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Abstract: Optically anisotropic materials show important advantages in constructing polarization-
dependent optical devices. Very recently, a new type of two-dimensional van der Waals (vdW)
material, known as α-phase molybdenum trioxide (α-MoO3), has sparked considerable interest
owing to its highly anisotropic characteristics. In this work, we theoretically present an anisotropic
metamaterial absorber composed of α-MoO3 rings and dielectric layer stacking on a metallic mirror.
The designed absorber can exhibit ultra-narrowband perfect absorption for polarizations along [100]
and [001] crystalline directions in the visible light region. Plus, the influences of some geometric pa-
rameters on the optical absorption spectra are discussed. Meanwhile, the proposed ultra-narrowband
anisotropic perfect absorber has an excellent angular tolerance for the case of oblique incidence.
Interestingly, the single-band perfect absorption in our proposed metamaterials can be arbitrarily
extended to multi-band perfect absorption by adjusting the thickness of dielectric layer. The physical
mechanism can be explained by the interference theory in Fabry–Pérot cavity, which is consistent
with the numerical simulation. Our research results have some potential applications in designs of
anisotropic optical devices with tunable spectrum and selective polarization in the visible light region.

Keywords: perfect absorber; α-phase molybdenum trioxide (α-MoO3); metamaterials; polarization

1. Introduction

Two-dimensional (2D) materials with atomic-scale thicknesses, i.e., graphene [1], black
phosphorus (BP) [2], hexagonal boron nitride (h-BN) [3], and transition metal dichalco-
genides (TMDs) [4], have been much concerned due to their distinctive optical and electrical
properties over the past few years [5]. Different from the optoelectronic devices made
of conventional bulk materials, these layered materials may provide exciting opportu-
nities for designing novel optoelectronic applications. Very recently, a new type of 2D
van der Waals (vdW) material, known as α-phase molybdenum trioxide (α-MoO3), has
been experimentally demonstrated and sparked considerable interest due to its highly
anisotropic characteristics stemming from the unique crystalline structure [6–8]. In fact,
most of the van der Waals materials, i.e., molybdenum disulphide (MoS2), in which the
central Mo atom in MoS2 is sandwiched between two Sulphur atoms, are uniaxial crystals.
However, α-MoO3 is actually a type of natural biaxial hyperbolic crystal, and it exhibits
pristine in-plane hyperbolic dispersion. The structure of α-MoO3 is constructed by layers
of distorted octahedral crystal [9], in which Mo atoms are separately linked with three
different oxygen atoms, i.e., symmetrically bridging Os, terminal Ot, and asymmetric Oa.
Each α-MoO3 layer consists of two sub-layers, which are created by corner-sharing rows
and edge-sharing zigzag rows. Therefore, α-MoO3 crystal materials can be combined into
metamaterials to achieve more degree of freedom for manipulating light-matter interaction
at nanoscale. Moreover, the strong anisotropy of α-MoO3 materials could be useful for
a wealth of applications ranging from color filter [10], polarization converter [11], and
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molecular sensors to in-plane imaging [12]. Besides, some other exotic physical phenomena
were observed by exploiting phonon polaritons excited in α-MoO3. For instance, Qu et al.
reported a tunable planar focusing nanophotonic device working in the mid-infrared re-
gion [13]. Hu et al. experimentally explored the topological transitions and photonic magic
angle in twisted bilayered α-MoO3 flakes [14].

