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Abstract: Inherited mutations in the Krebs cycle enzyme fumarate hydratase (FH) 

predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC). Loss of FH 

activity in HLRCC tumours causes accumulation of the Krebs cycle intermediate fumarate 

to high levels, which may act as an oncometabolite through various, but not necessarily 

mutually exclusive, mechanisms. One such mechanism, succination, is an irreversible  

non-enzymatic modification of cysteine residues by fumarate, to form S-(2-succino)cysteine 

(2SC). Previous studies have demonstrated that succination of proteins including 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), kelch-like ECH-associated protein 1 

(KEAP1) and mitochondrial aconitase (ACO2) can have profound effects on cellular 

metabolism. Furthermore, immunostaining for 2SC is a sensitive and specific biomarker 

for HLRCC tumours. Here, we performed a proteomic screen on an FH-mutant tumour and 
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two HLRCC-derived cancer cell lines and identified 60 proteins where one or more 

cysteine residues were succinated; 10 of which were succinated at cysteine residues either 

predicted, or experimentally proven, to be functionally significant. Bioinformatic enrichment 

analyses identified most succinated targets to be involved in redox signaling. To our 

knowledge, this is the first proteomic-based succination screen performed in human 

tumours and cancer-derived cells and has identified novel 2SC targets that may be relevant 

to the pathogenesis of HLRCC. 

Keywords: fumarate hydratase; succination; cysteine; renal cancer; hereditary leiomyomatosis 

and renal cell cancer (HLRCC); oncometabolite; biomarker; reactive oxygen species (ROS) 

 

1. Introduction 

The accumulation of metabolites resulting from cancer-associated mutations in genes encoding  

key metabolic enzymes has been proposed to drive oncogenic transformation [1]. Mutations in genes 

encoding isocitrate dehydrogenase 1 and 2 (IDH1/2), succinate dehydrogenase (SDH) and fumarate 

hydratase (FH) can lead to high intracellular levels of D-2-hydroxyglutarate (D2HG), succinate and 

fumarate, respectively [2]. Due to their structural similarity to 2-oxoglutarate (2OG), these oncometabolites 

have been demonstrated to modulate the activities of 2OG-dependent dioxygenases; a family of 

enzymes with diverse functions including epigenetic regulation, oxygen sensing, collagen maturation 

and regulation of translation [3–8]. Fumarate is an electrophile that reacts with cysteine residues in 

susceptible proteins to form S-(2-succino)cysteine (2SC), a biomarker of mitochondrial stress in obesity 

and diabetes, and of FH-deficiency in hereditary leiomyomatosis and renal cell cancer (HLRCC) 

patients [9–12]. Succination is a non-enzymatic and irreversible reaction, which seems to preferentially 

target cysteine residues with low pKa values [13], although other factors affecting the susceptibility  

to succination may exist. To date, several studies have detected succinated proteins in a variety of 

animal and cellular models and have identified functional consequences associated with a range of 

cellular responses including activation of the Nuclear factor (erythroid-derived 2)-like 2 (NRF2)-mediated 

antioxidant pathway, inhibition of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and mitochondrial 

aconitase (ACO2) activity, and amplification of reactive oxygen species (ROS) signaling [13–16]. 

Here, we performed a proteomic-based screen using tandem mass spectrometry (MS/MS) to analyse an 

FH-deficient tumour and two FH-mutant cell lines derived from metastatic renal cancers. We identified 

60 succinated proteins, 10 of which were modified at cysteine residues either predicted or experimentally 

proven to be functionally important. This study has expanded our knowledge of the succinated 

proteome in FH-associated renal cancer and identified novel 2SC targets, which may contribute to 

HLRCC tumourigenesis. 
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2. Results and Discussion 

2.1. HLRCC Tumours and Derived Cell Lines Exhibit High Levels of 2SC 

In order to verify the presence of succinated proteins in the FH-mutant tumour-derived cell lines 

UOK262 [17] and NCC-FH-1 (unpublished cell line kindly provided by Prof. Bin Teh), we performed 

immunoblotting using an anti-2SC antibody [18]. Strong immunoreactivity for 2SC was observed  

in both of these HLRCC cell lines but was absent in a normal renal proximal tubular epithelial cell  

line (RPTC) [19,20] (Figure 1B). Similarly immunohistochemistry detected high levels of 2SC in an  

FH-mutant (HLRCC) type 2 PRCC though was absent in the stromal tissue (Figure 1C) and sporadic 

type 2 PRCC (data not shown and as previously described [11]). We therefore performed a proteomic 

screen to identify succinated proteins in the cell lines and HLRCC tumour described above. 

