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Abstract
Objective
We aimed to (1) assess and compare baseline plasma and CSF neurofilament light (NfL) for
cross-sectional and longitudinal associations with neuroimaging or cognition and (2) de-
termine whether change in plasma NfL corresponded with change in these outcomes.

Methods
Seventy-nine participants without dementia, median age 76 years, had plasma and CSF NfL,
neuropsychological testing, and neuroimaging (MRI, amyloid PET, FDG-PET) at the same
study visit, and a repeat visit (15 or 30 months later) with both plasma NfL and neuroimaging.
Plasma NfL was measured on the Simoa-HD1 Platform and CSF NfL with an in-house ELISA.
Linear mixed effects models were used to examine the associations between baseline plasma or
CSF NfL and cognitive and neuroimaging outcomes adjusting for age, sex, and education. The
relationship between change in plasma NfL and change in the outcomes was assessed using
linear regression.

Results
There were no cross-sectional associations between CSF or plasma NfL and any neuroimaging
or cognitive measure. Longitudinally, higher baseline plasma NfL was associated with wors-
ening in all neuroimaging measures, except amyloid PET, and global cognition. Higher baseline
CSF NfL was associated with worsening in cortical thickness and diffusion MRI. The beta
estimates for CSF NfL were similar to those for plasma NfL. Change in plasma NfL was
associated with change in global cognition, attention, and amyloid PET.

Conclusion
Elevated baseline plasma NfL is a prognostic marker of cognitive decline and neuroimaging
measures of neurodegeneration, and has similar effect sizes to baseline CSF NfL. Change in
plasma NfL also tracked with short-term cognitive change.
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Blood-based biomarkers of neurodegeneration have obvious
advantages over both CSF and neuroimaging biomarkers. The
collection of blood is inexpensive, noninvasive, and a more
feasible measure for use in the general population, especially if
serial collection is needed. Neurofilament light (NfL) is
a recognized biomarker of subcortical large-caliber axonal
degeneration.1,2 CSF and plasma NfL levels are elevated in
multiple neurodegenerative disorders, including Alzheimer
disease (AD) dementia,3,4 frontotemporal dementia,5 multi-
ple sclerosis,6 and traumatic brain injury.7,8 Although the NfL
elevation is lower in AD dementia compared to other neu-
rodegenerative disorders (e.g., vascular dementia and fron-
totemporal dementia),9,10 NfL is hypothesized to be
a nonspecific marker of neurodegeneration. Indeed, among
participants who are either cognitively unimpaired (CU) or
have mild cognitive impairment (MCI), the longitudinal re-
lationship between plasma or CSF NfL and cognitive or im-
aging measures of neurodegeneration are independent of
elevated brain amyloid.3,4

To date, longitudinal studies of NfL across the AD clinical
spectrum have focused on either CSF or plasma and have not
compared the effect sizes for change in neuroimaging or
cognitive measures. Thus, it is not known how similarly
plasma NfL reflects the prognostic value of CSF NfL for
cognitive decline and neurodegeneration. In addition, studies
have primarily examined plasma NfL at one point in time and
have not determined whether change in plasma NfL asso-
ciates with change in cognitive or neuroimaging measures.
The objectives of this study were to (1) assess and compare
the cross-sectional and longitudinal associations between
concurrent baseline measures of plasma or CSF NfL with
neuroimaging (amyloid PET [18F]-fluorodeoxyglucose
[FDG]–PET, MRI) or global- and domain-specific cogni-
tive z scores; and (2) determine whether change in plasma
NfL corresponded with change in these outcomes.

Methods
The Mayo Clinic Study of Aging (MCSA) is a population-
based, prospective study of residents living in Olmsted
County, Minnesota.11 In 2004, the Rochester Epidemiology
Project (REP) medical records linkage system was used to
enumerate Olmsted County residents between the ages of 70
and 89, as previously described.12 In 2012, the MCSA was
extended to include those aged 50 and older. The present
analyses included all 79 participants without dementia (64
CU, 15 MCI) with concurrent measures of both plasma and

CSF NfL, neuropsychological testing, and neuroimaging
(amyloid Pittsburgh compound B [PiB]–PET, FDG-PET,
MRI) at the same study visit. All participants were also re-
quired to have a repeat clinical visit that included both the
measurement of plasma NfL and neuroimaging.

Standard protocol approvals, registrations,
and patient consents
The institutional review boards of both Mayo Clinic and
Olmsted Medical Center approved this study. All participants
provided written informed consent.