Metamaterials, known as artificial composite materials composed of periodical sub-
wavelength scale nanostructure, possess some exotic electromagnetic characteristics that are
not found in natural materials [15,16]. To date, tremendous interest has been attracted for
their extensive applications [17,18]. As an important branch of metamaterials, metamaterial
absorber manifests intriguing strategies for its relatively flexible design in comparison with
the conventional electromagnetic absorber based on bulky components. Since the first
experimental demonstration [19], many types of metamaterial absorbers with narrow-band
absorption [20,21], broadband absorption [22,23], and even multi-band absorption [24,25],
have been proposed owing to their wide applications, such as solar cells [26], plasmonic
sensors [27], molecular detectors [28], and selective thermal emitters [29]. By reasonably
designing the geometric structure, the operating frequencies of metamaterial absorbers can
be run from microwaves to optical spectral regime. So far, various of 2D materials-based
metamaterials have also been proposed for obtaining tunable perfect absorption or optical
enhancement absorbance [30–37]. For example, Thongrattanasiri et al. demonstrated the
complete optical absorption in periodically patterned graphene sheet [38]. Sang et al.
proposed a two-band absorber utilizing the patterned MoS2 [39]. Zhu et al. presented
tunable wide-angle and ultra-broadband perfect absorbers by using BP-dielectric multi-
layer stacking structure and BP-dielectric-metallic hybrid architecture [40,41], respectively.
However, to our knowledge, the understanding of the interaction of light with α-MoO3
materials is still in its infancy, and few works have been reported on the electromagnetic
absorbers based on α-MoO3 [42–44], especially for ultra-narrowband anisotropic perfect
absorption, which are of significance for some applications, such as photodetectors, spectral
imaging, and sensors.

In this work, we theoretically propose and numerically demonstrate an ultra-narrowband
anisotropic metamaterial absorber composed by top α-MoO3 ring and a dielectric layer
stacked on metallic mirror. By the appropriate design of this structure, ultra-narrowband
perfect absorption can be achieved in visible frequency for polarization along both x- and
y-directions. Meanwhile, the proposed anisotropic metamaterial absorber has an excellent
angular tolerance for the case of oblique incidence. More interestingly, the single-band perfect
absorption in our proposed metamaterials can be arbitrarily extended to multi-band perfect
absorption by adjusting the thickness of dielectric layer. The physical mechanism can be
explained by the interference theory in Fabry–Pérot cavity, which is consistent with the nu-
merical simulation. Moreover, the electromagnetic simulations performed by finite-difference
time-domain (FDTD) method match well with the results of theoretical analysis. Our investi-
gation shows promising potential in sensing, multispectral detection, filters and multiplexing
binding bio-molecular detection, etc.

2. Structural Design and Simulation

Figure 1a shows schematically the unit cell of proposed anisotropic perfect absorber,
which consists of top α-MoO3 ring and dielectric layer stacked on a gold mirror. The
relevant geometric parameters and values are listed in the caption of Figure 1. As far as the
process of fabrication, the multilayer structure can be fabricated by using physical vapor
deposition techniques, which has been a well-known method for scalable and repeatable
synthesis. In our design, the complex dielectric function of α-MoO3 can be described as
follows [10]:

ε(ω) = ε∞ +∑
i

ω2
pi

ω2
oi+ω2−iγiω

(1)
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where i indicates the number of Lorentz oscillators, ε∞, ωpi, ωoi, and γi refers to the high
frequency dielectric constant, the plasma frequency, the eigenfrequency, and the scattering
rate of the ith Lorentz oscillator, respectively. The parameters used in Equation (1) to
calculate the permittivity tensors of α-MoO3 are listed in Table 1 [10].
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Figure 1. (a) The structure unit cell diagram of the proposed absorber consisting of top α-MoO3 ring
and SiO2 layer stacked on a gold substrate. In this design, the geometrical parameters are listed as
follows: H = 200 nm, h = 300 nm, w = 40 nm, D = 360 nm, p = 500 nm, and the thickness of α-MoO3

ring t = 105 nm. (b) The real part and imaginary part of the α-MoO3 permittivity in the visible region.
The inset is the schematic of the α-MoO3 material with layered structure. The yellow and red spheres
represent molybdenum and oxygen atoms, respectively.

Table 1. Parameters used in Equation (1) to obtain the permittivity tensors of α-MoO3 in the visible range.

