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A B S T R A C T

Chronic skin wounds impose immense suffers and economic burdens. Current research mainly focuses on acute
wound management which exhibits less effective in chronic wound healing. Growth differentiation factor 11
(GDF11) has profound effects on several important physiological processes related to chronic wound healing, such
as inflammation, cell proliferation, migration, angiogenesis, and neurogenesis. This review summarizes recent
advances in biology of chronic wounds and the potential role of GDF11 on wound healing with its regenerative
effects, as well as the potential delivery methods of GDF11. The challenges and future perspectives of GDF11-
based therapy for chronic wound care are also discussed.

The Translational Potential of this Article: This review summarized the significance of GDF11 in the modu-
lation of inflammation, vascularization, cell proliferation, and remodeling, which are important physiological
processes of chronic wound healing. The potential delivery methods of GDF11 in the management of chronic
wound healing is also summarized. This review may provide potential therapeutic approaches based on GDF11
for chronic wound healing.
1. Introduction

The process of cutaneous skin healing includes four phases: hemo-
stasis, inflammation, proliferation, and remodeling. There is a cascade of
factors involved in wound healing along with local and systemic re-
sponses including oxygenation, inflammation, ischemia etc. [1]. Char-
acters associate with chronic wounds include prolonged inflammation
phase, antibiotic resistance and failure of skin cells responding to
reparative signals [2]. Over the past decades, chronic wounds have
imposed immense suffer and economic burden to both patients and
health care system. There are burning needs to study and develop
methods to promote chronic wound healing.

Skin wound care includes standard therapies such as disinfection and
dressing changes, and advanced therapies such as negative pressure,
biophysical stimulation, cell therapy, and biological dressings, with pros
and cons on different aspects [3]. Among the biological factors, growth
differentiation factor 11 (GDF11), also named as bone morphogenetic
.
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protein 11 (BMP11), is an important member of transforming growth
factor-β (TGF-β) superfamily. GDF11 was firstly discovered in 1999, then
many studies have reported its structure, signaling pathways and role in
development and pathology [4]. It is known that GDF11 could modulate
a series of physiological events including inflammation, cell prolifera-
tion, migration and vascularization that are closely related to wound
healing process [5,6]. GDF-11 has been shown to promote wound healing
in diabetic rat limb ischemia model [7]. The current review summarizes
the recent advances in biology and current treatments of chronic wounds,
with particular focus on the potential therapeutic role of GDF11 in
chronic wound repair.

2. Skin wound healing physiology

2.1. Normal wound healing process

Wound healing following skin injuries includes four sequential and
highly coordinated stages of hemostasis, inflammation, proliferation, and
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Abbreviation

GDF11 growth differentiation factor 11
BMP11 bone morphogenetic protein 11
TGF-β transforming growth factor-β
ECM extracellular matrix
PDGF platelet-derived growth factor
EGF epidermal growth factor
FGF fibroblast growth factor
MSCs mesenchymal stem cells
GDF8 growth differentiation factor 8
PCSK5 protein convertase subtilisin/kexin type 5
ActRIs activin type I receptors
ActRIIs activin type II receptors
ALK4/5/7 activin receptor-like kinases 4/5/7
R-Smads receptor-Smads
MAPK mitogen-activated protein kinase
GASP-1/2 GDF-associated serum protein 1/2