Participant assessment
MCSA clinical visits occurred every 15 months.11 These visits
included an interview by a study coordinator/nurse, a neuro-
logic examination, and neuropsychological testing.11 The
neuropsychological battery included 9 tests covering 4
domains (memory, language, executive function, and visuo-
spatial), as previously described.11 Among the CU, sample-
specific z scores were computed for each cognitive test. Domain
scores were then estimated by averaging the z scores within each
domain. A global cognitive z score was calculated by averaging
the 4 domain z scores.

MCI and dementia diagnostic determination
Clinical diagnoses were determined by a consensus commit-
tee including the study coordinator, neuropsychologist, and
the physician who evaluated each participant, as previously
described.11 Performance in a cognitive domain was com-
pared with the age-adjusted scores of CU participants pre-
viously obtained using Mayo’s Older American Normative
Studies in an independent sample from the same county.13

Participants were considered for possible cognitive impair-
ment if their scores were around 1.0 SD below the age-specific
mean in the general population. The operational definition of
MCI was based on clinical judgment, including a history from
the patient and informant, using published criteria.14 A final
decision about impairment in a cognitive domain was made
after considering education, occupation, visual or hearing
deficits, and all other participant information. The diagnosis
of dementia was based on published criteria.15 Participants
who performed in the normal range and did not meet criteria
for MCI or dementia were deemed CU. Neither CSF results
nor neuroimaging were considered in determining the clinical
diagnoses of MCI or dementia.

CSF NfL
Fasting lumbar punctures were performed early in the
morning in the lateral decubitus position using a 20- or 22-

Glossary
AD = Alzheimer disease; ADNI = Alzheimer’s Dementia Neuroimaging Initiative; CU = cognitively unimpaired; DTI =
diffusion tensor imaging; FA = fractional anisotropy; FDG = [18F]-fluorodeoxyglucose; MCI = mild cognitive impairment;
MCSA = Mayo Clinic Study of Aging; NfL = neurofilament light; PiB = Pittsburgh compound B; REP = Rochester
Epidemiology Project; SUVR = standardized uptake value ratio.
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gauge Quincke needle, as previously described.4 Two milli-
liters of CSF were used to evaluate routine markers (glucose,
protein, cell count). The remainder was divided into 0.5-mL
aliquots and stored at −80°C for future analyses avoiding
freeze–thaw cycles prior to the current analyses.4 CSF NfL
was measured in the Clinical Neurochemistry Laboratory at
the University of Gothenburg, Mölndal, Sweden, using an in-
house sandwich ELISA with capture and detection antibodies
directed against the central rod domain of the protein (NfL21
and NfL23, respectively).16 As published, this ELISA has
within-plate and interplate variations of below 8% and 13%,
respectively, and a strong correlation (r = 0.9984, p < 0.001)
with CSF values analyzed using Uman Diagnostics ELISA.16

Plasma NfL
Blood was collected in EDTA tubes in clinic after an overnight
fast.4 As previously described, the blood was centrifuged,
aliquoted in 500 μL aliquots, and stored at −80°C for future
analyses, thus avoiding freeze–thaw cycles prior to the current
analyses.4 Plasma NfL was measured using an in-house digital
ELISA on the Simoa-HD1 Platform, as previously de-
scribed.17 Intra-assay and interassay coefficients of variation
were 11.7%–12.1% for quality control samples with clinically
relevant low and high concentrations (17.9 and 257 pg/mL,
respectively). The analytical sensitivity was 0.62 pg/mL.4 The
validated measurement range was 6.7–1,620 pg/mL.4

Neuroimaging variables
Neuroimaging occurs at 15- or 30-month intervals. The ac-
quisition, processing, and summary measure for AD sig-
natures for amyloid PET, FDG-PET, and MRI in the MCSA
have been described in detail.18–20 Briefly, a global cortical
PiB-PET retention ratio was computed by calculating the
median uptake over voxels in the anterior cingulate, orbito-
frontal, parietal, prefrontal, posterior cingulate/precuneus,
and temporal regions. This summary value was then divided
by the median uptake over voxels in the cerebellar gray matter
atlas region.21 We classified participants as having elevated
brain amyloid (A+) if their PiB-PET standardized uptake value
ratio (SUVR)was ≥1.42. A global FDG-PET ratio measure was
computed for each individual scan by averaging the left and
right angular gyri, bilateral posterior cingulate, and left middle/
interior temporal gyrus pons-normalized SUVR values for each
participant, as described previously.20 Using our in-house fully
automated imaging processing pipeline, hippocampal volume
was adjusted for total intracranial volume.22 A global cortical
thickness AD measure was computed using a FreeSurfer
(version 5.3)–derived temporal lobe cortical thickness com-
posite of entorhinal, fusiform, inferior temporal, and middle
temporal regions of interest20 from 3Tmagnetization-prepared
rapid gradient echo scans. Diffusion tensor imaging (DTI)
sequences were processed and analyzed for fractional anisot-
ropy (FA) of the corpus callosum.23 Loss of white matter mi-
crostructural integrity measured using DTI is a good indicator
of axonal injury. We used FA in the corpus callosum as an
imaging marker of axonal damage, which has previously been
shown to be a sensitive measure of axonal injury.24,25

