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Abstract: Autophagy, a cellular self-digestion process, involves the degradation of targeted cell com-
ponents such as damaged organelles, unfolded proteins, and intracellular pathogens by lysosomes. It
is a major quality control system of the cell and plays an important role in cell differentiation, survival,
development, and homeostasis. Alterations in the cell autophagic machinery have been implicated in
several disease conditions, including neurodegeneration, autoimmunity, cancer, infection, inflam-
matory diseases, and aging. In non-alcoholic fatty liver disease, including its inflammatory form,
non-alcoholic steatohepatitis (NASH), a decrease in cell autophagic activity, has been implicated in the
initial development and progression of steatosis to NASH and hepatocellular carcinoma (HCC). We
present an overview of autophagy as it occurs in mammalian cells with an insight into the emerging
understanding of the role of autophagy in NASH and NASH-related HCC.

Keywords: cell autophagy; NASH; NASH-related HCC

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a spectrum of disease that ranges from
steatosis to its inflammatory form, non-alcoholic steatohepatitis (NASH), which can progress
with or without advanced fibrosis (cirrhosis) to hepatocellular carcinoma (HCC) [1,2]. It is
one of the leading causes of liver-related morbidity and mortality in the Western countries,
mainly due to a prevalence of sedentary lifestyle and increased consumption of high fat
diets [1,2]. The forecasted prevalence of NAFLD in 2030 is conservatively 100.9 million
cases worldwide, with NASH’s prevalence increasing up to 27 million cases [3]. NASH and
its sequelae HCC have been rising as a global health challenge since it is more common
in obese patients, and it has been estimated that 1.2 billion people will be overweight or
obese by 2030. NAFLD is a condition in which an excess of fat from the diet accumulates
in the liver in an absence of excessive alcohol consumption. In its inflammatory form,
NASH is considered the initial phase of liver inflammation, damage, and fibrosis. Clinically,
NASH is considered when serum aminotransferases are elevated in an obese subject with
metabolic syndrome (hypertension and insulin resistance), or with incidental findings on
abdominal imaging [4]. Histologically, it mimics alcoholic liver disease, showing inflam-
matory infiltrates, focal necrosis, and fibrosis [5]. It is well documented that NASH can
progress to HCC, the most common type of primary liver cancer [6,7].

Growing evidence shows that the molecular mechanism underlying the progression of
NAFLD to NASH is multifactorial, including metabolomic, immunologic, genetic, and en-
docrine pathways in concert with changes in gut microbiota communities [8]. Metabolically,
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NASH comorbidities include hyperlipidemia, insulin resistant status, obesity, and hyper-
tension [9–11]. The presence of increased CD68+ cells, such as macrophages and regulatory
T cells in affected livers with NASH [12], infers an important role of the host immunity
in the regulation of inflammatory pathways. In addition, the loss of liver macrophages
and Kupffer cells at the early stage of NASH development with subsequent infiltrations
of Ly-6C+ monocyte-derived macrophages [13] reinforces the role of an immune response
in the development of NASH. Genetically, there seems to be a difference in susceptibility
to NASH progression among ethnic groups. NASH-related cirrhosis is more prevalent in
European American descents compared to African American descents [14,15], even though
there is a disproportionately large number of underdiagnosed African Americans with
NASH [15]. The role of microbiota community changes in NASH is still controversial.
Nevertheless, significant changes observed in gut micro-communities are consistent, albeit
the specific bacterial species vary among authors [16].

The “two hit” hypothesis is one of the most widely accepted theories for the progres-
sion of NASH, proposing steatosis and insulin resistance as the initiating factors that set the
stage from metabolic oxidative stress [17]. In addition, we would like to propose autophagy
as another cellular process that enhances NASH progression. Autophagy, also referred to
as “self-eating”, is a process found across many species in the eukaryotes. It involves the
delivery and degradation of cytoplasmic materials by lysosomes and plays a prominent
role in cell survival, differentiation, development, and homeostasis by controlling cytoplas-
mic physiology through energy balance and the removal of misfolded proteins, damaged
organelles, and lipid droplets [18–20]. In mammalian cells, autophagy can be divided into
three main types depending on the method in which the cytoplasmic cargo is delivered
to the lysosomes, namely macro-autophagy, micro-autophagy, and chaperone-mediated
autophagy [18,20,21].