HDACs histone deacetylases
TNF-α tumour necrosis factor-α
iNOS inducible nitric oxide synthase
IL-6 interleukin-6
IL-1β interleukin-1β
TLR2 toll-like receptor 2
NF-κB nuclear factor-κB
RA rheumatoid arthritis
BMDMs bone marrow-derived macrophages
rGDF11 recombinant GDF11
NSCs neural stem cells
BM-EPCs bone marrow EPCs
ICY intracerebral hemorrhage
PLGA poly(lactic-co-glycolic) acid
NHS N-hydroxysuccinimide
EDC 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
MAP mussel-adhesion protein
PDGF-BB platelet-derived growth factor BB
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remodeling. The hemostasis phase is activated immediately upon injury
to prevent blood loss through blood clotting and formation of fibrin
matrices [2]. The degranulated platelets serve as the earliest promoter of
inflammation and recruit immune cells, fibroblasts to the lesion by
releasing chemoattractants and mitogens [8]. The recruited neutrophils
and macrophages then coordinate for the hereafter healing process.
Neutrophils create a favorable microenvironment to kill bacteria and
remove cellular debris at the injury sites. Then large amounts of mono-
cytes migrate from vasculature into the wound areas, differentiate into
macrophages that orchestrate the healing process [9]. Macrophages that
exert pro-inflammatory functions are defined as “M1 phenotype
responsible for phagocytosis, cytokines production to initiate healing.
The activated macrophages are referred as “M2 phenotype”, which
stimulate epithelialization, angiogenic, cell proliferation and facilitate
granulation tissue formation [10]. In the proliferation phase, keratino-
cytes proliferate and migrate towards the wound to form a new epithelial
coverage. Other cells, such as fibroblasts and endothelial cells, also
participate in synthesis of extracellular matrices (ECM) and vascular
network formation in the wound [11]. Once wound has been
re-epithelialized, remodeling occurs that ECM generally matures and
undergoes certain changes to increase apoptosis of myofibroblasts and
forming a collagen-rich region, hence the tensile strength, and function of
new skin tissue [12].
2.2. Chronic wound pathophysiology

Chronic wound refers to the disrupted healing process and does not
heal in a timely and orderly manner, despite the use of current wound
management methods. Chronic wounds have imposed immense suffers
and economic burden to patients and health care system. A study in U.S.
reported that nearly 8.2 million patients suffered chronic wounds and
related complications in 2014, with the estimated cost of US$28.1 to
US$96.8 billion [13]. Many factors attribute to chronic wounds. Local
factors such as infection, oxygenation, necrosis, circulation and systemic
factors including overall health status, age, obesity, smoking [14] may
determine the fate of wound healing.

Infection is a common factor leading to chronic wound. On the
infected wound surfaces, biofilms were often found as aggregated bac-
terial or fungal colonies attached and embedded into ECM network
which trigger extensive inflammation such as massive neutrophilic
infiltration and M1 macrophage accumulation [15]. Overactive or pro-
longed inflammatory responses lead to release abundant proteases that
degrade the ECM and impede keratinocyte migration [16].
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Pro-inflammatory M1 macrophages accumulate in response to local
environmental stimuli which do not allow their transformation towards
M2 phenotype. As a result, increased levels of pro-inflammatory cyto-
kines and matrix metalloproteinases were accumulated in the wound,
leading to ECM degradation and impaired tissue repair [17]. In the
chronic wound, skin resident cells (fibroblasts, keratinocytes, etc.) have
impaired proliferation and migration ability and respond poorly to
stimulating growth factors [18].

Diabetes is one of the major contributors to non-healing skin wounds.
Diabetic ulcers are usually accompanied with neuropathy, infection, and
impaired blood supply. Peripheral nerve damage causes sensation loss
loses and increased incidents of skin lesion, combined with ischemia and
impairment of repair capacity, eventually leading to non-healing wounds
[19,20]. In diabetic ulcers, neutrophils have impaired anti-bactericidal
activities and monocytes become less responsive to chemokines. How-
ever, inflammation phase in diabetic wounds can last up to 2 weeks or
longer. Aberrant polarization of macrophages also exist in diabetic
wounds [21]. Fibroblasts from diabetic ulcers significantly reduced
proliferation and collagen synthesis and delayed apoptosis, owing to a
lack of growth factors and impairment of endothelial cells functions [22].

In addition to diabetic ulcers, bedsores, which is also called pressure
ulcers and usually appeared in patients with prolonged hospital stay after
receiving surgery. Risk factors contributing to bedsores include poor
nutrition, aging, affected blood circulation and so on. Similar to diabetic
ulcers, bedsores are associated with numerous complications, nerve
damage, persistent infection, long-term inflammation and so on. Besides,
there have been numerous studies indicating that patients with diabetes
have higher risk of developing bedsores than non-diabetic patients [23,
24].