Assessment of covariates
Age, sex, and years of education were obtained at the clinical
visit. APOE e4 genotyping was performed from blood drawn
at the in-clinic examination.11 Medical conditions were de-
termined for each participant by medical record abstraction
using the REP medical records linkage system.11,12

Statistical analysis
Associations between baseline plasma or CSF NfL with de-
mographics (age, sex, education, APOE), medical conditions
(hypertension, diabetes), or clinical diagnosis (CU vs MCI)
were examined using Spearman rank correlation for continuous
variables and Kruskal-Wallis tests for dichotomous variables.
We used linear mixed regression models with random subject-
specific intercepts and slopes for time to examine the cross-
sectional and longitudinal associations between baseline
plasma or baseline CSF NfL with neuroimaging or cognitive
outcomes, adjusting for age, sex, and education. In additional
models, we excluded participants with only a 15-month follow-
up (n = 17) or excludedMCI cases (n = 15) at baseline. All NfL
measures were z log-transformed for the linear mixed re-
gressionmodels to normalize the distributions and to utilize the
same units for each variable to adequately compare the effect
sizes for each outcome. Linear regression models were used to
examine change in log-transformed plasma NfL and change in
the neuroimaging and cognitive outcomes after adjusting for
baseline log-transformed plasma NfL, age, sex, education, and
time between visits. All models examining hippocampal volume
also adjust for total intracranial volume. Amyloid PET was log-
transformed in all analyses. Statistical analyses were completed
using SAS, version 9.4 (SAS Institute Inc., Cary, NC), and R,
version 3.4.1. A 2-tailed p < 0.05 was considered significant.

Data availability
Data from the MCSA, including data from this study, are
available upon request.

Results
The baseline characteristics of the 79 participants are de-
scribed in table 1. Participants were a median age of 76 years,
52 (66%) were men, and 15 (19%) had a clinical diagnosis of
MCI. At baseline, plasma NfL levels increased with increasing
age (Spearman ρ = 0.588, p < 0.001) and were higher in those
with hypertension compared to without (median 49.2 vs 36.0
pg/mL, p = 0.022). However, NfL levels did not differ by sex,
education, APOE ɛ4 genotype, or diabetes. The 15 MCI
participants had higher plasma NfL levels compared to the 64
CU participants (median 50.8 vs 42.2 pg/mL, p = 0.181), but
the results were not significant. Similarly, baseline CSF NfL
levels increased with increasing age (Spearman ρ = 0.363, p =
0.001) but levels did not differ by sex, education, MCI di-
agnosis, APOE ɛ4 genotype, hypertension, or diabetes. There
was a moderate correlation between plasma and CSF NfL
(Spearman ρ = 0.568, p < 0.001). The strength of this cor-
relation did not differ by age (<75 vs ≥ 75 years).
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The cross-sectional and longitudinal associations between
baseline z log-transformed plasma or CSF NfL and neuro-
imaging and cognitive measures are shown in table 2 and the
figure, A. In multivariable models adjusting for age, sex, and
education, there were no significant cross-sectional associa-
tions between baseline plasma (table 2) or baseline CSF
(table 3) NfL and baseline neuroimaging or cognitive meas-
ures. Longitudinally, higher levels of baseline plasma NfL
were significantly associated (p < 0.05) with declines in hip-
pocampal volume, cortical thickness, FDG-PET, corpus cal-
losum FA, and global cognitive z score. Baseline plasma NfL
was not associated with change in amyloid PET. By com-
parison, although the coefficients for all longitudinal associa-
tions between baseline CSF NfL and either neuroimaging or
cognitive outcomes were similar and not statistically different,
baseline CSF NfL was only significantly associated with
declines in cortical thickness and corpus callosum FA. In
additional analyses, we restricted the sample to the 64 CU
participants at baseline (figure, B) or to the 62 participants

with a 30-month follow-up (figure, C) and the results
remained the same.