Polarization ε∞ ωpj [cm−1] ω0 [cm−1] γj [cm−1]

x 5.065 21,672 27,019 1342.2
y 4.502 29,078 32,271 2027.1

Figure 1b illustrates the real and imaginary parts of α-MoO3 permittivity along [100]
and [001] directions extracted from Ref. [10]. Full field electromagnetic calculations were
performed by using Lumerical FDTD Solution software package. The three-dimensional
FDTD simulations were made in a unit cell area, and the non-uniform mesh is chosen, and
the mesh size gradually increases outside the α-MoO3 material. Following the crystallo-
graphic direction conventions, the x-, y-, and z-directions represent the [100], [001], and
[010] directions, respectively. In calculations, the plane waves were illuminated along the
negative z-direction, and periodic boundary conditions were used in x- and y-directions.
In general, the optical absorption can be expressed as A = 1 − R − T, where R and T
indicate the reflection and transmission, respectively. Considering that the thickness of the
gold mirror has exceeded the skin depth of the light, the transmission T is equal to zero.
Therefore, the absorption coefficient A can be abbreviated as A = 1 − R. In addition, the
dielectric layer is chosen to be SiO2 with a refractive index of 1.45, and the permittivity of
gold is described by Drude model:

ε(ω) = ε∞ −
ω2

p

ω2 + iωγ
(2)

where ω is the angular frequency, and the plasma frequency ωp is 1.37 × 1016 rad/s, the
scattering rate γ = 4.08 × 1013 rad/s, and ε∞ = 1.

3. Results and Discussion

Figure 2 gives the optical absorption spectra of the designed metamaterial absorber
when the polarization directions of incident lights are along the [100] and [001] crystal
direction of α-MoO3, respectively. The simulation results show that the proposed absorber
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can achieve perfect absorption in both [100] and [001] crystal directions. It is shown
from Figure 2a that the designed nanostructure can achieve an absorptivity of 99.72%
at the wavelength of 631.4 nm when the polarization direction of light is along [100]
crystal direction of α-MoO3. Meanwhile, there exists a weak absorption peak at 597.2 nm
with absorptivity of 16.2%. In contrast, when the polarization direction of light is along
[001] crystal direction of α-MoO3, the absorptivity reaches up to 99.28% at the resonant
wavelength of 604.1 nm as shown in Figure 2b. The shift of resonance wavelength is
attributable to the strong anisotropy of α-MoO3. Besides, according to the definition of
quality factor Q, the total Q factor can be written by Q = f 0/∆f, in which f 0 corresponds to
the resonance frequency at the peak wavelength, and ∆f represents the full width at half
maximum. Thus, the calculated values of quality factors amount to 538.30 and 574.95 in
the proposed α-MoO3–based metamaterial absorber for polarizations along [100] and [001]
crystalline directions, respectively. In addition, the effective impedances of the absorber in
the visible region are calculated as shown in the insets of Figure 2a,b. It is known that under
critical coupling conditions, the effective impedance of structure system matches with that

of free space (Z = Z0 = 1), which can be expressed as in which Z =

√
(1+S11)