3. Current therapy

3.1. Basic wound management

There are a series of well-established wound care guidelines with
favorable outcomes. However, chronic wounds often require extra multi-
disciplinary approaches because of the complexity [14]. For instance,
wound infection has long been treated empirically through applying an-
tibiotics and through debridement to remove bacterial biofilms and
non-viable tissues [25]. Besides, different types of wound dressings were
used to prevent infection and promote chronic wounds healing [26,27]. In
the meanwhile, surgical offloading, vacuum therapy, and topical oxygen
therapy have been proven to be effective as well [2,28,29].



Table 1
The effects of GDF11 on inflammation.

Cell type/animal
model

GDF11 application
(dose)

Effects Possible
mechanisms

Mouse
rheumatoid
arthritis (RA)/
BMDMs (bone
marrow-
derived
macrophage)
[6]

In vitro: 50 ng/mL In vitro: inhibited
inflammatory
reaction induced
by TNF-α in
BMDMs

Suppressed
NF-κB
signaling
pathway

In vivo: 0.1 mg/kg
every 2d, tail vein
injection

In vivo:
� Protected

against
development of
arthritis

� Inflammatory
factors in joints
greatly reduced
after rGDF11
treatment

BEAS-2B cells/
Acute lung
injury [59]

In vitro:
overexpressed GDF11
in BEAS-2B cells via
lentiviral transfection

In vitro:
significantly
reduced the
expression of
inflammatory
factors induced by
LPS

Reduce the
activity of
TLR2/
HMGB1/NF-
κB signaling
pathway

In vivo: 100 μg/kg,
subcutaneously
injection

In vivo: attenuated
LPS-induced lung
inflammatory
response in mice

RAW264.7
macrophages/
Psoriasis-like
skin
inflammation
(IMQ-induced
mice model)
[60]

In vitro: 50 ng/mL In vitro: inhibited
TNF-α-mediated
inflammatory
reaction in
macrophage

Suppressed
NF-κB
Signaling
pathway

In vivo: 0.1 mg/kg
every day for 1 week

In vivo:
� inhibited

inflammatory
factors after
rGDF11
treatment

� inhibited the
infiltration of
inflammatory
cells and
thickening of
epithelium

High fat diet-
induced
obesity [61]

In vivo:
Hydrodynamically
injected with 25 μg
(dose: 1 mg/kg) of
pLIVE-GDF11
plasmid DNA to
overexpress GDF11 in
mice, tail vein
injection

In vivo: prevented
HFD-induced
inflammation and
macrophage
infiltration

Activated
TGF-β/Smad2,
AMPK, and
PI3K/AKT/
FoxO1
signaling
pathways
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3.2. Advanced therapies

There were a plenty of advanced wound care technologies available
now, including hyperbaric oxygen and negative pressure therapy, bio-
physical stimulation, novel debridement devices, biological agents for
anti-inflammatory response and promoting angiogenesis [30–32]. Bio-
logical therapies mainly refer to growth factors application, skin sub-
stitutes, and cell therapies. Commercially available products for chronic
wounds management include platelet-derived growth factor (PDGF),
epidermal growth factor (EGF), and fibroblast growth factor (FGF) [33].
Skin substitutes are dermal decellularized matrices for facilitating dermal
cell infiltration [34]. Stem cell therapy uses bone marrow or placental
tissue derived mesenchymal stem cells (MSCs) which have been reported
as an alternative therapy for non-healing wounds [35,36].

4. The potential of GDF11 in chronic wound healing

4.1. The discovery, structure, synthesis and localization of GDF11

In 1997, McPherron et al. firstly identified growth/differentiation
factor-8 (GDF8 or myostatin), a novel TGF-β family member [37]. In
1999, they reported a gene closely related to GDF8 as GDF11 (also named
BMP11) [38]. In the same year, Nakashima et al. cloned and character-
ized GDF11 from rat and they found that GDF11 was first strongly
expressed at 8.5 days post coitus and showed the highest expression level
in the tail bud during embryogenesis [39]. Subsequently Gamer et al.
cloned human and mouse GDF11 successfully [40].