Figure 1. Hereditary leiomyomatosis and renal cell cancer (HLRCC) tumours and  

tumour-derived cell lines express high levels of 2SC. (A) Immunoblotting confirms the 

presence of fumarate hydratase (FH) in the control human renal proximal tubular epithelial 

(RPTC) cell line (CTL), the presence of the mutant FH allele in the UOK262 (UOK) 

HLRCC-derived cell line as previously described and absence of FH protein in the NCC-

FH-1 (NCC) HLRCC-derived cell line. β-actin levels were used as a loading control for 

each cell line. (B) Immunoblotting for 2SC clearly shows an absence of 2SC expression in 

the control cell line but high expression of 2SC in the FH-mutant cell lines (UOK and 

NCC). (C) Positive 2SC immunoreactivity (indicated by brown staining) is evident in the 

tumour cells of an FH mutant type 2 PRCC (HLRCC PRCC) but absent in the stromal 

tissue (blue staining). 
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2.2. Multiple Proteins Are Succinated in FH-Mutant Cells and Tumours 

As previously reported, 2SC modification is very specific to cells with elevated fumarate [11,21,22] 

and we did not detect this modification in FH wildtype RPTC cells or tumour stromal tissue cells by 

immunoblotting and immunohistochemistry respectively (Figure 1). However, in the two HLRCC-derived 

cell lines and tumour, succinated peptides (as determined by a 116 Da mass shift [11]) were detected in 

60 different proteins (Table 1). Furthermore, 10 of these proteins were succinated on cysteine residues 

with potentially regulatory functions (Table 1; red font). 

Table 1. Succinated proteins in HLRCC cancers and derived cell lines. 

Uniprot ID 
Protein 
Symbol 

Protein Name 
Succination 

Site 
Source 

P53396 ACLY ATP-citrate synthase  C20 T, N 

Q09666 AHNAK 
Neuroblast differentiation-associated protein 
AHNAK  

C1833 T, N 

P15121 AKR1B1 Aldose reductase  C299 T 

P54886-1 ALDH18A1 
Isoform Long of Delta-1-pyrroline-5-carboxylate 
synthase  

C612 T, U, N 

Q5TYW2 ANKRD20A1 Ankyrin repeat domain-containing protein 20A1  C789 N 

P04083 ANXA1 Annexin A1  C324 T, U 

P16615-1 ATP2A2 
Isoform 1 of Sarcoplasmic\endoplasmic reticulum 
calcium ATPase 2  

C997 N 

Q86VP6-1 CAND1 
Isoform 1 of Cullin-associated NEDD8-dissociated 
protein 1  

C942 U 

P20810-2 CAST Isoform 2 of Calpastatin  C408, C413 N 

P23528 CFL1 Cofilin-1  C139 T, U 

Q9NX63 CHCHD3 
Coiled-coil-helix-coiled-coil-helix  
domain-containing protein 3, mitochondrial 

C112 T 

Q8N5K1 CISD2 CDGSH iron-sulfur domain-containing protein 2  C92 T 

Q00610-1 CLTC Isoform 1 of Clathrin heavy chain 1  C870 U, N 

P55060-1 CSE1L Isoform 1 of Exportin-2  C272 U, N 

Q6NSH3 CT45A5 Cancer\testis antigen family 45 member A5  C22 U 

Q9UBR2 CTSZ Cathepsin Z  C92 U 

Q9H773 DCTPP1 dCTP pyrophosphatase 1  C162 T 

P17844 DDX5 Probable ATP-dependent RNA helicase DDX5  C200 U 

P33316-2 DUT 
Isoform 2 of Deoxyuridine 5'-triphosphate 
nucleotidohydrolase, mitochondrial  

C3 N 

P07814 EPRS Bifunctional aminoacyl-tRNA synthetase  C105 T, U 

O95571 ETHE1 Protein ETHE1, mitochondrial  C170 T, U, N 

P21333-2 FLNA Isoform 2 of Filamin-A  
C717, 
C2543 

T, U, N 

O75369-1 FLNB Isoform 1 of Filamin-B  C2501 N 

Q9HA64 FN3KRP Ketosamine-3-kinase  C24 T 

P02794 FTH1 Ferritin heavy chain  C91 T 

P04406 GAPDH Glyceraldehyde-3-phosphate dehydrogenase  C152 T, U, N 



Metabolites 2014, 4 644 

 

 

Table 1. Cont. 