2. Macro-Autophagy (MA)

MA, the most studied and major catabolic process used by eukaryotic cells to re-
new unfunctional proteins or unneeded organelles, operates physiologically at a lower
rate, but its function is enhanced under stressful conditions, such as nutrient or energy
deprivation [21,22]. It increases substrates that are needed for biosynthesis or energy
production for cell survival through the degradation of cytosolic materials [21,23]. The
MA process starts with the formation of a double membrane-bound vacuole known as
autophagosome, which delivers targeted cytoplasmic materials for degradation to the
lysosomes [19,24]. The autophagosome is formed via a non-selective or selective bulk
sequestration of cytoplasmic “cargo” (portions of organelles, protein aggregates, or lipid
droplets) that is to be delivered for degradation [19,24]. Selective MA targets a particular
organelle or substrate cargo for sequestration and degradation by the autophagosome,
i.e., mitophagy when mitochondria are the targeted cargo, ER-phagy—the endoplasmic
reticulum, pexophagy—the peroxisomes, lipophagy for lipids removal, and aggrephagy
for aggregate proteins, while ribophagy targets the ribosomes, and xenophagy—the re-
moval of microorganisms invading the cytoplasm [19,25]. In selective MA, specific cargo
is targeted to the autophagosomal membrane for sequestering via a ubiquitin-dependent
or ubiquitin-independent pathway that involves autophagy adaptors such as sequesto-
some 1 (SQSTM1/p62), non-race-specific disease resistance 1 (NDR1), calcium-binding and
coiled-coil domain-containing protein 2 (NDP52/CALCOCO2), and optineurin [19,24,26].
On the contrary, non-selective MA involves the degradation of materials by the lysosome
in a non-specific manner [27]. The process of MA cargo delivery to the lysosomes for
degradation is achieved via the movement of the autophagosome along microtubules,
the acquisition of acidic and degradative properties through its fusion with endosomal
compartments in the cells, and subsequent fusion with the lysosomal membrane [19,28].
Furthermore, MA is mediated by the activity of proteins encoded by autophagy-related
genes (ATGs) and class III phosphatidylinositol 3-kinase (hVps34) in a complex with Beclin
1 and autophagy-related 14 (ATG14L) to produce phosphatidylinositol 3-phosphate (PI3P)
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that is required for autophagosome formation. Nevertheless, the maturation of the au-
tophagosome into an autolysosome depends on certain autophagy-related (ATG) proteins
including ATG14L, as well as on the activity of Ras-associated binding (Rab) GTPases,
tethering factors (homotypic fusion and protein sorting (HOPS) complex), adaptors such
as pleckstrin homology domain-containing family M member 1 (PLEKHM1), and soluble
N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) for the final
execution of the membrane-fusion process [19,20,24]. A summary of the three main types
of autophagic processes in mammalian cells culminating in the final degradation of cargos
by the lysosomes is shown in Figure 1.
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Figure 1. Autophagic pathways in mammalian cells. There are three major autophagic processes
identified in most mammalian cells. (A) Macro-autophagy: in MA, cytosolic substrates determined to
be transported are first packaged into autophagosomes, which are double-membrane vesicles formed
through conjugation of autophagy-related proteins (i.e., Atg5, Atg12, Atg16) and autophagy-related
protein LC3 with lipid PE. The formation of these autophagosomes is initiated by the phosphorylation
of lipids in the membrane of organelles such as the endoplasmic reticulum, mitochondria, and Golgi
apparatus, triggered by a kinase complex regulated by Beclin-1. Autophagosomes are targeted to
lysosomes, and, after fusion of both vesicles, the cargo is delivered to the lysosomes for complete
degradation. (B) Micro-autophagy: the in-bulk mA pathway allows cytosolic proteins and organelles
to be degraded in bulk through invaginations at the lysosomal membrane. Through endosomal mA,
cytosolic proteins can be selectively identified by Hsc70 to be transported to late endosomes using
the KFERQ-like motif on the target proteins, leading to their internalization and degradation in the
lysosomes. (C) Chaperone mediated autophagy: proteins in the cytosol with a KFERQ-like motif
in their sequence can be identified by a molecular chaperone, Hsc70, and brought to the lysosomal
membrane for translocation across the LAMP-2A multimeric complex. Lysosomal Hsc70 assist the
translocation of the substrate protein, which is then degraded once inside the lysosomes (Adapted
and modified from Scrivo et al. 2018) [20].

