < 0.0001, HFD group vs HFD + DIP(L) group or HFD group vs HFD + DIP(H) group.
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groups in a dose-dependent manner (Figure 6). The results
revealed that DIP supplementation decreases the inflammatory
markers in the obesogenic mice model.

DIP Administration Reduced Inflammatory
Markers in Epididymal Adipose Tissue and
Liver of Obese Mice
Multiple studies have demonstrated that adipose tissue of an obese
animal has shownhigher expressionofpro-inflammatory cytokines
such as TNF-a, IL-1b, and IL-6 levels (16, 58). We assessed the
mRNA expression of these inflammatory cytokines in epididymal
adipose tissue and liver. In harmony with the previous studies, we
found a significantly higher expression level of TNF-a, IL-1b, and
IL-6 in the HFD group in comparison with the control group
(Figures 7A–C). The relative expression of these inflammatory
cytokines was notably reduced by DIP treatment in a dose-
dependentmanner (p < 0.05, p < 0.01, p < 0.0001) (Figures 7A–C).

Monocyte chemoattractant protein-1 (MCP-1) is a pro-
inflammatory cytokine that has been linked with chronic
inflammation through activation of M1 macrophages in obese
mice models (85, 86). Henceforth, we determined the mRNA
level of MCP-1in the epididymal adipose tissue and liver. In
agreement with the earlier studies, we also observed a statistically
significant higher mRNA expression of the MCP-1in the HFD
group compared to the control group. However, DIP treatment
Frontiers in Endocrinology | www.frontiersin.org 8
significantly reduced MCP-1 expression levels at low and high
doses (p < 0.01, p < 0.001, p < 0.0001) (Figure 7D). Thus our
findings revealed that DIP supplementation remarkably reduced
inflammatory markers and macrophage infiltration in a dose-
dependent manner in HFD treated mice.

DIP Supplementation Restored Gut
Microbiota in Obese Mice
Several reports have shown the intestinal microbiome perturbation
(dysbiosis) in obesity, often characterized by reduced bacterial
diversity and abundance, along with the alteration of the gut
microbiota composition, i.e . , increased Firmicutes to
Bacteroidetes ratio (15, 42, 87). In order to determine the effect of
DIP intervention in HFD-induced obese mice, Illumina MiSeq
sequencing of 16S r RNA (V3–V5) has been employed in this study.
A total of 9,998 operational taxonomic units (OTUs) ranging from
520 to 756 were obtained. The total sequence read count was
1,644,813, and after quality filtering, 1,339,583 clean sequencing
reads were acquired. All the samples attained deep coverage
(coverage = 1) (Supplementary Table S2). The alpha and beta
diversity indices have been assessed to demonstrate the bacterial
diversity, species richness, andsimilaritiesordissimilarities between
different treatment groups. The rank abundance curve depicting
species diversity and richness in descending order were as follows:
The HFD +DIP(H) group, control group, HFD group, andHFD+
A B

DC

FIGURE 4 | DIP supplementation decreases serum ALT, AST, TG and FFA. Effect of DIP supplementation on serum (A) ALT, (B) AST, (C) TG and (D) FFA levels.
The data is shown as mean ± SEM (n = 8), based on one-way ANOVA Tukey post hoc analysis. Significant differences were identified using at ####p < 0.0001 HFD
group vs control group and **p < 0.01, ***p < 0.001 and ****p < 0.0001, HFD group vs HFD+DIP(L) and HFD+DIP(H) groups.
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DIP(L) group (Figure 8A). Meanwhile, rarefaction curves
(Shannon index and observed species) show a saturation plateau
with different depths for the respective group (Figures 8B–E). The
higher species richness and abundance were witnessed for the
control and HFD + DIP(H) groups followed by the HFD + DIP
(L) group. The Shannon index of the HFD group was significantly
lower than the control and HFD + DIP(H) group (p < 0.0001)
(Figure 8C). TheHFD group displayed the lowest observed species
level as compared to the control and DIP treated groups (Figures
8D, E). However, no statistical differencewaswitnessed in observed
species for all the experimental groups. Furthermore, b-diversity
parameters were analyzed to measure the distance between each
sample and the similarities between four experimental groups. The
cluster dendrogram and principal coordinate analysis (PCoA)
based on unweighted UniFrac distances depicted an evident
clustering of bacterial taxa for each treatment group (Figures 8F, G).
Frontiers in Endocrinology | www.frontiersin.org 9
The control and DIP treated groups showed apparent clustering
depictingmore close association and similarity in comparison with
the HFD group. The analysis of similarity (ANOSIM) test using
Bray–Curtisdissimilarity revealed that the observed clusterpatterns
were significant (R = 0.4722, P = 0.002).