All 79 participants had a repeat blood draw and plasma NfL
measure 15 or 30 months later, concurrent with their follow-
up neuroimaging measure. The median (interquartile range)
of plasmaNfL increased from 46.8 pg/mL (32.7, 70.7) to 58.8
pg/mL (39.6, 77.4) over the follow-up; the median increase
did not differ by baseline diagnosis. Table 4 shows the asso-
ciation between change in log plasma NfL and change in the
neuroimaging or cognitive measures after adjustment for
baseline log plasma NfL, age, sex, education, and time be-
tween visits. Increasing levels of log plasma NfL over the short
follow-up were associated with increasing levels of log amy-
loid PET (b = 0.036, p = 0.030) as well as decreasing attention
(b = −0.476, p = 0.019) and global (b = −0.383, p = 0.019) z
scores.

Discussion
In the present study, we examined and compared the effect
sizes of baseline plasma and baseline CSFNfL levels for short-
term (15 to 30 months) change in neuroimaging and cogni-
tive outcomes. We found that baseline plasma and baseline
CSF NfL were similarly associated with short-term declines in
imaging measures of neurodegeneration and with global
cognition, but not with change in amyloid ligand retention on
PET.We also found that an increase in plasma NfL levels over
the short follow-up was associated with significant declines in
both attention and global z scores and an increase in amyloid
ligand retention on PET. These results suggest that plasma
NfL is a useful marker for the short-term prognosis of non-
specific neurodegenerative and cognitive changes.

We did not find a cross-sectional association between either
plasma or CSF NfL and any neuroimaging or cognitive
measure. Although plasma and CSF NfL levels were higher in
the MCI participants compared to CU, they were also not
significantly different. In Alzheimer’s Dementia Neuro-
imaging Initiative (ADNI) cross-sectional data with a larger
sample size, patients withMCI had significantly higher plasma
NfL levels compared to CU. However, notably, there was not
a cross-sectional association between plasma NfL and cogni-
tion when analyses were restricted to the CU group.3 This
finding is in line with the current results because the majority
of our participants were CU at baseline.

Previous longitudinal studies have shown that either plasma
or CSF NfL is a prognostic marker for change in cognition
and imaging measures of neurodegeneration or white matter
integrity, independent of elevated brain amyloid.3,4,26 Our
longitudinal results, showing that both plasma NfL and CSF
NfL are associated with neurodegeneration and cognitive
decline, are consistent with these findings. In addition, our
observed correlation between plasma and CSF NfL (Spear-
man ρ = 0.568) was similar to the correlation found in the

Table 1 Participant baseline characteristics

Characteristics N Median (IQR) or n (%)

Age, y 79 76.4 (71.7, 80.7)

Male 79 52 (65.8)

Education, y 79 14 (12, 16)

APOE ɛ4 allele 79 17 (21.5%)

Plasma NfL, pg/mL 79 46.8 (32.7, 70.7)

CSF NfL, pg/mL 79 608.3 (429.1, 817.7)

MCI 79 15 (19.0)

Hypertension 79 51 (64.6)

Diabetes 79 14 (17.7)

Neuroimaging

PiB-PET SUVR 78 1.36 (1.31, 1.67)

FDG-PET 79 1.51 (1.42, 1.62)

Cortical thickness 79 2.70 (2.62, 2.78)

Hippocampal volume 79 6.98 (6.44, 7.65)

Corpus callosum FA 58 0.65 (0.62, 0.66)

Cognitive z score

Memory 78 −0.02 (−0.79, 0.83)

Language 76 0.01 (−0.82, 0.72)

Attention 77 0.13 (−0.49, 0.66)

Visuospatial 77 −0.04 (−0.52, 0.72)

Global 75 0.06 (−0.82, 0.90)

Abbreviations: FA = fractional anisotropy; FDG = [18F]-fluorodeoxyglucose;
IQR = interquartile range; MCI = mild cognitive impairment; NfL = neuro-
filament light; PiB = Pittsburgh compound B; SUVR = standardized uptake
value ratio.
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ADNI (Spearman ρ = 0.590), but lower than what has been
reported in, for example, multiple sclerosis, where there is
a greater range of concentrations in relation to disease
activity.8