2.1. Macro-Autophagy (MA) Process

The mechanism of MA involves primarily three processes, namely, (i) autophagosome
formation, (ii) fusion of the outer membrane of the autophagosome with the lysosomal
membrane to form an autolysosome, and (iii) degradation of the autolysosome contents
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by lysosomal enzymes. The formation of autophagosome is the first step in the MA
process comprising initiation and nucleation, elongation, and, finally, the closure and
maturation of the autophagosome. An autophagosome is a double membrane vesicle that
is formed via the nucleation of a unique membrane structure known as a phagophore. Upon
phagophore formation, cytoplasmic constituents are sequestered into it and, subsequently,
the phagophore elongates, bends its membrane, and closes to give rise to the spherical-
oriented autophagosome [18,21]. While in the yeast, phagophore formation starts at a
single perivacuolar location called the phagophore assembly site (PAS); in mammals,
phagophore formation could be initiated at several cytoplasmic locations, such as the
endoplasmic reticulum (ER)-associated structures, known as omegasomes [21,29–32]. The
origin of the phagophore membrane is still unclear, but it is hypothesized to come from the
plasma membrane, Golgi complex, and/or mitochondria [21,24]. Once the autophagosome
closes and matures, it moves along microtubules and fuses with the lysosomal membrane,
resulting in the delivery of the sequestered cargo into the lysosome and the formation
of a hydrolytic structure known as an autolysosome [21,22,24,33]. As part of the fusion
process, there is a degradation of the inner membrane of the autophagosome due to its
exposure to the acidic lumen of the lysosomes as well as its hydrolytic enzymes [18,21].
Upon a successful formation of the autolysosome, the autophagic enclosed materials are
degraded by lysosomal hydrolases. The resultant components, including amino acids,
lipids, and carbohydrate moieties that are derived from the autophagic degradation, are
exported back to the cytoplasm through transporters and permeases for recycling or energy
production [23,24,33]. In addition, in mammalian cells, the convergence of the MA pathway
to the endocytic pathway often occurs, with the autophagosomes fusing with early or late
endosomes to form structures referred to as amphisomes. Subsequently, the amphisomes
fuse with the lysosomes to give rise to autolysosomes, leading to the final degradation of
the autophagic cargo [21,34,35].

2.2. Regulation of Autophagosome Formation

The formation of the autophagosome includes the processes of initiation, nucleation,
and elongation/maturation.

2.2.1. Initiation

In the yeast, a protein complex comprising Atg1, Atg13, Atg17, Atg31, and Atg29
kinases controls its initiation and formation. Its mammalian counterpart is made up of
either Unc-51-like autophagy-activating kinase 1/2 (ULK1 or ULK2, which is an Atg1
homolog from the Unc-51-like kinase family), ATG13 (the mammalian homolog of Atg13),
and RB1-inducible coiled-coil 1/focal adhesion kinase family-interacting protein of 200 kDa
(RB1CC1/FIP200), which appears to be the ortholog of Atg17 of yeast [18,21,36,37]. Asso-
ciated with this complex in mammals is C12orf44/ATG101, which binding to ATG13 is
necessary for the MA mechanism [21,38]. The ULK1/2-ATG13-RB1CC1 complex is a very
stable complex and forms irrespective of the cell nutritional status. This complex integrates
the incoming autophagy signals to initiate the biogenesis of the autophagosome [18,21,39].

2.2.2. Nucleation

The nucleation and assembly of the initial phagophore membrane involves the recruit-
ment of another complex, namely, the class III phosphatidylinositol 3-kinase (PtdIns3K)
complex, to the location of autophagosome formation [18,21,37]. This complex is formed
by the interaction of Beclin 1 (which is the mammalian ortholog of yeast Atg6), with class
III phosphatidylinositol 3-kinase and other key subunits including the PtdIns3K regulatory
protein kinase p150 (hVps15), Atg14L, or Beclin1-associated autophagy-related key regula-
tor (Barkor) and UV irradiation resistance-associated gene (UVRAG) [18,21,37,40–42]. In
mammals and yeast, the PtdIns3K complex generates Phosphatidylinositol 3-phosphate
(PtdIns3P), which is critical for the MA process [21,37,43].
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2.2.3. Elongation and Maturation

The elongation/maturation of the phagophore is mediated by two ubiquitin-like
modification systems, the Atg12-Atg5-Atg16L (Atg16-like protein) complex, and LC3
(microtubule-associated protein 1 light chain 3) conjugation system [18,37,44–46]. In the
Atg12-Atg5-Atg16L conjugation complex, the ubiquitin-like protein Atg12 is covalently
tagged to Atg5. This process is mediated by the E1-like ubiquitin activating enzyme Atg7
and E2-like ubiquitin conjugating enzyme Atg10. Thereafter, the Atg12-Atg5 conjugate
interacts non-covalently with ATG16L to form the Atg12-Atg5-Atg16L tetramers, which act
as a E3-like ubiquitin ligase, playing a role in the autophagosome membrane elongation
by heightening LC3 lipidation [18,21,47–51]. In mammals, the ATG12-ATG5-ATG16L1
complex associates with the pre-autophagosomal membrane, but it dissociates following
the complete formation of autophagosome [21,37]. The second ubiquitin-like conjugation
reaction involves the conjugation of LC3 to PE (phosphatidylethanolamine) with the help of
E1-like Atg7 and E2-like Atg3 to give rise to LC3-II [18,21,37,52]. LC3-II is then specifically
targeted to the elongating membrane to drive the closure of the autophagosomal membrane,
forming a matured autophagosome [18,53].