HFD-Induced Bacterial Taxa Alteration
Were Restored Upon DIP Administration
At the phylum level, a total of ten bacterial phyla were detected,
and among them, there were five dominated phyla: Firmicutes,
Bacteroidetes, Proteobacteria, Actinobacteria, and TM7 (Figure
9A) (Supplementary Table S5). Previous studies have shown an
increment of Firmicutes over Bacteroidetes in obese patients and
HFD-induced obese mice (42, 87–89). In concordance with these
studies, we also observed a relative increase abundance of
Firmicutes to Bacteroidetes ratio in the HFD alone group as
A

B

C

FIGURE 5 | DIP administration reduced serum endotoxin levels and ameliorated intestinal tight junction protein (TJP) expression in HFD fed mice. (A) Effect of DIP
supplementation on serum LPS levels. Serum endotoxin (EU/ml) was determined using the limulus amebocyte lysate assay kit. The data is shown as mean ± SEM
(n = 8), based on one-way ANOVA Tukey post hoc analysis. Significant differences were identified at ###p < 0.0001 HFD group vs control group and **p < 0.01,
****p < 0.0001, HFD group vs HFD + DIP(L) and HFD + DIP(H) groups. (B) Immunoblots presenting TJP expression in different treatment groups from the colon
tissues. (C) Bar graph demonstrating relative band intensity of respective protein quantified via NIH image J software. The data was acquired from three independent
experiments and is expressed as mean ± SEM (n = 8). ##p < 0.01, ###p < 0.001 ####p < 0.0001 HFD group vs control group; *p < 0.05, **p < 0.01, ***p < 0.001
HFD group vs HFD + DIP(L) or HFD + DIP(H) groups.
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compared to the control group (Figure 9A). The higher
abundance of Firmicutes and decreased abundance of
Bacteroidetes were statistically significant in the HFD group in
comparison with the control group (p < 0.05) (Figure 9B). It is
noteworthy that the bacterial taxonomy at the phylum level was
reversed after DIP treatment, particularly at a high dose. The
level of Firmicutes decreased, and Bacteroidetes increased after
DIP treatment partially at a low dose and markedly at a high dose
showing a similar trend like the control subjects. However,
statistical significance was not achieved at the given doses of DIP.

Moreover, dynamic alterations were observed at the class
level, where the major phyla were Bacteroidia, Clostridia, Bacilli,
Gammaproteobacteria, and Actinobacteria (Figure 9C)
(Supplementary Table S6). The HFD alone group presented a
higher abundance of Bacilli (belongs to Firmicutes phylum) and
Gammaproteobacteria (belongs to Proteobacteria phylum) and
lower levels of Bacteroidia (belongs to Bacteroidetes phylum).
The lower level of Bacteroidia (p < 0.05) and increment of Bacilli
(p < 0.01) were statistically significant in the HFD group as
compared to the control group (Figure 9D). However, DIP
treatment led to the restoration of altered microbiome
composition, particularly at a high dose, which presented
similar bacterial composition to that of the control group that
were fed a standard chow diet. Overall, our findings revealed that
HFD led to gut microbiota dysbiosis. Nonetheless, given DIP
treatment, the dynamic bacterial perturbations were restored.
Frontiers in Endocrinology | www.frontiersin.org 10
DISCUSSION

Obesity is characterized by systemic inflammation and is
associated with the etiology of multiple chronic illnesses such
as diabetes, cardiovascular diseases, liver inflammation,
metabolic disorders, and various tumors (6, 7, 14, 90–92). The
prevalence of obesity is increasing immensely around the globe.
Henceforth, researchers are trying to develop novel anti-obesity
arsenals to combat and halt this rate. Multiple studies have
reported the therapeutic potential and health-promoting
properties of polysaccharides from natural dietary sources such
as mushrooms, seaweed, cereals, and herbs (93–99). The role of
polysaccharide from edible and medicinal mushrooms in
treating various illnesses is well documented (15, 58, 96).
Among them, D. indusiata is an edible, as well as a medicinal
mushroom that possesses several biological properties (64, 67,
100–102). To date, limited research has been done on the
biological effect of D. indusiata in reducing obesity. Therefore
we have used HFD-induced obesity mouse model to unravel the
effect of D. indusiata polysaccharide (DIP) in reducing the
dietary-induced obesity via modulating intestinal microbiota
and inflammatory-related signaling pathways. In this study,
our findings demonstrated that DIP polysaccharide reduced
HFD-induced obesity parameters and inflammatory cascades
via restoring intestinal microbial shift, regulating inflammatory
reactions, and modulating intestinal integrity.
A