Uniprot 
ID 

Protein 
Symbol 

Protein Name 
Succination 

Site 
Source 

P07203 GPX1 Glutathione peroxidase 1  C202 T 
P53701 HCCS Cytochrome c-type heme lyase  C39 U, N 
P00492 HPRT1 Hypoxanthine-guanine phosphoribosyltransferase  C106 T 
Q14197 ICT1 Peptidyl-tRNA hydrolase ICT1, mitochondrial  C82 N 
Q9NWZ3 IRAK4 Isoform 1 of Interleukin-1 receptor-associated kinase 4  C13 U, N 
O14880 MGST3 Microsomal glutathione S-transferase 3  C150, C151 T, N 
P46013-1 MKI67 Isoform Long of Antigen KI-67  C1285 U 
P35579-1 MYH9 Isoform 1 of Myosin-9  C988 T, U, N 
Q9NX24 NHP2 H\ACA ribonucleoprotein complex subunit 2  C18 T 

P53384-1 NUBP1 
Isoform 1 of Cytosolic Fe-S cluster assembly  
factor NUBP1  

C22, C25 T 

Q9H6K4-1 OPA3 Isoform 1 of Optic atrophy 3 protein  C164 N 
Q99497 PARK7 Protein DJ-1  C106 T, N 
Q9Y570-1 PPME1 Isoform 1 of Protein phosphatase methylesterase 1  C381 N 
Q06830 PRDX1 Peroxiredoxin-1  C173 T 

P30048 PRDX3 
Thioredoxin-dependent peroxide reductase, 
mitochondrial  

C108 T 

P30041 PRDX6 Peroxiredoxin-6  C91 T, U, N 
Q15185 PTGES3 Prostaglandin E synthase 3  C58 T, U, N 
P49023-2 PXN Isoform Alpha of Paxillin  C535, C538 U 
P63000-1 RAC1 Isoform A of Ras-related C3 botulinum toxin substrate 1  C178 T 
P54727 RAD23B UV excision repair protein RAD23 homolog B C390 U 
P50914 RPL14 Ribosomal protein L14 variant  C42 T 
P05386 RPLP1 60S acidic ribosomal protein P1  C61 T 
P31947-1 SFN Isoform 1 of 14-3-3 protein sigma  C38 T, U, N 
Q15005 SPCS2 Signal peptidase complex subunit 2  C17, C26 T, U, N 

P42224-1 STAT1 
Isoform Alpha of Signal transducer and activator of 
transcription 1-alpha\beta  

C492 N 

Q00059 TFAM Transcription factor A, mitochondrial  C246 T, N 
Q12931 TRAP1 Heat shock protein 75 kDa, mitochondrial  C573 N 
Q9H4B7 TUBB1 Tubulin beta-1 chain  C12 T, U, N 
P10599 TXN Thioredoxin  C73 T 

P09936 UCHL1 Ubiquitin carboxyl-terminal hydrolase isozyme L1  
C90 (T), 

C152 (T, U) 
T, U 

P45880-2 VDAC2 
Isoform 2 of Voltage-dependent anion-selective 
channel protein 2  

C76 T, U, N 

Q9Y277-1 VDAC3 
Isoform 1 of Voltage-dependent anion-selective 
channel protein 3  

C65 T, U, N 

P08670 VIM Vimentin  C328 T 
P54577 YARS Tyrosyl-tRNA synthetase, cytoplasmic  C424 U 

2SC targets identified an HLRCC tumour and tumour-derived cell lines. Succinated proteins are listed 

alphabetically by gene symbol, with succinated cysteine residues indicated. Targets highlighted in red 
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indicate cysteine residues with either predicted or experimentally proven roles in protein function [23]. 