One of the principal upstream signals that control the MA process, including the
initiation step, is the mechanistic target of rapamycin complex 1 (mTORC1) [18,21,37]. In
the cell, the association of the mTORC1 with the autophagy induction complex (ULK1/2-
ATG13-RB1CC1) is nutrient-dependent. The availability of energy-producing compounds
promotes the association of mTORC1 with the complex, leading to the phosphorylation
and subsequent inactivation of ULK1/2 and ATG13 kinases, which drives the inhibition of
autophagy. On the contrary, during starvation or when cells are treated with rapamycin,
mTORC1 dissociates from the induction complex, driving the dephosphorylation of the pro-
teins that make up the induction complex, resulting in the induction of MA [18,21,37,54,55].

3. Micro-Autophagy (mA)

mA is the lysosomal degradation process involving the direct engulfment of cytoplas-
mic cargos, without the involvement of autophagosomes as its transport intermediates. In
mA, the lysosomal/endosomal membrane invaginates and forms a bud, which sequesters
cytoplasmic material. This invaginated bud pinches off as a micro-autophagic body into
the lumen of the organelle to be degraded and recycled [56–59]. Compared to other forms
of autophagy, its mechanisms are poorly known, partly due to the significant overlap of its
core components with other forms of autophagy, as well as the difficulty in isolating its
functions for targeted studies [56–59].

3.1. mA Process

This involves five major steps. First is the constitutive invagination of the membrane
of the lysosome/endosome, leading to the creation of an autophagic tube, a process that is
upregulated under cellular starvation [60]. The formation of autophagic tubes is an active
process, requiring the use of adenosine triphosphate (ATP) by vacuolar ATPases, and it is
mediated by dynamin related GTPase Vps1p [61,62]. Starvation-induced mA is regulated
via Atg7-dependednt ubiquitin-like conjugation (Ublc) systems that mediate membrane
tethering [63,64]. In yeast, the vacuolar transporter chaperone (VTC) complex plays a role
in the autophagic tube formation by modulating the membrane protein distribution, as well
as serving as a site for calmodulin activation, which orchestrates acting binding proteins
for autophagic tube formation [65]. Vesicle formation involves the sorting of membrane
constituents with high-lipid and low-protein composition at the top of the autophagic
tube [60]. Then, the vesicle binds with enzymes, implicating a reverse of the endocytosis
process, and expanding the cytoplasmic leaflet [62]. Such vesicles have tendency to pinch
themselves off into the lysosomal/endosomal lumen from the autophagic tube, and this
vesicle scission does not require the various machinery required for MA [66]. After scission
from the autophagic tubes, the released vesicles are broken down by Atg15 and hydrolyses
and their contents are recycled via the actions of Atg22 [67].
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3.2. Regulation of mA Activity

mA is active under cellular stress by starvation or nitrogen deprivation, maintaining
organellar size and adjusting the membrane lipid composition by the allocation and degra-
dation of excess cellular components through recycling [68–70]. mA works in association
with MA and chaperone-mediated autophagy [71], but whether its function is limited to a
compensatory mechanism from other forms of autophagy remains to be determined. mA
is active in cells, with augmentation of the rate of invagination possibly from its interaction
with MA-related pathways [72]. As the invagination and budding takes away portions of
lysosomal membrane and lipid components, it contributes to the regulation of lysosomal
size [69], in addition to controlling lipid metabolism [73]. Thus, mA serves an important
role in cellular housekeeping [73].

3.3. Types of mA

There are various classifications of mA due to the diversity in its processes [74].
General mA in both yeast and mammals does not require the core autophagy machinery,
but instead uses the endosomal sorting complex required for transport (ESCRT) [74–76].
General mA can be selective (micro-ER-phagy, micro-nucleophagy) or non-selective [74].
The functional classifications are based on the site of mA (lysosome or endosome) or
sequestration process of cellular components (membrane invagination or extension) [74,77].
Another point of view proposed differentiating mA into fission and fusion types. The
fission type occurs with the invagination and fission of endosomal/lysosomal membranes,
requiring ESCRTs and conferring selectivity through the binding of ubiquitylated cargo
to ESCRTs [74,78]. The fusion type occurs with invagination and extensions that become
sealed by vertex fusion using core autophagy machinery with selectivity conferred with
specific receptors [74]. Both mechanisms of mA are involved in the maintenance of cellular
homeostasis and have been linked to neurodegenerative diseases such as Alzheimer’s
disease and Huntington’s disease [79,80], as well as lysosomal glycogen storage diseases,
such as Pompe disease [81].