The GDF11 gene was located at human chromosome 12q13.2 (Gen-
Bank AF100907) with the genomic sequence (GRCh38). It encodes
GDF11 protein containing 407 amino acids, displaying all the identified
features of BMP family proteins, such as an RXXR proteolytic processing
site, a signal sequence for secretion, and a carboxyl terminal region
containing a highly conserved pattern of cysteine residues. However,
GDF11 sequence is more close to TGF-β proteins in the C-terminal
domain [40]. The GDF11 protein is cleaved and activated by pro-protein
convertase subtilisin/kexin type 5 (PCSK5) [41]. Ge et al. reported that
the precursor 50 kD GDF11 was cleaved between residues gly119 and
asp120 through proteolytic process, and then released as a 37 kD
pro-domain and a 12.5 kD mature GDF11 [42]. The GDF11 protein is
possibly processed in rough endoplasmic reticulum and Golgi apparatus,
the protein is then translated into lysosomes and peroxisomes respec-
tively or directly secreted into extracellular microenvironment, which
still needs to be further clarified [4].

GDF11 is widely expressed in embryonic tissues such as limbs, tail
bud, and nervous system as well as in adult retina, epithelium, odonto-
blasts, spleen, skeletal muscle, and specific regions of the brain [4,43,44].
The expression level of GDF11 varies widely in mRNA and protein level
in different tissues. The mRNA level is high in human seminal vesicle,
cerebral cortex, endometrium, and cervix, while the GDF11 protein is
high in cerebral soft tissue, cortex, adrenal gland, testis, caudate, and
hippocampus [45].

4.2. The signaling pathway and function of GDF11

Similar to other members of TGF-β family, GDF11 transmits signals
through type I and type II receptors, both of which belongs to trans-
membrane serine/threonine kinases. Firstly, GDF11 binds to primary
ligand binding receptors, activin type II receptors (ActRIIs) containing
ActRIIA and ActRIIB, then GDF11 recruits activin type I receptors (Act-
RIs) including activin receptor-like kinases 4,5,7 (ALK4, ALK5 and ALK7)
to form complexes with ActRIIs [46]. GDF11 activates Smad and
non-Smad signaling pathways after binding to its receptors, known as
canonical and non-canonical signaling pathways, and downregulate
other TGF-β family proteins. In canonical pathways, GDF11 phosphory-
lates receptor-Smads (R-Smads) including Smad2/3 and Smad1/5/8, and
then R-smads recruit co-mediator Smad, Smad4 to translocate into the
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nucleus and regulate the target genes transcription together with nuclear
cofactors [47]. It is known that GDF11 activates smad2/3 signaling
pathway and non-canonical MAPK (p38, JNK, ERK1/2) pathways to
decrease the size and function of the nucleolus, reduce cellular anabolism
and protein synthesis [48].

As a critical regulator of numerous physiological processes, endoge-
nous GDF11 in the central nervous system suppresses the proliferation of
adult neural progenitor through the ALK5 receptor [49]; And GDF11
expressed in embryonic pancreatic epithelium regulate NGN3þ islet
progenitor cell differentiation in parallel or downstream of the Notch
pathway [50]; Besides, studies has shown that Cor-1 cells express a TGFβ
receptor complex containing ActRIIB/ALK5 subunits, which was regar-
ded as natural ligand for GDF11, providing transcriptional basis for
GDF11 regulation in neural stem cell transcription [51]. GDF11 also
shows impact in cancer biology. For example, GDF11 expressed in
triple-negative breast cancer cells plays a tumor-suppressive role, how-
ever, bioactive GDF11 generally failed to mature due to PCSK5 deficiency



Table 2
The effects of GDF11 on cell viability, proliferation & migration.

Cell type/animal
model

GDF11 Dose Effects Possible
mechanisms

C17.2 neural stem
cells [62]

In vitro: 12.5–100
ng/mL

In vitro: slightly
increased cell
viability

—

Mouse heart-
derived MSCs
[63]

In vitro: 50 ng/mL In vitro:
enhanced
viability of MSCs

TGF-β receptor/
Smad2/3/YME1L-
OPA1 signaling
pathway

Endothelial
progenitor cells
[64]

In vitro: 40 ng/mL In vitro:
increased
migration

Smad2/Smad3
pathway

Neural stem cells
(NSCs) in old
mice (22–23-
month-old) [5]

In vivo: 1 mg/kg,
systemic
administration

In vivo: pro-
proliferation
effects

—

Table 3
The effects of GDF11 on angiogenesis & neurogenesis.