T = HLRCC tumour, U = UOK262 cell line, N = NCC-FH-1 cell line. 

2.3. Succination Preferentially Targets Proteins Involved in Redox Regulation 

Hierarchical clustering and gene ontology analyses suggest that most of the succination targets 

identified are involved in redox homeostasis or subject to ROS regulation (Table 2). This is unsurprising 

considering the critical roles of cysteine residues in cellular oxidative stress regulation (reviewed in [24]). 

Previous studies have demonstrated the functional consequences of protein succination, including 

inhibition of the metabolic enzymes GAPDH and ACO2 [15,16], loss of KEAP1 function resulting  

in constitutive NRF2 expression in type 2 papillary RCC (PRCC) and Fh1-deficient mice [25,26] and 

modification of reduced glutathione (GSH) in FH-deficient cells resulting in the amplification of  

ROS-dependent signaling [14]. In this study, we identified succination of Cys-106 at the active site  

of Parkinson disease protein 7 (PARK7) (also known as protein DJ-1) (Figure 2), a redox-sensitive 

protein that is implicated in cellular protection against oxidative stress in Parkinson’s disease (reviewed 

in [27]), mediates cellular responses to hypoxia [28] and can regulate metabolic pathways in RCC [29]. 

Interestingly PARK7 is closely associated with NRF2 through interaction with Superoxide dismutase 1 

(SOD1) [30] (Figure 3). Further, NRF2 and PARK7 are prognostic factors in lung cancer and upregulated 

in inflammatory multiple sclerosis lesions [31,32]. Other succinated cysteine residues that may be 

critical to protein functions (highlighted in red font in Table 1) include Cys-299 of Aldose reductase 

(AKR1B1), which catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing 

compounds to their corresponding alcohols with a broad range of catalytic efficiencies. Evidence 

suggests that Cys-299 may regulate the kinetic and inhibition properties of AKR1B1, but does not 

participate in catalysis [33]. Peroxiredoxins are antioxidant enzymes that control cytokine-induced 

peroxide levels and thereby mediate signal transduction in mammalian cells [34]. We observed 

succination of peroxiredoxin 1 and 3 (PRDX1 and PRDX3) at Cys-173 and Cys-108, respectively, 

both of which participate in intermolecular disulfide formation and are crucial to their molecular 

function [34,35]. Succination was also detected in thioredoxin at a crucial residue Cys-73, which acts 

as a donor for nitrosylation of target proteins and therefore its succination may potentially impair  

the S-nitrosylating activity of thioredoxin [36]. Isoform 1 of Cytosolic Fe-S cluster assembly factor 

Nucleotide binding protein 1 (NUBP1) is succinated at residues Cys-22 and Cys-25, both of which are 

involved in iron-sulfur cluster (4Fe-4S) assembly [37]. Succination of NUBP1 may lead to enzymatic 

inhibition, similar to that observed in ACO2 [15]. Further, microsomal glutathione S-transferase 3 

(MGST3) is succinated at Cys-150 and Cys-151, both of which are also targets of S-palmitoylation [38]. 

Site-directed mutagenesis of cysteines for some of the above proteins provides experimental evidence 

for their functional roles (Table 3). Therefore modification by succination may be predicted to cause 

either a loss or gain of function in these proteins. 
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3. Experimental Section 

3.1. Cell Lines and Human Tissue Samples 

Cell lines were cultured as previously described [39]. The UOK262 cell line was a kind gift from 

Dr Marston Linehan [17], and the NCC-FH-1 cell line from Professor Bin Teh (characterized by 

Choon Kiat Ong, Min Han Tan, Bernice Wong and Victoria Perrier-Trudova). The RPTC cell line was 

a kind gift from Professors Albert Ong and Lorraine Racusen. Anonymized human tumour and normal 

samples were collected with full ethical approval (MREC 05/Q1605/66) as approved by the Oxford 

Centre for Histopathology Research. 

Table 2. Gene ontology analyses of succinated proteins. 