4. Chaperone-Mediated Autophagy (CMA)

CMA is a selective, receptor-mediated form of autophagy that contributes to lysosomal
proteolysis pathways that regulate the turnover of soluble cytosolic proteins [82]. The timely
degradation of certain cytosolic proteins is essential in various cellular functions, such as
the cellular response to stress, the metabolism of glucose and lipids, and DNA repairs.
Thus, CMA plays an important role in cellular quality control and the supplementation of
energy to cells under prolonged cellular stress [83]. The CMA process is a selective process,
where target substrates are recognized and guided by their degradation tag (chaperone
proteins), making the translocation across the lysosomal membrane a regulated process [84].
Since they require a targeting motif in their amino acid sequence that binds to HSC70
(heat shock protein-70 kDa), not all cytosolic proteins can be a candidate for lysosomal
degradation through this process [85]. CMA does not require the formation of vesicles
for the translocation of the target proteins into lysosomes, and thus, the direct lysosomal
translocation of cargos occurs in CMA [86].

4.1. CMA Process

The selectivity in CMA is maintained by a sequence of the substrate protein, the
pentapeptide KFERQ motif that enables its targeting for lysosome degradation. This motif
is present in about 30% of the cytosolic proteins [87,88]. As with most intracellular targeting
motifs, the KFERQ sequence exists in its inactive form and its specificity depends on the
charges on the sequence component, rather than its amino acid combination [89]. The
CMA-targeting motif contains, on one side, a glutamine (Q), one negatively charged acidic
residue (D or E), one positively charged basic residue (K or R), a hydrophobic residue
(F, I, L or V), and, lastly, a fifth residue, which can be positively/negatively charged. In
some proteins, the motif can be hidden inside a protein folding before unfolding with



Int. J. Mol. Sci. 2022, 23, 7734 7 of 17

post-translational modification, and in others it can be present in the pre-post-translational
state to be eliminated if the targeted protein is present in excess amounts [89]. Crucial to the
mechanism of CMA is HSC70s, the cytosolic chaperone that recognizes the KFERQ motif
and assists with the protein complex translocation across the lysosomal membranes [85].
HSC70 is also responsible for clathrin disassembly from coated vesicles, and the folding of
unfolded cytosolic proteins. HSC70 typically binds to the hydrophobic region of a protein
to help the folding of unfolded or misfolded proteins, but upon binding to the KFERQ motif,
it promotes protein degradation through CMA [85]. Other chaperones that interact with
HSC70, such as heat-shock protein-40 kDa (HSC40) increase the effectiveness of HSC70 by
forming a complex, but HSC70 seems to be the only known chaperone that directly binds to
the KFERQ-like motif [90]. Other co-chaperones that interact with HSC70 may either help
with the targeting of a certain substrate or unfolding of the substrate before the translocation
across lysosomal membranes [90]. HSC70 exists as lysosomal or luminal HSC70. At the
membrane, luminal HSC70 plays a role in the unfolding of substrate proteins [91], as well
as the recycling of receptor proteins from CMA translocation complex by facilitating their
dissociation after the substrate is internalized into lysosome [92]. Lysosomal HSC70 is
needed for the completion of the translocation of substrate into lysosomes, in which the
substrate undergoes enzymatic degradation. Once the complex of the bound substrate and
chaperone is transported to the lysosomal surface, it binds to the lysosomal membrane and
begins its unfolding and subsequent translocation into the lysosomal lumen; this process is
saturable [93]. This saturability comes from the required binding of lysosome-associated
membrane protein-type 2A (LAMP2A) to the CMA substrates. LAMP2A is one of the three
splice variants of the gene lamp2: LAMP2A, LAMP2B, and LAMP2C. They have the same
luminal region with different transmembrane and cytosolic regions, but LAMP2A is the
only one required for CMA [94,95]. While cytosolic HSC70 is abundant in the cytosol, the
LAMP2A level on the lysosomal membrane is restricted, limiting the CMA process rate,
and its blockage leads to highly specific CMA inhibition. LAMP2A synthesis is shown
to be increased during cellular stress, such as mild oxidative stress and hypoxia [96–99].
Heat-shock protein 90 kDa (HSP90), also a known chaperone, also binds to the luminal side
of the lysosomal membrane and helps to stabilize the integrity of the LAMP2A complex
during the translocation process [92].

4.2. CMA Activity

CMA activity is regulated by several pathways, but mainly by the mechanistic target
of the rapamycin complex 2-protein kinase B-PH domain leucine-rich repeat protein phos-
phatase (mTORC2-Akt-PHLPP1) axis. The regulation of the CMA translocation complex
was shown to be dependent upon the phosphorylation of the lysosomal glial fibrillary
acidic protein (GFAP) [100]; in its unphosphorylated form, GFAP binds to the cytosolic
binding motif of LAMP2A to form part of the CMA translocation complex. While GFAP
activity is upregulated by Akt and the lysosomal kinase target of rapamycin complex 2
(mTORC2), GPAP is downregulated at the lysosomal membrane by the PH-domain leucine-
rich repeat protein phosphatase (PHLPP1). At the basal state, mTORC2 activates Akt [101],
which then phosphorylates GFAP, resulting in the basal inhibition of CMA [102]. When
CMA is activated, PHLPP1 is recruited to the lysosomal membrane to inhibit Akt from
phosphorylating lysosomal GFAP, which then promotes LAMP2A complex formation to
drive CMA [102]. Additionally, the regulation of CMA through Akt is also associated
with the insulin-phosphoinositide-3-kinase-3-phosphoinositide-dependent protein kinase 1
(INS-PI3K-PDPK1) pathway that regulates Akt activity [103].