B

FIGURE 6 | Effect of DIP on pro-inflammatory and anti-inflammatory cytokines in the serum. (A) Pro-inflammatory cytokines TNF-a, IL-6, IL-1b. (B) Anti-inflammatory
cytokines IL-4 and IL-10 levels in the serum were analyzed by ELISA kits. The data was acquired from three independent experiments and is presented as mean ± SEM
(n = 8). ####p < 0.0001 HFD group vs control group; *p < 0.05, ***p < 0.001 and ****p < 0.0001 HFD group vs HFD + DIP(L) or HFD + DIP(H) groups.
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Excessive lipid accumulation is one of the major factors in the
development of obesity (103). In our study, HFD feeding led to a
significant increment of bodyweight, epididymal and subcutaneous
fat (Figure 2). Moreover, a substantial increase in liver weight was
observed in the HFD alone group in comparison with the control
group. However, DIP treatment reduced body weight gain
significantly on the 7th and 8th weeks. Furthermore, fat deposition
and liver weight were also reduced significantly at a high dose of
DIP. These results indicate the protective effect of D. indusiata
derived polysaccharide in reducing HFD-induced obesity
parameters. Research literature shows that HFD-induced obesity
often results in hyperinsulinemia and hyperglycemia (15, 104). As
expected, our study showed elevated fasting glucose and insulin
levels (Supplementary Figure S2). Interestingly, DIP
supplementation at various doses attenuated the higher levels of
glucose and insulin in HFD mice.

Several studies have suggested the enlarged epididymal adipose
tissue size and lower number of adipocytes in obese individuals and
in in-vivo studies (15, 105–107). Moreover, changes in the cascades
of transcriptional factors, such as higher expression of adipogenic
(PPAR-g, C/EBPa, SREBP-1c) and lipogenic genes (ACC-1, FAS)
are documented in obesity associated studies (15, 75–79). In
corroboration with these studies, we also found an increment of
adipocytes size and increase expression of adipogenic and lipogenic
genes in the HFD alone group in comparison with the control
group. On the contrary, DIP treatment resulted in reducing
adipocyte area and decreasing the expression of adipogenic genes
Frontiers in Endocrinology | www.frontiersin.org 11
in adose-dependentmanner (Figure3).Additionally, hypertrophic
adipocytes are attributed to secrete pro-inflammatory cytokines
during the development of obesity (108, 109). The increased
production of pro-inflammatory cytokines such as “TNF- a, IL-
1b, IL-6, and MCP-1” in turn, triggers chronic inflammatory
reactions and enhance insulin resistance (7, 84). Thus, regulation
of inflammatory cytokine production is one of the most critical
factors to reduce inflammatory reactions and insulin resistance. In
the present study, we observed a higher production of pro-
inflammatory cytokines (TNF-a, IL-1b, IL-6, and MCP-1)
(Figures 6 and 7) and lower levels of anti-inflammatory cytokines
(IL-4, IL-10) (Figure 6) upon HFD feeding. Interestingly, DIP
intervention for fourweeks antagonized the inflammatory reactions
by reducing pro-inflammatory cytokines and increasing anti-
inflammatory cytokines.

HFD feeding induces liver injury by elevating liver associated
biomarkers such as (ALT andAST) and also enhances TG and FFA
due to increased adiposity (15, 80, 81, 110). In agreement with the
earlier findings, in our study, we also found higher levels of ALT,
AST, TG, and FFA in HFD mice (Figure 4). Nonetheless, we
observed that DIP reduced these markers in a dose-dependent
manner suggesting the efficacy of DIP polysaccharide in
ameliorating liver health and adiposity.