Category Term Count % p Value 

GOTERM_BP GO:0000302~response to reactive oxygen species 7 11.67 3.50 × 10−7 

GOTERM_BP GO:0042542~response to hydrogen peroxide 6 10.00 2.06 × 10−6 

GOTERM_BP GO:0042743~hydrogen peroxide metabolic process 5 8.33 2.14 × 10−6 

GOTERM_MF GO:0051920~peroxiredoxin activity 4 6.67 3.35 × 10−6 

GOTERM_BP GO:0034614~cellular response to reactive oxygen species 5 8.33 4.57 × 10−6 

GOTERM_MF 
GO:0016684~oxidoreductase activity, acting on peroxide 
as acceptor 

5 8.33 7.57 × 10−6 

GOTERM_MF GO:0004601~peroxidase activity 5 8.33 7.57 × 10−6 

GOTERM_BP GO:0034599~cellular response to oxidative stress 5 8.33 1.98 × 10−5 

GOTERM_BP GO:0042744~hydrogen peroxide catabolic process 4 6.67 3.31 × 10−5 

GOTERM_BP GO:0006979~response to oxidative stress 7 11.67 3.32 × 10−5 

GOTERM_MF GO:0016209~antioxidant activity 5 8.33 3.59 × 10−5 

GOTERM_BP GO:0070301~cellular response to hydrogen peroxide 4 6.67 3.96 × 10−5 

GOTERM_BP GO:0045454~cell redox homeostasis 5 8.33 9.06 × 10−5 

GOTERM_BP GO:0010035~response to inorganic substance 7 11.67 1.15 × 10−4 

GOTERM_BP 
GO:0006800~oxygen and reactive oxygen species 
metabolic process 

5 8.33 1.15 × 10−4 

GOTERM_BP GO:0019725~cellular homeostasis 9 15.00 3.23 × 10−4 

GOTERM_BP GO:0042592~homeostatic process 11 18.33 4.20 × 10−4 

GOTERM_BP GO:0055114~oxidation reduction 10 16.67 5.67 × 10−4 

Functional classification of succinated proteins using DAVID Bioinformatics Resources [40–42] ranked by 

statistical significance. Proteins were classified using the gene ontology functional annotation for biological 

processes (GOTERM_BP) and molecular function (GOTERM_MF). p-values < 0.001 were considered to be 

highly significant. 

3.2. Proteomics and Mass Spectrometry 

Tumour and normal kidney tissue and cells were homogenized and sonicated in Urea-SDS buffer 

and protein extracts separated by SDS-PAGE and processed for trypsin digestion and MS/MS analyses 

as previously described [15]. Database searches were performed against UniProt/SwissProt [23] or 

International Protein Index [43] database using Mascot [44] or CPFP 1.3.0 [45]. For label-free quantitation 

of succinated peptides, samples were analyzed in three technical replicates. 
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3.3. Immunohistochemistry (IHC) and Immunoblotting (IB) 

Analyses of tumours and cell lines by IHC and IB were performed as previously described [11,46]. 

The 2SC antibody was a kind gift from Dr Norma Frizzell, the fumarase antibody from Nordic Labs 

(Copenhagen, Denmark), and the β-actin antibody purchased from Abcam (Cambridge, UK). 

Figure 2. MS/MS spectra showing succination of the active site (C106) of PARK7/DJ-1. 

 
MS/MS spectra showing either succination (2SC) or pyridylethylation (PEC) at cysteine 106 in the 

100GLIAAICAGPTALLAHEIGFGSK122 peptide of human DJ-1 derived from human HLRCC tumour tissue 

and normal renal tissue, respectively. Fragment ions are indicated for the peptide sequence and are labelled as 

follows: b: N-terminal fragment ion; y: C-terminal fragment ion; +: singly charged fragment ion and ++: 

doubly charged fragment ion. Both theoretical mass and detected mass (in brackets) are given for each 

assigned fragment ion. Matching fragment ion peaks between the two peptide species that do not contain the 

modified residue are highlighted in green, whereas peptide fragments of different mass that contain the 

modified residue are highlighted in red. 
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Figure 3. Protein interactions of the redox-sensitive succination target PARK7/DJ-1. 

 
PARK7 acts as a positive regulator of androgen receptor- dependent transcription, prevents aggregation of 

SNCA, protects neurons against oxidative stress and cell death and potentially functions as a redox-sensitive 

chaperone and as a sensor for oxidative stress. Figure generated by STRING v9.1 [47,48]. 