4.3. CMA Activity in Health and Disease

Chaperone-mediated autophagy activity is required in many cell processes to maintain
normal homeostasis, and its decreased activity has been associated with the development
of some pathological conditions.
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(a) Nutritional starvation stress. CMA is known to be triggered via nutritional starva-
tion. The degradation of many enzymes involved in metabolism by CMA is significantly
increased in the liver during fasting [104,105]. CMA induced by starvation provides cells
with the retrieved amino acids to be used for protein synthesis and energy source gener-
ation. This controlled and selective retrieval of cellular fuels and maintenance of protein
biosynthesis during such cellular stress reaches its maximal turnover rate in around 12 h,
following the initiation of MA processes that precede it, and continues to be active until
the starvation is resolved [104–106]. In metabolically demanding organs like the liver, MA
lasts for close to 8 h following starvation, starting with proteolysis and then switching over
to the more preferential lipids degradation. If the starvation lasts longer, CMA becomes
the main pathway to replenish the amino acids [104–106]. Those newly provided amino
acids contribute to both protein synthesis and gluconeogenesis. Interestingly, even though
their functions overlap, MA and CMA processes have non-redundant functions in cellular
regulation. In CMA-impaired livers, MA can compensate for the lack of CMA in clearing
damaged proteins, but cannot fully mitigate the cellular damage caused by the inability to
adequately address the genetic damage and change in metabolic flux [104]. Highlighting
the importance of CMA in energy supplementation during starvation, both in vitro and
in vivo models with impaired CMA exhibited reduced levels of ATP in nutrient-deprived
states [104,107].

(b) Metabolic pathway regulation. CMA is also involved in hepatic glycolysis regulation
by degrading the glycolytic enzymes that stop hepatic glycolysis, and the inhibition of
CMA leads to energy deficiency in peripheral organs [104]. Previous studies on a CMA-
defective mouse model showed that many of the enzymes involved in the tricarboxylic
acid (TCA) cycle are degraded by CMA during a period of starvation [104]. Moreover,
CMA is involved in lipolysis as lipid carriers and coating proteins such as perilipins 2 and
3 (PLIN2 and PLIN3), and lipogenesis enzymes have been shown to be substrates targeted
by CMA [104]. It is worth noting that lipid droplet coat protein removal during starvation
is triggered via the 5′-AMP-activated protein kinase (AMPK)-dependent phosphorylation
of PLIN2 [108].

(c) Regulation of transcription. CMA also play a role in the control of transcription,
mainly through its action on factor-κB (NF-κB), by degrading its inhibitor NF-κ-B inhibitor-
α (IκBα) [109] and selective degradation of myocyte-specific enhancer factor 2A (MEF2A)
and myocyte-specific enhancer factor 2D (MEF2D) in neurons [110].

(d) Immune response regulation. CMA is associated with immune response regula-
tion, through the degradation of stimulator of interferon genes protein (STING), which
is involved in innate immunity [111]. I additionally plays a role in the degradation of
Itch (ubiquitin ligase), and as a regulator of calcineurin 1 (Rcan1, a factor that has been
implicated in the pathophysiology of Alzheimer’s disease) [96].

(e) Cell cycle control. CMA initiates cell-cycle progression following DNA repair through
the targeted degradation of hypoxia-inducible factor 1-alpha (HIF1α), a cell-cycle progres-
sion regulator [98], and serine/threonine-specific protein kinase 1, which is a cell-cycle
checkpoint kinase that is integral in DNA repair [90].

(f ) Cell senescence. There is an age-dependent decrease in activity of CMA in most
cells and tissues in both rodents and humans, as the binding and translocation of sub-
strate proteins by lysosomes are reduced with age in direct proportion to a decrease
of LAMP2A [88,96,111,112]. The decrease in LAMP2A is not transcriptional or post-
translational (from gene expression), but rather due to decreased CMA receptor stabil-
ity [113]. Earlier studies have shown that the overexpression of liver LAMP2A in the
transgenic aging mouse model improved the maintenance of cellular homeostasis [114],
implicating CMA as a potential player in NASH progression and HCC development.