2 − S2
21

(1–S21)
2 − S2

21
, where

S11 and S21 denote as the scattering parameters relevant to reflectance and transmittance
coefficient [45]. When the polarization directions are along the [100] and [001] crystal
directions of α-MoO3, the corresponding effective impedances are Z1 = 0.92 − 0.12i and
Z2 = 0.94 − 0.10i, respectively. It is demonstrated that the effective impedance of the
absorber system matches well with the normalized impedance of the free space, which
effectively suppresses the light reflection and achieves the perfect absorption. In order to
manifest the underlying physical mechanism behind the resonant absorption phenomenon,
the field distributions at the resonant wavelengths are given in the inset for polarization
along [100] direction of α-MoO3. As shown in the insets, the electric field distribution at the
resonance wavelength of 631.38 nm in x-y plane shows the characteristics of electric dipole,
which is symmetric about the y-axis in viewing of the incidence polarization along [100]
direction of α-MoO3. The localized collective electron excitations strongly couple with the
incidence light, thus leading to the perfect electromagnetic waves absorption. Meanwhile,
one can observe that there exists a weak resonance absorption peak at the wavelength of
597.2 nm, which is attributable to the excitation of electric quadrupole around the edge of
α-MoO3 ring. Similarly, the operation mechanism also applies for the case of polarization
along [001] crystal directions of α-MoO3.
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Figure 2. (a) Simulated absorption spectra for the proposed α-MoO3 absorber structure along the
[100] directions. (b) Simulated absorption spectra for the proposed α-MoO3 absorber structure along
the [001] directions. The subgraphs of Figure 2 represent the calculated real and imaginary parts of
the effective impedance along the [100] and [001] directions, respectively.

To study the influences of geometric parameters on the optical absorption spectra,
Figures 3 and 4 calculate the optical absorption spectra as a function of wavelength and
the width w of α-MoO3 nanoring as well as the period p of nanostructure. One can see
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from Figure 3 that when the width of α-MoO3 nanoring is increasing from 30 to 65 nm,
the resonant wavelength of the absorptive spectra has a slight redshift for polarization
along the [100] and [001] directions, respectively. Meanwhile, the absorption efficiency has
an obvious enhancement with increasing of w. From Figure 4, it is clearly shown that the
absorption spectra are closely related to the periodicity of nanostructure array. When the
period p is increased from 480 to 550 nm, the resonant absorption peaks shift to the longer
wavelength, and the different resonant wavelength for both polarizations originates from
the strong anisotropy of lattice structure of α-MoO3 crystal. Therefore, one can modulate
the optical absorption spectra by controlling the related geometric parameters.
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polarizations along (a) [100] and (b) [001] crystalline directions of α-MoO3. h = 300 nm, w = 40 nm,
and t = 105 nm.

To further explore the influences of polarization direction on the optical absorption
spectra, Figure 5 calculates the optical absorption spectra as a function of wavelength
and polarization angle. One can see from Figure 5 that when the polarization angle is
gradually increased from 0◦ (x-polarization) to 90◦ (y-polarization), the optical spectrum
displays an ultra-narrowband resonant absorption peak, which has also a blue-shift from
631.4 nm to 604.1 nm due to the anisotropic lattice structure of α-MoO3. Meanwhile, the
absorptivity at the resonant wavelength also changes with increasing of the polarization
angle. Especially, the optical absorptivity reaches up to perfect absorption when the
polarization angle takes the value of 0◦ or 90◦. Therefore, the optical absorption spectra
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exhibit a polarization-dependent characteristic even though the geometric structure is
circularly symmetric. Furthermore, the absorption performance of the absorber under
oblique incidence is also investigated. Figure 6 calculates the optical absorption spectra
as a function of wavelength and incident angle. It can be clearly seen from Figure 6 that
when the incident angle is increased from 0◦ to 30◦, the optical spectra take on an ultra-
narrowband perfect absorption for both polarizations along [100] and [001] directions of
α-MoO3, respectively. The absorption performance in both [100] and [001] directions is
insensitive to the incident angle. Meanwhile, the positions of resonant absorption peaks
almost keep invariant for both polarization directions. Comparing Figure 6a,b, the resonant
wavelength has a blue shift when the polarization is switched from [100] direction to [001]
direction of α-MoO3.
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Figure 6. Absorption spectra of the proposed structure as a function of wavelength and the incident
angle with polarization along (a) [100] and (b) [001] crystalline directions of α-MoO3. p = 500 nm,
w = 40 nm, t = 105 nm, and h = 300 nm.