 

SNCA synuclein, alpha (non A4 component of amyloid precursor) 

 

AR androgen receptor 

 

PARK2 Parkinson disease (autosomal recessive, juvenile) 2, parkin 

 

SOD1 superoxide dismutase 1, soluble 

 

PIAS2 protein inhibitor of activated STAT, 2 

 

PTEN phosphatase and tensin homolog; Tumour suppressor 

 

MTA1 metastasis associated 1 

 

AKT1 v-akt murine thymoma viral oncogene homolog 1 

 

MAP3K5 mitogen-activated protein kinase kinase kinase 5 

 

NDUFA8 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8 

3.4. Gene Ontology Analysis 

Functional classification of succinated proteins was performed using DAVID Bioinformatics 

Resources v6.7 (National Institute of Allergy and Infectious Diseases (NIAID), NIH, Frederick, MD, 

USA) [41,42]. Protein network analysis for PARK7 was generated using STRING v9.1 [47,48]. 
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Table 3. Mutational studies on cysteine residues observed to be succinated in FH-mutant 

tumours and cancer cells. 

Uniprot 
ID 

Protein 
Symbol 

Succination 
Site (S) 

Mutational Data References 

O14880 GAPDH C150, C151 

C → S: Abolishes S-acylation; when associated with 
S-151.  
C → S: Abolishes S-acylation; when associated with 
S-150 

[38] 

Q99497 PARK7 C106 

C → A: Abolishes oxidation, association with 
mitochondria and protease activity.  
No effect on chaperone activity. Reduced binding to 
OTUD7B.  
C → A: Reduced localization in lipid rafts; when 
associated with A-46.  
C → D: Abolishes oxidation and association with 
mitochondria. No effect on chaperone activity.  
C → S: No effect on mitochondrial translocation. 
Reduced protease activity. 

[49–55] 

P10599 TXN C73 

C → D: Strongly reduced S-nitrosylation of CASP3.  
C → S: Loss of nitrosylation, and loss of  
S-nitrosylating activity towards CASP3. Retains 
interaction with APEX1 and transcription activation; 
when associated with S-62 and S-69.  
C → S: Retains its reducing activity. 

[36,56,57] 

P09936 UCHL1 C90 C → S: Abolishes enzymatic activity. [58–60] 

Site-directed mutagenesis of cysteine residues that are targeted for succination, has provided evidence of their 

functional roles, which may be affected by succination. 

4. Conclusions 

Recent technological advances in mass spectrometry have facilitated high throughput screening of 

post-translational modifications in proteins. Here, we analysed cell lines and a tumour derived from 

HLRCC patients to try to identify the scope of the succinated proteome under FH-deficient settings. 

Succination of cysteine residues is a candidate mechanism for FH-associated oncogenesis, which is 

corroborated by genetic and biochemical evidence generated from the analyses of Fh1 knockout mice 

and gene expression profiling and exome sequencing of type 2 RCC [25,26,61]. Interestingly, some 

peptides were detected in only one or two of the three FH-mutant samples. However, this is most 

probably due to the heterogeneity of RCC [62,63]; both the UOK262 and NCC-FH-1 cell lines were 

generated from RCC metastases from different patients ([17] and personal communication with Dr Teh). 

Furthermore, due to lack of antibody-based enrichment technologies, the “succinome” thus identified 

is biased towards abundant proteins in a cell line specific manner. Therefore we cannot rule out the 

possibility that the same succinated proteins were present in all samples, albeit at different levels, some 

below the threshold of detection. Given that 2SC was originally identified in diabetic rats and induced 

as a marker of mitochondrial stress in adipocytes resulting from glucotoxicity [12,16,18,64], it is likely 

that succination resulting from elevated levels of intracellular fumarate targets proteins involved  



Metabolites 2014, 4 650 

 

 

in a diverse range of cellular and biological processes, including microtubule dynamics [65], the 

NRF2-mediated antioxidant response [24,25], altered metabolism [15,16,39] and as identified here, 

redox homeostasis. Further studies are required to test the functionality and biological consequences of 

these modifications. 
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