CMA has been associated with several neurodegenerative and lysosomal storage
disorders [115]. In neurodegenerative diseases, such as Parkinson’s disease many of the
associated proteins in their unmodified state can serve as CMA substrates; neverthe-
less, their pathogenic variants are unable to be targeted and transported to lysosomes
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to be degraded, and their accumulation not only produces cellular damage, but further
slows CMA efficiency [116–118]. Lysosomal storage disorders, such as galactosialidosis
and Tay–Sachs disease, are genetic diseases that have dysfunctional lysosomal enzymes,
aggravating the protein degradation process that leads to substrate accumulation and
cellular toxicity [115–118]. CMA activities in cancer cell lines have upregulated LAMP2A
levels [107,119], enhancing cell survival against cellular stressors such as hypoxia and
oxidative stress [119–121]. CMA may aid cancer proliferation by the degradation of the
inhibitors of cell proliferation, such as Rho-related GTP binding protein RhoE (RND3] [122],
and pro-apoptotic protein Bcl-2-binding component 3 (BBC3) [123]. CMA has also been
implicated as a tumor suppressor [124,125] by maintaining genomic stability through
improving DNA repair [90].

5. Autophagy in Liver Physiology

Prolonged starvation induces liver cell autophagy, implicating the activation of metabolic
pathways to replenish needed nutrients through the degradation of substrates during
liver malnutrition and/or parenchymal damage [126,127]. During periods of nutrient
deprivation, autophagy acts as one of the drivers of gluconeogenesis, ketogenesis, and
ß-oxidation in the liver. Previous studies have shown that autophagy is involved in the
degradation of glycogen and the formation of autophagic vacuoles dependent on cell
energy status [126,128], which correlated with stress and hepatocyte amino acid depriva-
tion [126,129,130]. In neonates, autophagy mediates the restoration of plasma glucose levels
during fasting by gluconeogenesis from amino acids [127,131]. A non-selective autophagy
drives the process of proteolysis, making available amino acids for use in the process of
gluconeogenesis [127,132]. In addition, the selective autophagy of triglycerides stored in
lipid droplets (lipophagy) fuels the ß-oxidation cycle [127,133]. Lipophagy also regulates
the rate of very-low-density lipoprotein (VLDL) assembly by the release of fatty acids and
degradation of apolipoprotein B [127].

Autophagy may play a key role in preventing cell death in the liver. Following the
induction of hepatocellular necrosis by dimethylnitrosamine (DMNA), an increase in the
number and size of autophagic vacuoles was observed [126,134]. Induced liver cell au-
tophagy by carbamazepine (CBZ) decreased the hepatic load of mutant alpha1-antitrypsin
Z (ATZ), and the severity of the deficiency in a mouse model of AT-deficiency-associated
liver disease [127,135]. Additionally, the preservation of liver autophagic activity resulted
in the lower intracellular accumulation of damaged proteins, an improved ability to handle
protein damage, and an overall improvement in hepatic function [114]. Liver autophagy
activity balances diverse metabolic pathways, but also removes damaged organelles
(e.g., mitochondria, endoplasmic reticulum, peroxisomes), protecting and repairing liver
cells from injury, thereby playing a key role in hepatocyte homeostasis [126].

6. Autophagy in NASH and NASH-Related HCC

Cell autophagy activity is impaired in NAFLD, NASH, and NASH-related HCC. Obe-
sity and a prolonged high-fat diet affect the cell autophagy machinery at various stages,
including the blockade of autophagosome formation, the inhibition of autophagosome–
lysosome fusion, and the disruption of lysosome physiology [136,137]. Sustained high-fat
diets affect lipid cell autophagy activity with increased accumulation of lipids in the liver,
downregulating lipid β-oxidation and ATP production [136,137]. In addition, lipid accu-
mulation causes alterations in the autophagosome membrane, leading to a non-efficient
fusion process between autophagosomes and lysosomes [106,136]. The knocking down of
autophagy-related genes, or their pharmacological inhibition, leads to the accumulation
of triglycerides as lipid droplets [106,137], lower free fatty-acid oxidation, and decreased
VLDL vesicle secretion from the liver cells [137]. Emerging data show that autophagy is
impaired in the NAFLD cell line, in animal models of NAFLD, and in liver specimens
from NAFLD patients [137,138]. Inducing hepatic autophagy through the increased ex-
pression of liver specific Atg7 in ob/ob mice ameliorated metabolic stress and attenuated
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hepatic steatosis [137,139]. Furthermore, the upregulation of pro-autophagic transcription
factors such as FoxO1 and transcription factor EB (TFEB) prevented steatosis [137,140,141].
Previous studies have also revealed that enhancing autophagy prevented cell death in
hepatocytes that had been exposed to prolonged treatment with palmitic acid [137,138]. In
addition, treatment with carbamazepine and rapamycin, which are autophagy-inducing
drugs, leads to a reduction in liver steatosis and triglyceride levels in both the liver and
blood [137,142]. Nevertheless, the specific role of autophagy in the progression of steatosis
to NASH and NASH-HCC remains elusive [143].