Cell type/
animal model

GDF11 dose Effects Possible
mechanisms

Bone marrow
EPCs (BM-
EPCs)/
Diabetic
Limb
Ischemia [7]

In vitro: 50 ng/mL In vitro: improved
tube formation and
migration of EPCs

Activated TGF-
β/Smad and AKT/
HIF1α Signaling
pathwayIn vivo: injected

daily with 0.1 mg/
kg rGDF11 for 2
weeks,
intraperitoneally

In vivo: improved
vascularization,
increased numbers
of CD31þ vessels

Rat stroke [67] In vivo: 0.1–0.3
mg/kg/day
rGDF11, tail vein
injection

In vivo: promoted
angiogenesis and
subsequently
increased function
of cerebral
microvessels

Activated cerebral
ALK5/Smad2/3
pathways

Intracerebral
hemorrhage
(ICY) in
elderly rats
[68]

In vivo: 0.1 mg/kg,
intraperitoneal
injection

In vivo: enhanced
the neurogenesis
and attenuated
neurological
behavior
impairment after
ICY

—

Primary brain
capillary
endothelial
cell/aging
mouse [70]

In vitro: 40 ng/mL In vitro: improved
tube formation and
migration of EPCs

Increased the
phosphorylation of
smad2/3þ cells

In vivo: 0.1 mg/kg/
day for 4 weeks

In vivo:
� Enhanced

vascular
remodeling in
aging mouse
brain

� Increased Sox2þ
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in triple-negative breast cancer cells [52]. Apart from functioning in
embryonic development, nervous system, and cancer endogenously,
circulating GDF11 may also be a good candidate for the prevention of
age-related heart hypertrophy and skeletal muscle dysfunction.

Multiple proteins have inhibitory effects on GDF11-mediated
signaling pathways. For example, GDF-associated serum protein 1/2
(GASP-1/2) could block the binding of GDF11 to type II receptor [53].
Some proteins form inactive complexes with GDF11 to antagonize its
functions [54]. In addition, some inhibitory proteins such as Smad7 are
also capable of inhibiting GDF11 activity [55]. Transcription factor his-
tone deacetylases (HDACs) have also been found to reduce GDF11 gene
expression [56].
neural stem cell
populations

Aging mouse
[69]

In vivo: 1 mg/kg,
intraperitoneal
injection

In vivo: increased
neuroblasts
migration and
neurogenesis in
subventricular zone

—

Mouse BM-
MSCs [89]

— In vitro: lower
expression of
GDF11 in MSCs
reduced their
differentiation into
endothelial-like
cells
In vivo: promoted
MSCs
differentiation into
endothelial-like
cells
4.3. The potential effects of GDF11 on wound healing processes

There haves been a wide range of studies demonstrating that GDF11
has important roles in aging, cardiovascular health and muscle function,
etc. [57–59]. Despite only a few studies addressed the direct effects of
GDF11 on wound healing, GDF11 has positive effects on physiological
processes relating to wound healing, such as inflammation, angiogenesis,
neurogenesis, cell proliferation, migration as detailed below.

4.3.1. The effects of GDF11 on inflammation
Normal wound healing requires an appropriate degree of inflamma-

tion, with balanced pro- and anti-inflammatory factors. In contrast,
chronic wound has sustained pro-inflammation phase that disrupts the
healing process and leads to delayed healing. GDF11 has immunomod-
ulatory effects on pro- and anti-inflammatory aspects during tissue
repair, as summarized in Table 1. Recombinant GDF11 has been shown to
significantly inhibit TNF-α-induced inflammation in macrophages and
reduce pro-inflammatory factors production, such as TNF-α, iNOS, IL-6,
IL-1β via inhibiting NF-κB signaling pathway [6,59,60]. Overexpression
of GDF11 gene in BEAS-2B cells also significantly attenuated the levels of
inflammation and apoptosis in the cells and inhibited the activity of
TLR2/HMGB1/NF-κB signaling pathway, which is an important mecha-
nism in LPS-induced acute lung injury [59]. Consistently, systemic
administration of GDF11 suppressed inflammation and prevented the
development of arthritis and relieved acute lung injury damage [6,59],
and GDF11 reduced the infiltration of proinflammatory cells, inhibited
TNF-α-mediated inflammatory responses and thickening of epithelium in
Psoriasis-like skin inflammation [60]. Besides, GDF11 gene transfer
through hydrodynamic injection of pLIVE-GDF11 plasmid in mice pre-
vented high fat diet-induced inflammation and macrophage infiltration,
which is achieved through TGF-β/Smad2 and PI3K/AKT/FoxO1 path-
ways [61].