The above mentioned single-band perfect absorption can be extended to multi-band
absorption as shown in Figure 7a. It can be seen from Figure 7a that there are three nearly
perfect absorption bands when the dielectric spacer takes the value of 500 nm as shown by
the black line. The phenomenon of triple-band absorption can be explained by interference
theory in Fabry–Pérot cavity. As shown in the Figure 7b, the incident light is partially
reflected back to air with a reflection coefficient

∼
r 12 = r12eiϕ12 and partially transmitted into

the dielectric layer with a transmission coefficient
∼
t 12 = t12eiθ12 at the air-spacer interface
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with α-MoO3 ring. In the model of interference theory, the lights are reflected back and
forth between the α-MoO3 ring and metal substrate, with a complex propagation phase

β =
√∼

ε k0h, where
∼
ε is the permittivity of the dielectric spacer, k0 is the wavenumber of

free space, and h is the thickness of the dielectric spacer. Plus, there appear partial reflection

with coefficients
∼
r 21 = r21eiϕ21 and transmission with coefficients

∼
t 21 = t21eiθ21 at the air-

spacer interface with α-MoO3 ring. The total reflection is the superposition of the multiple
reflection [46]:

∼
r =

∼
r 12 −

∼
t 12

∼
t 21ei2β

1 +
∼
r 21ei2β

(3)
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The absorbance can be calculated through
∼
A(ω) = 1 − |

∼
r (ω)|2, where

∼
r (ω) is the total

reflection originating from the superposition of multiple reflection. Take the h = 500 nm of
the proposed absorber as an example, as shown in the Figure 7a, the results of interference
theory (red dashed line) are consistent well with the numerical simulations (black line).

The amplitude and phase corresponding to
∼
t 12,

∼
t 21,

∼
r 12, and

∼
r 21 are shown in Figure 7c,d,

respectively. Therefore, one can conclude that the proposed absorber can obtain arbitrary
number of absorption bands in the visible light region by choosing appropriate thickness
of the dielectric layer.

To demonstrate the effect of dielectric layer thickness h on the resonant absorption
of the structure, Figure 8 gives the absorption spectra of the proposed nanostructure
as a function of wavelength and the dielectric layer thickness. It can be clearly seen
from Figure 8 that for polarizations along the [100] and [001] crystal directions of α-
MoO3, the resonance absorption of the absorber can be adjusted from one peak to multiple
peaks by choosing suitable dielectric layer thickness, i.e., h = 1500 nm. Similar to the
triple-band absorption phenomena, the multi-band absorption can also be interpreted
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by interference theory in Fabry–Pérot cavity. Plus, one can conclude from the model of
interference theory that the dielectric thickness plays an important role in determining the
resonance wavelength of Fabry–Pérot cavity. As a result, with increasing of the dielectric
layer thickness, all the resonance peaks exhibit the tendency of redshift. The maximum
optical absorbance appears at the constructive interference with approximate phase match
condition of 2β + ϕ + π ≈ 2mπ, where ϕ means the phase shift, and m is an integer.
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4. Conclusions

In conclusion, we theoretically proposed and numerically demonstrated an ultra-
narrowband anisotropic metamaterial perfect absorber based on α-MoO3, unit cell of
which consists of an α-MoO3 ring and dielectric layer stacked on a gold mirror. The
numerical results show that the ultra-narrowband perfect absorption can be obtained in the
visible light band for polarizations along the [100] and [001] crystal directions of α-MoO3.
Plus, the influences of some geometric parameters on the optical absorption spectra are
discussed. Meanwhile, the proposed anisotropic metamaterial absorber has an excellent
angular tolerance for the case of oblique incidence. Especially, the single-band perfect
absorption in our proposed metamaterials can be arbitrarily developed into multi-band
perfect absorption by choosing the suitable thickness of dielectric layer. The physical
mechanism can be explained by the interference theory in Fabry–Pérot cavity, which
is consistent with the numerical simulation. Our research results have some potential
applications in designs of anisotropic meta-devices with tunable spectra and selective
polarization in the visible light region.
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