The loss of beclin-1 (an autophagy gene) leads to HCC development [143–145]. The
knocking out of beclin-1 in mice results in spontaneous HCC [143–145], and in human
HCC, the loss of beclin-1 is a common feature that correlates with poor prognosis [143,146].
Rubicon (a suppressor of the late stage of autophagy) is increased in NAFLD and plays
a key role in driving hepatocellular fat accumulation and apoptosis [147,148]. Further-
more, cell autophagy activity is suppressed in hepatocyte-specific TGF β-activated kinase 1
(TAK1) knockout mice [137,149]. TAK1 serves as a positive regulator of AMPK, and its
deletion in these mice led to increased mTOR activity and the suppression of autophagy, fol-
lowed by severe hepato-steatosis [137,149]. Interestingly, these animals (with a hepatocyte-
specific knockout of Tak1 developed spontaneous hepatocarcinogenesis, with high levels of
p62/SQSTM in the hepatocytes. Restored autophagy activity by rapamycin was associated
with both the downregulation of mTOR and the attenuation of liver cancer development
and growth [137,149]. The deletion of protein tyrosine phosphatase receptor type O (PT-
PRO) in mice (a tumor suppressor), resulted in severe autophagy impairment [137,150].
Additionally, immunohistochemical staining from human samples revealed that hepatic
PTPRO was reduced in livers from subjects with NAFLD compared to subjects with normal
livers, while p62/SQSTM1 was increased [137,150].

Impaired cell autophagy activity may induce inflammation due to its role in clearing
damaged mitochondria. The release of reactive oxygen intermediates and mitochondrial
DNA leads to the inhibition of inflammasomes and Toll-like receptor 9 [137,151,152]. In
addition, cell autophagy is implied in the degradation of p62/SQSTM1, an activator
of nuclear factor kappa B (NF-κB), enhancing the transcription of pro-inflammatory cy-
tokines [137]. The inhibition of cell autophagy activity in NASH leads to the accumulation
of p62/SQSTM1, an autophagic substrate hypothesized to be involved in the formation of
the Mallory–Denk bodies (MDB). MDB are present in ballooned hepatocytes and are key
markers for NASH diagnosis. The upregulation of cell autophagy by rapamycin results in
MDB resolution in mice [136]. Furthermore, the impairment of autophagy in tumor cells
following metabolic stress also results in the accumulation of p62/SQSTM1, leading to
increased retainment of damaged mitochondria, heightening oxidative stress and DNA
damage [148,153]. The ubiquitin-binding protein p62 is a multifunctional protein involved
in the activation the NF-κB-signaling pathway, as well as in the transcription of genes
encoding for antioxidant proteins and detoxification enzymes through the activation of
the nuclear factor erythroid 2–related factor 2 (Nrf2) transcription factor [127,154,155].
Defective autophagy decreases cell energy, resulting in a low cell redox state by decreasing
recycling damaged organelles, DNA, aggregated proteins, and pathogens to maintain
energy balance, promoting an anaerobic inefficient metabolism [136,156]. Concomitantly,
previous studies have shown a progressive upregulation of p62 in obese patients with
steatosis and NASH in comparison to subjects with a normal liver, thereby suggesting a
downregulation of autophagy in obese patients with hepatic steatosis and NASH [136,138].

A complete pathway of how cell autophagy activity influences NASH progression to
ESLD and HCC remains to be determined [157]. Nevertheless, it appears that impaired
cell autophagy activity affects early liver fat accumulation and mitochondrial function,
leading to a progressive widening of metabolic disturbances that enhance cell senescence
and cell apoptosis. Further metabolic disturbances enhance epigenetic changes and NASH
progression, promoting an apoptotic switch with subsequent liver malignant genesis [158].
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bodies; MEF2A: myocyte-specific enhancer factor 2A; MEF2D: myocyte-specific enhancer factor 2D;
mTORC1: mechanistic target of rapamycin complex 1; mTORC2: mechanistic target of rapamycin
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clear factor erythroid 2-related factor 2; PAS: phagophore assembly site, PD: Parkinson’s disease; PE:
phosphatidylethanolamine; PHLPP1: PH domain leucine-rich repeat protein phosphatase PLEKHM1:
pleckstrin homology domain-containing family M member 1; PI3P: phosphatidylinositol 3-phosphate;
PPCA: protective protein/cathepsin A; PTPRO: protein tyrosine phosphatase receptor type O; Pt-
dIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; (Rab)
GTPases: Ras-associated binding GTPases; RND3/RhoE: Rho-related GTP binding protein; SNARE:
soluble N-ethylmaleimide sensitive factor attachment protein receptor; SQSTM1: sequestosome 1;
STING: stimulator of interferon genes protein; TFEB: transcription factor EB; TAK1: transforming
growth factor β-activated kinase 1; Ublc: ubiquitin-like conjugation; VLDL: very-low-density lipopro-
tein; UVRAG: UV irradiation resistance-associated gene; VPS34: class III phosphatidylinositol 3; VTC:
vacuolar transporter chaperone.
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