Despite the consistently observed prognostic value of baseline
plasma or CSF NfL for change in cognitive and imaging
measures, few studies have compared their effect sizes. Only
one cross-sectional study of ADNI patients reported that
plasma and CSF NfL similarly correlated with the same
regions of cortical and subcortical thickness, but the effect
sizes were not compared.27 Because CSF NfL is a more direct
measure of subcortical axon degeneration than plasma NfL,
we would have hypothesized that CSF NfL is more strongly
associated with cognitive and neuroimaging outcomes than
plasma NfL. Instead, we found more statistically significant
associations for plasma NfL compared to CSF NfL for neu-
roimaging or cognitive outcomes. However, although there
were more statistically significant associations for plasma NfL,
the effect sizes were similar to CSF NfL and not statistically
different. There are a few explanations as to why we may have
obtained these results. First, we used different assays for
plasma and CSF because of the difference in concentrations
between the 2 mediums. Thus, it is possible that there was
more variability or other differences in the CSF assay com-
pared to the plasma assay. Second, our sample size was small,
which could have led to false-positive findings with respect to
plasma NfL and false-negative findings with respect to CSF
NfL. Additional longitudinal studies with concurrent meas-
ures of baseline CSF and plasma NfL and larger sample sizes
are needed to validate our finding. Finally, it is possible that

CSF and plasma NfL may be differentially altered over the
course of clinical progression, similar to the observation that
CSF amyloid-β42 is thought to change earlier than amyloid
PET. Serial assessments of both plasma and CSF NfL are
needed to determine whether the markers differentially
change in relation to clinical progression.

Cross-sectional studies show that both plasma and CSF NfL
increase with age,3,4,26 which we also replicated in the current
study. Longitudinally, plasma NfL levels intraindividually in-
creased over the 15- to 30-month follow-up. The quantitative
increase did not differ by baseline cognitive status (CU vs
MCI), but the sample size was small, the time period was
short, and there were very few clinical transitions (CU toMCI
or MCI to dementia). Notably, increasing levels of plasma
NfL were significantly associated with declines in both at-
tention and global cognitive z scores, even over the short
follow-up. These results suggest that plasma NfL may track
with cognitive decline. If this finding is replicated, plasma NfL
could be utilized as a clinical trial endpoint or marker of
disease progression for AD and other neurodegenerative
diseases. Interestingly, we also found that increasing plasma
NfL was significantly associated with increasing amyloid PET
over the short follow-up. This was a bit surprising given that
NfL is thought to be a nonspecific marker of neuro-
degeneration. Although not statistically significant (p = 0.07),
increases in plasma NfL were also associated with declines in
hippocampal volume and cortical thickness over the short
follow-up. Thus, it is possible that the observed relationship
with amyloid PET is reflecting ongoing AD-associated neu-
rodegeneration. A larger sample size is needed to better

Table 2 Baseline plasma neurofilament light (NfL) and change in neuroimaging and cognitive measures

Outcome

Baseline plasma NfL Time Baseline NfL * time

β (SE) p Value β (SE) p Value β (SE) p Value

Neuroimaging

Hippocampal volume 0.132 (0.093) 0.162 −0.079 (0.009) <0.001 −0.022 (0.009) 0.023

Cortical thickness 0.008 (0.014) 0.578 −0.016 (0.003) <0.001 −0.007 (0.004) 0.019

Amyloid PET −0.043 (0.029) 0.150 0.014 (0.002) <0.001 −0.001 (0.002) 0.706

FDG-PET 0.011 (0.018) 0.554 −0.007 (0.003) 0.063 −0.010 (0.004) 0.018

Corpus callosum: DTI 0.003 (0.005) 0.542 −0.004 (0.001) <0.001 −0.002 (0.001) 0.015

Cognitive z score

Memory 0.074 (0.122) 0.547 0.015 (0.026) 0.564 −0.056 (0.029) 0.058

Language −0.053 (0.116) 0.647 −0.048 (0.033) 0.155 −0.037 (0.036) 0.314

Attention 0.039 (0.116) 0.739 −0.062 (0.026) 0.021 −0.018 (0.029) 0.528

Visual–spatial −0.059 (0.114) 0.604 0.042 (0.026) 0.109 −0.018 (0.028) 0.527

Global 0.014 (0.114) 0.905 −0.028 (0.021) 0.173 −0.055 (0.023) 0.019

Abbreviations: DTI = diffusion tensor imaging; FDG = [18F]-fluorodeoxyglucose.
Models adjust for age, sex, and education. Models examining hippocampal volume also adjust for total intracranial volume. Each row represents a separate
model. Plasma NfL was z log-transformed prior to analyses in order to compare with the CSF NfL β-estimates.
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understand the longitudinal relationship between change in
plasma NfL and change in AD-associated neuroimaging
measures.