The higher level of pro-inflammatory cytokines as a result of
high-fat diet intake are well known to trigger inflammatory
reactions that tend to disrupt intestinal barrier, reduced TJP
expression, and increased endotoxemia (LPS). The HFD induced
A B

DC

FIGURE 7 | Effect of DIP on adipokine expression in epididymal adipose tissue and liver. The relative mRNA expression of (A) TNF-a (B), IL-6, (C) IL-1b, and
(D) MCP-1 expression levels in the epididymal adipose tissue and hepatic tissue were analyzed with qPCR. The data is expressed as mean ± SEM (n = 8) based on
one-way ANOVA Tukey post hoc analysis. Significant differences were identified at ####p < 0.0001, HFD group vs control group; *p < 0.05, **p < 0.01, ***p < 0.001
and ****p < 0.0001, HFD group vs HFD + DIP(L) group or HFD group vs HFD + DIP(H) group.
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increased inflammatory cytokine production, and increased level
of LPS levels in blood circulation leads to systemic and low grade
inflammation via activation of the TLR4 signaling pathway (46).
Our study demonstrated similar outcomes in HFD-induced
Frontiers in Endocrinology | www.frontiersin.org 12
obese mice. The endotoxin levels were quite enhanced in the
HFD alone group comparatively to the control and DIP treated
groups (Figure 5A). Moreover, TJP expression was down-
regulated in the HFD alone group (Figures 5B, C). On the
A

B

D E

F G

C

FIGURE 8 | Impact of DIP on gut microbiota diversity and abundance in HFDmice. (A) Rank abundance curve, (B) Shannon index, (C) bar graph for Shannon index,
(D) observed species, (E) bar graph for observed species showing species diversity, richness, and abundance. (F) Cluster dendrogram and (G) principal coordinate analysis
(PCoA) representing the level of similarities or dissimilarities among different treatment groups (n = 4). The data is presented as the mean ± SEM, (n = 4) using one-way ANOVA
followed by the Tukey post hoc test. Significant differences were identified at ####p < 0.0001, HFD group vs control group; ****p < 0.0001, HFD group vs HFD + DIP(L) group or
HFD group vs HFD + DIP(H) group. The clustering of PCoA analysis is statistically supported by the one-way ANOVA using ANOSIM test (R = 0.4722, p = 0.002).
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contrary, DIP supplemented groups have shown decreased LPS
levels and upregulated expression of TJPs compared to the HFD
alone group. Altogether, these results suggested the modulatory
effect of DIP supplementation in ameliorating intestinal integrity
and inflammatory markers.