4.3.2. The effects of GDF11 on cell viability, proliferation & migration
In the proliferative phase of wound healing, dermal fibroblasts and
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keratinocytes rapidly proliferate and migrate to cover the wounds while
cells from chronic wounds are less active. GDF11 has shown the capacity
to promote cell viability, proliferation, and migration of certain cell types
as listed in Table 2. For example, Wang et al. reported GDF11 could
slightly increase C17.2 neural stem cells viability after 24 h treatment by
adding 12.5–100 ng/mL GDF11 in vitro [62]. MSCs showed a significant
increase in cell viability when cultured with 50 ng/mL recombinant
GDF11 (rGDF11) or transduced with lentiviral vector carrying GDF11
gene (MSCsLV�GDF11) via TGF-β receptor/Smad2/3/YME1L-OPA1
signaling pathway [63]. In addition, Finkenzeller et al. demonstrated
that GDF11 promoted cell migration in culture media without FBS,
resulting in strong activation of the Smad2/Smad3 pathway [64]. Ozek
et al. concluded GDF11 showed pro-proliferation effects on neural stem
cells (NSCs) after systemic administration of GDF11 in vivo [5].

4.3.3. The effects of GDF11 on angiogenesis & neurogenesis
Both angiogenesis and neurogenesis are important biological events

in wound healing. Following injury, angiogenic capillaries sprout and
gradually invade the ECM proteins-rich wound clot, forming a
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microvascular network throughout the granulation tissues within a few
days [65]. The newly formed blood vessels also highly associated with
neurogenesis, which in turn contributes to skin regeneration and it is
known that vasculopathy and neuropathy lead to impaired healing in
chronic wounds [66].

As listed in Table 3, GDF11 has shown promising effects on angio-
genesis as well as neurogenesis during tissue repair. Systematic replen-
ishment of GDF11 improved angiogenic function of endothelial
progenitor cells (EPCs) and subsequently promoted angiogenesis and
enhanced blood flow in diabetic rats with hind limb ischemia via TGF-
β/Smad and AKT/HIF1α signaling pathway [7]. In rats stroke model,
GDF11 increased numbers of CD31þ/Ki67þ vascular EPCs, promoting
angiogenesis and functional recovery through activation of cerebral
ALK5/Smad2/3 pathways [67]. In addition, GDF11 showed neuro-
protective effect and ameliorated neurological behavior impairment in
the intracerebral hemorrhage model in elderly rats [68]. Similarly,
GDF11 promoted neuroblasts migration and neurogenesis in sub-
ventricular zone of aged mice [69]. What's more, systemic administration
of recombinant GDF11 induced a rejuvenating effect on the aging brain
by increasing not only vascular remodeling but also neurogenesis in
mice. Evidence showed that GDF11 significantly promoted tube forma-
tion and migration of EPCs through an increase in SMAD phosphoryla-
tion cascade in vitro and improved vascular remodeling in old mice.
Additionally, GDF11 also increased Sox2þ neural stem cell populations in
vivo [69,70]. Therefore, GDF11 holds a great potential in modulating
vascular and neurogenic functions.

5. The potential delivery methods of GDF11 in chronic wound
model

Over the past two decades, there has been numerous wound models
successfully developed, including in vitro, ex vivo, in vivo and in silico
models. Even though in vitro models are standardized, easily controlled
and fewer ethical concerns, they have limitations in mimicking complex
physiological process and representing underlying mechanism in chronic
wound healing. Based on these, ex vivo and in vivo models are commonly
used and serve as gold standard tools for experimental studies of chronic
wound healing [71].