Strengths of the study include the community-based pop-
ulation with concurrent plasma and CSF NfL and neuro-
imaging. There are, however, some limitations. First, although
the current study is the largest study to date examining serial
plasma and neuroimaging data, the overall sample size was
small and larger studies are needed. Second, the time between
consecutive visits with imaging and plasma NfL was 15 or 30
months, a period in which little cognitive or brain

neuroimaging changes may occur in participants without
dementia. Regardless, even though the follow-up was short,
we still found that change in plasma NfL was associated with
worsening in cognition and amyloid PET.

Our results suggest that elevated plasma NfL is a prognostic
marker of cognitive decline and imaging measures of neu-
rodegeneration and has similar effect sizes to CSF NfL.
Change in plasmaNfL also tracked with short-term cognitive
change, and may be a potential marker of disease pro-
gression. Plasma NfL is more clinically suitable than CSF
NfL, more feasible at the population level for serial measures

Figure Longitudinal associations between baseline z log-transformed plasma or CSF neurofilament light (NfL) and neu-
roimaging and cognitive measures

(A) Everyone. (B) The 64 cognitively un-
impaired (CU) participants at baseline. (C)
The 62 participants with a 30-month follow-
up. CI = confidence interval; DTI = diffusion
tensor imaging; FDG = [18F]-
fluorodeoxyglucose.
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to assess disease progression, and similarly represents neu-
rodegenerative and cognitive changes. Future studies will
need to determine whether plasma NfL tracks with cognitive
or imaging changes across the clinical spectrum or is a better
measure in either the early or later clinical phases of the
disease.
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Table 3 Baseline CSF neurofilament light (NfL) and change in neuroimaging and cognitive measures

Outcome

Baseline CSF NfL Time Baseline NfL * time

β (SE) p Value β (SE) p Value β (SE) p Value

Neuroimaging

Hippocampal volume 0.114 (0.086) 0.185 −0.078 (0.009) <0.001 −0.016 (0.008) 0.058

Cortical thickness 0.012 (0.012) 0.336 −0.016 (0.003) <0.001 −0.007 (0.003) 0.013

Amyloid PET −0.024 (0.027) 0.364 0.015 (0.002) <0.001 −0.001 (0.002) 0.826

FDG-PET 0.012 (0.016) 0.462 −0.007 (0.004) 0.093 −0.007 (0.004) 0.063

Corpus callosum: DTI 0.006 (0.004) 0.198 −0.004 (0.001) <0.001 −0.002 (0.001) 0.024

Cognitive z score

Memory 0.016 (0.110) 0.884 0.020 (0.026) 0.448 −0.030 (0.036) 0.298

Language 0.021 (0.107) 0.848 −0.046 (0.033) 0.172 −0.039 (0.032) 0.002

Attention 0.057 (0.104) 0.583 −0.061 (0.026) 0.023 −0.012 (0.026) 0.636

Visual–spatial 0.012 (0.102) 0.905 0.042 (0.026) 0.102 −0.008 (0.025) 0.740

Global 0.035 (0.101) 0.730 −0.023 (0.021) 0.285 −0.030 (0.020) 0.139

Abbreviations: DTI = diffusion tensor imaging; FDG = [18F]-fluorodeoxyglucose.
Models adjust for age, sex, and education. Models examining hippocampal volume also adjust for total intracranial volume. Each row represents a separate
model. CSF NfL was z log-transformed prior to analyses in order to compare with the plasma NfL β-estimates.

Table 4 Change in plasma neurofilament light (NfL) and
change in neuroimaging and cognitive measures

Outcome β (SE) p Value

Neuroimaging

Hippocampal volume −0.123 (0.068) 0.078

Cortical thickness −0.041 (0.022) 0.072

Amyloid PET 0.036 (0.017) 0.030

FDG-PET −0.008 (0.032) 0.801

Corpus callosum: DTI 0.003 (0.009) 0.720

Cognitive z score

Memory −0.215 (0.204) 0.296

Language −0.445 (0.264) 0.096

Attention −0.476 (0.199) 0.019

Visuospatial 0.103 (0.199) 0.606

Global −0.383 (0.158) 0.019

Abbreviations: DTI = diffusion tensor imaging; FDG = [18F]-
fluorodeoxyglucose.
Models adjust for baseline plasma NfL, age, sex, education, and the time
between visits. Models examining hippocampal volume also adjust for total
intracranial volume.
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