The intestinal microbiome is receivingmuch attention in recent
years as studies have shown the association of gut microbiota in
several inflammatory and obesity-related disorders (111–114). One
of the most significant factors in obesity is the composition of the
intestinal microbiome as gut microbes play an essential role in
Frontiers in Endocrinology | www.frontiersin.org 13
nutrient acquisition, vitamin production, energy, and fat storage
regulation (27, 28, 115). Therefore, to determine the link between
gutmicrobiota and obesitymay provide amuch deeper insight into
dealing with obesity-related health issues. Diet has a significant
impact on the composition of the intestinal microbiome. HFD has
been reported to cause an imbalance of intestinal microbiome
composition in obese individuals, and the disruption of intestinal
microbiome homeostasis has been linked to the progression of
obesity and related metabolic disorders (38, 116). On the contrary,
multiple studies have shown themodulatory effect offiber-rich diet
A
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FIGURE 9 | The relative abundance of gut microbiota at phylum and class level in HFD mice. (A) The relative abundance of bacterial taxa at the phylum level.
(B) Abundant flora at the phylum level (%). (C) Relative abundance of bacterial taxa at the class level. (D) Abundant flora at the class level (%). The data is shown as
mean ± SEM, (n = 4) using one-way ANOVA followed by the Tukey post hoc test. Significant differences were identified at #p < 0.05, ##p < 0.01, HFD group vs
control group, and **p < 0.01, HFD group vs HFD + DIP(H) group.
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such as prebiotics, polyphenols, oligosaccharides, and
polysaccharides on gut microbiome community (24, 48, 49, 58,
117). Manipulation of microbial flora through dietary fiber
(prebiotics) and non-digestible oligosaccharides or polysaccharide
canpositively influence themicrobial communitybypromoting the
growth of beneficial flora (118, 119). To demonstrate the impact of
polysaccharide treatment on gut microbiome community in HFD
mice, we employed 16S rRNA Illumina miSeq sequencing. Our
results showed that polysaccharide supplementation positively
changed the signature of the intestinal microbiome in DIP
intervention groups. On the contrary, we found reduced OTUs at
all taxonomic levels in HFD alone group compared to the control
and DIP treated groups (Supplementary Table S4). The alpha and
beta diversities were assessed to determine the bacterial diversity,
richness, abundance, and similarities among various treatment
groups (Figure 8) (Supplementary Table S3). Previous studies
have suggested lower bacterial diversity and richness in obese
individuals in comparison with lean individuals (41, 120). The
alpha diversity indices were measured with the rank abundance
curve, Shannon index, and observed species. In agreement with the
earlier findings, our study reflected similar outcomes, i.e., the HFD
alone group presented the lowest bacterial diversity followed by
HFD +DIP(L). The highest bacterial diversity was observed for the
control andHFD+DIP(H) group suggesting the beneficial effect of
polysaccharide intervention. Moreover, the distribution pattern of
microbial communities in various treatment groups presented as
beta diversity indices (cluster dendrogram and PCoA) (Figures 8F,
G). The cluster dendrogramandPCoAanalysis revealed anobvious
clustering of all the experimental groups, and the difference was
statistically significant. The microbial composition in the control
group and DIP intervention groups showed more closeness
compared to the HFD alone group. HFD group clustered far
from the control and DIP supplemented groups indicating the
significance of polysaccharide ingestion in the diet as a modulatory
compound for the bacterial community. Approximately 90% of the
gut microbiota is composed of Firmicutes, Bacteroidetes,
Proteobacteria, and Actinobacteria. Previous studies have shown
alteration in the composition of these most abundant gut flora, i.e.,
higher Firmicutes to Bacteroidetes ratio in obese mice models (42,
87). In our study, Firmicutes, Bacteroidetes, Proteobacteria,
Actinobacteria, TM7, and Deferribacteres were evidenced where
Firmicutes and Bacteroidetes were the most abundant flora at
Phylum level. At the class level, the major phyla were Bacteroidia,
Clostridia, Bacilli, andGammaproteobacteria. Overall, perturbation
of bacterial flora was observed at Phylum and Class levels in the
HFD group. In agreement with previous studies, we also found an
increasedabundanceofFirmicutes and reducedBacteroidetes levels
in the HFD alone group (Figures 9A, B). Moreover, at the class
level, the HFD group depicted an increased abundance of Bacilli,
Gammaproteobacteria (belongs to Firmicutes and Proteobacteria)
and decrease abundance of Bacteroidia (belongs to Bacteroidetes)
compared to the control and DIP treated groups (Figures 9C, D).
Interestingly HFD-induced bacterial alterations were reversed by
DIP supplementation partially at low dose and greatly at a high
dose, suggesting the modulatory impact of polysaccharide
supplementation on gut microbiome composition.
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In our research, we adopted the approach used by Liang Z et al.,
Lee H-G et al., and An Y et al. (71, 121, 122) and therefore, we
haven’t randomized the treatment within each cage and kept each
individual cage for one specific treatment i.e., one cage for the high
dose treatment and another for the low dose treatment. However,
randomizing the treatment within the cages could be another
efficient approach, which can help to eliminate the cage/litter
effect as well. Hence, we will adopt this methodology in future
studies and will compare the outcomes with the reported results.
CONCLUSIONS

In conclusion, our study demonstrated that HFD supplementation
for eight weeks led to obesity in mice that is associated with
increased body weight, epididymal and subcutaneous fat
accumulation, increase fasting glucose and insulin levels, elevated
lipogenic gene expression, increase inflammatory reactions, such as
high endotoxin (LPS) and pro-inflammatory cytokines secretion,
reduced TJP expression and gut dysbiosis. D. indusiata derived
crude polysaccharide (DIP) supplementation resulted in alleviating
HFD-inducedobesity bymitigating obesity related parameters. The
inflammatory cascades, such as the increment of pro-inflammatory
cytokines, elevated lipogenic genes expression and higher
endotoxin levels, were regulated. The expression levels of TJPs
were enhanced, and the inflammatory reactions were modulated.
The bacterial taxa shift is corrected by reducing the abundance of
bacterial taxa involved inobesity, such asFirmicutes,Clostridia, and
Bacilli. Comprehensively, our findings suggested that D. indusiata
possesses anti-obesogenic and anti-inflammatory properties.
However, further research is needed on the purification and
identification of the bioactive compounds of crude polysaccharide
from D. indusiata that are responsible for mitigating obesity and
associated parameters in a mice model as well as to test the effect of
DIP in clinical trials.
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