In published studies, GDF11 was usually administered through
intraperitoneal or intravenous injection to attain its systemic effects.
There is very few report on the tropical application of GDF11 for skin
chronic wound healing study. Effective and sustained delivery of GDF11
in chronic wound healing are needed.

Many functionalized biomaterials have been developed to improve
protein retention, stability, and enable controlled delivery. Engineered
biomaterials that can adapt to complex microenvironment of chronic
wounds may prevent protein degradation and maximize their biological
functions in the repair process. The potential drug delivery strategies for
the application of GDF11 in the treatment of chronic wound are also
proposed in this review.
5.1. Ex vivo and in vivo models of chronic wounds

Ex vivo models are typically collected skin samples from human,
mouse, rat, pig, rabbit, etc. and created wounds by biopsy punch,
burning, etc., and then cultured under artificial conditions. Ex vivomodel
can provide an alternative and relatively robust and method for early
screening of the efficacy of multiple treatments. As the most frequently
used models, in vivo models have been developed from the simplest
excisional wounds to the much more complex ones (burn, diabetic ulcers,
pressure ulcers, venous leg ulcers, etc.) to help mimic the complicated
pathophysiology of chronic wound healing. Based on the previous
studies, each of these models provides valuable comprehension for po-
tential innovative treatments such as GDF11 related therapeutics for
chronic wounds [72].
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5.2. Covalent coupling strategies for GDF11

In contrast to physical encapsulation, covalent coupling tethers pro-
teins to a biomaterial via irreversible chemical bonds, which can prolong
local protein presentation and controlled release. Covalent coupling
strategies can be applied when long-term protein presentation for
continuous cellular responses is needed. Protein retention can be ach-
ieved using polymers such as PLGA through carbodiimide crosslinker
chemical reaction, specifically through N-hydroxysuccinimide (NHS) and
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) coupling [73].
Wang et al. recently reported the increased retention of VEGF on
mussel-adhesion protein (MAP)-coated stents via carbodiimide chemistry
[74]. However, covalent linking may cause protein denaturation and
impairment of overall bioactivity. Hence covalently immobilizing GDF11
to biomaterials may achieve sustained protein retention in chronic
wound, whereas the possible reduction of protein bioactivity shall be
taken into consideration. Methods of site-specific protein modification
that can recall functional groups of proteins without losing their bio-
activities may be adopted [75].

5.3. Physical encapsulation of GDF11

Physical encapsulation of proteins may protect the proteins from
rapid degradation and achieve controlled release, based on matrix
porosity and degradation kinetics of materials. For example, both the
mesh size and degradation rate of hydrogel can be controlled by
adjusting the polymer molecular weight. Jain et al. reported a PEG-based
hydrogel platform for sustained release of platelet-rich plasma proteins
by modulating mesh size and hydrolytic degradation [76]. Biomaterial
properties such as elasticity and swelling ability related to their mesh
sizes and influence the release rate of proteins. Modifying the ratio of
comonomers will alter the degradation kinetics of biomaterials. For
instance, increasing hydrophobicity through increasing the lactic acid to
glycolic acid ratio led to the reduction of hydrolysis rate and degradation
rate of biomaterials [77]. It is worth noting that physical encapsulation of
proteins may have burst release pharmacokinetics in vivo, for example,
poly(lactic-co-glycolic) acid (PLGA) nanoparticles, a commonly used
materials, always exhibit burst release of cargoes which may reduce the
therapeutic effects of the agents [78].

GDF11 protein is cleaved to active mature ligands that are�25 kDa in
total but the active mature ligand may be reduced to �12.5 kDa under
reducing conditions [79]. Considering the chronic wound healing pro-
cess is slow, the burst release of GDF11 shall be avoided through double
encapsulation, such as encapsulating PLGA nanoparticles into PEG mi-
crospheres or hyaluronic acid/methylcellulose hydrogel to prevent burst
release happening [80].

5.4. ECM-based graft materials

ECM mainly consists of collagens, glycoproteins and hydroxyapatite
which is the most popular scaffold for promoting skin chronic wound
healing. Acellular dermal ECM promotes skin cells infiltration and
migration during healing process [34]. ECM-based materials mimic the
natural affinity between proteins and ECM through electrostatic
payload-vehicle interactions, and achieve controlled protein release. The
affinity interactions between protein and ECM can be adjusted through
modifying sulphate content of ECM [81], adding binding peptides to the
protein [82] or synthesizing fusion proteins that consist of peptide- or
ECM-binding domains [83].

ECM-based biomaterials are skin friendly, which can facilitate skin
cells infiltration, migration, and vascularization as natural bio-scaffolds.
Moreover, the electrostatic interactions between proteins and ECM-based
biomaterials show high affinity and prolong retention of incorporated
proteins [61]. However, caution is needed that the binding and release of
GDF11 to ECM in vivo may be disrupted since many proteins can also
interact with ECM molecules, and the non-specificity may lead to



Fig. 1. The potential role of GDF11 in physiological and pathological processes during wound repair in four physiological phases, including hemostasis, inflammation,
proliferation, and remodeling. At hemostasis stage, GDF11 possibly regulates platelets migration. At inflammation stage, GDF11 has potential to inhibit pro-
inflammation via modulating macrophages or neutrophils. At proliferation stage, GDF11 possibly regulates proliferation and migration of fibroblasts and keratino-
cytes. Besides, GDF11 also promotes angiogenesis and neurogenesis through acting on EPCs and neural cells. At remodeling stage, GDF11 may continue regulate
fibroblasts, EPCs, etc., to help collagen arrangement and angiogenesis.
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off-target effects and unpredictable protein release [84].

5.5. Biomaterials for capturing endogenous GDF11

Biomaterials that provide specific protein depots may be applied to
encapsulate endogenous proteins or biomolecules at the targeted sites
aiding tissue repair. Rinker et al. reported the use of heparin-based bio-
materials to sequestrate endogenous heparin-binding growth factors such
as FGF-2 and IGF, which can significantly promote chondrogenic dif-
ferentiation and cartilage repair in the localized area [85]. It is still un-
known whether GDF11 is expressed during wound repair. The protein
level of GDF11 is hardly detected in normal skin [45], and to design a
biomaterials to attract or enrich GDF11 in wound site is a challenge,
requiring further careful exploration.

6. Clinical prospect of GDF11 in chronic would healing

Due to the pivotal roles in multiple biological processes, GDF11 has
been regarded as potential therapeutic target to several diseases, such as
muscular dystrophy and sarcopenia in the elderly, anemia caused by
dyserythropoiesis, colorectal cancer, etc. [56,86,87]. For the manage-
ment of chronic wounds, GDF11 also has broad clinical prospects based
on the effects of inhibiting pro-inflammation and enhancing cell prolif-
eration and angiogenesis like PDGF-BB. Similarly, GDF11 would be also
applied in the treatments of chronic wounds, such as diabetic ulcers,
venous leg ulcers and periodontal defect with topical administration.
However, there is still a long way to go in the translation of GDF11, more
preclinical studies including safety and efficacy of GDF11 are required
before moving to clinical trials in the future [88].

7. Conclusion

Here we reviewed the biology of skin chronic wound healing and the
current treatments. Skin chronic wound is still a huge clinical challenge.
The potential role of GDF11 in physiological and pathological processes
during wound repair, its involvement in inflammation, cell proliferation,
118
migration, angiogenesis, and neurogenesis has been reviewed (Fig. 1). In
conclusion, GDF11 has a great translational potential to become a new
biological factor to promote chronic wound healing. Methods for GDF11
preparation, encapsulation and controlled release are discussed. How-
ever, there are only a few studies reported the promotive effect of GDF11
in wound healing. Investigations are needed to verify its efficacy and
determine the best timing (which phase), dosage, duration for GDF11
delivery in chronic wound healing. The cellular source and distribution
of GDF11, the active domain of GDF11 structure in skin wound shall be
also carefully explored. The use of biomaterials for GDF11 local sustained
release will maximize its therapeutic effects, which may lead to a
translational bioactive material for chronic wound treatment.
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