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Spinal cord injury (SCI) often results in death of spinal neurons and atrophy of muscles which they govern. Thus,
following SCI, reorganizing the lumbar spinal sensorimotor pathways is crucial to alleviate muscle atrophy. Tail nerve
electrical stimulation (TANES) has been shown to activate the central pattern generator (CPG) and improve the
locomotion recovery of spinal contused rats. Electroacupuncture (EA) is a traditional Chinese medical practice which
has been proven to have a neural protective effect. Here, we examined the effects of TANES and EA on lumbar motor
neurons and hindlimb muscle in spinal transected rats, respectively. From the third day postsurgery, rats in the TANES
group were treated 5 times a week and those in the EA group were treated once every other day. Four weeks later,
both TANES and EA showed a significant impact in promoting survival of lumbar motor neurons and expression of
choline acetyltransferase (ChAT) and ameliorating atrophy of hindlimb muscle after SCI. Meanwhile, the expression of
neurotrophin-3 (NT-3) in the same spinal cord segment was significantly increased. These findings suggest that TANES
and EA can augment the expression of NT-3 in the lumbar spinal cord that appears to protect the motor neurons as
well as alleviate muscle atrophy.

1. Introduction

Spinal cord injury (SCI) is a worldwide problem and causes
immense suffering and burden to the patient. Traumatic
injuries to the spinal cord disrupt the transmission of both
ascending sensory projections and descending projections
to motor neurons, leading to permanent sensory and motor
functional deficits [1]. Although the motor neurons in the

ventral horn of the spinal cord below the lesion site retain
their connection to the target muscles, the loss of ascending
and descending stimulation makes the spinal motor neurons
shrink and die, resulting in atrophy of the innervated mus-
cles. Natural neural regenerative response following SCI is
very little, if any; meanwhile, however, the muscle atrophy
continues and the change is remarkable within a short time
[2, 3]. There are two main strategies to minimize the muscle
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hypotrophy after SCI, and this includes using physical exer-
cises to drive the disused hindlimbs [4, 5] and giving a local-
ized electrical stimulation to the atrophic muscles [6, 7]. It
was thought that external intervention like locomotor train-
ing or functional electrical stimulation could provide sensory
inputs and effectively reactivate the lumbar motor circuit,
giving a rise to the neuromuscular activity.

The tail is an important organ of the rat with various
functions involved in sensation, temperature control, bal-
ance, and movement [8]. Tail nerve electrical stimulation
(TANES) for SCI therapy was first put forward and used by
Zhang et al. They found that electrical stimulation on the tail
of a rat was conducive to locomotor recovery in a model of rat
spinal cord contused, and this was ascribed to the activation
of central pattern generator (CPG) through the tail nerve [9].

Electroacupuncture (EA) is a traditional Chinese medical
method that is widely used for various research studies and
clinical applications [10-12]. EA has long been used in SCI
therapy and, in this connection, it has been shown to inhibit
inflammation, promote neurotrophic factor secretion, reduce
secondary injury, and so forth [13-15]. We also reported pre-
viously that EA stimulation on the Governor Vessel could
promote the regeneration of nerve fibers in the injury site
of the spinal cord [16, 17]. Although the work theory of EA
stimulation remained uncertain, with the anatomical investi-
gation showing that acupoints tend to be adjacent to nerve
fibers [18] and the experimental evidence that complete
denervation totally suppresses the effect of the points [19,
20], the effect of EA may involve convergence of nerve
impulses on the primary afferent sensory fibers into the spi-
nal cord.

Neurotrophic factors (NTFs) are a family of proteins that
are essential to the development, survival, and function of
neurons [21-23]. The protein neurotrophin-3 (NT-3) is a
member of the neurotrophin family and has been demon-
strated in experimental animal models to have an important
role in neuroprotection and axonal regeneration, yet its local-
ized and sustained delivery remains challenging [24, 25].
Giving EA treatment may be a potential strategy to cope with
this problem. Previous research found that EA on Governor
Vessel has a beneficial effect on the improvement of endoge-
nous NT-3 in the injury area of the spinal cord at different
time points after SCI [26-28]. However, it remains to be
ascertained whether EA would influence the NT-3 secretion
at the spinal lumber segment and whether TANES could
affect the expression of NT-3 as well.

As mentioned above, the normal lumbar spinal neurons
are implicated after SCI, which directly affects the hindlimb
muscles. To patients with severe SCI who often are not able
to perform physical exercise, electrical stimulation may be
an option for rewiring the lumbar spinal neural plasticity
to relieve muscle atrophy. In addition to electrical stimula-
tion, TANES or EA might offer activity-dependent plastic-
ity as well. However, the study of TANES was mainly
concerned with the locomotor behavior change for con-
tused spinal cord of rat, while the spinal pathophysiological
changes had remained unexplored [9, 29, 30]. In EA study,
the investigation was extended to the behavioral reaction
and focused on structural change in the injury site of the
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spinal cord [26, 28]. It was reported that acupuncture on the
hindlimbs ameliorated skeletal muscle atrophy induced by
hindlimb suspension in mice or denervation in rats [31, 32].
It remains to be ascertained whether TANES and EA could
offer a protective effect of lumbar spinal motor neurons and
alleviate muscle atrophy of rat with SCI. The present study
was designed and sought to explore if TANES or EA stimula-
tion to rats with a complete transection of the spinal cord
could promote NT-3 secretion, protect lumbar spinal motor
neurons, and reduce muscle atrophy of hindlimbs.

2. Experimental Procedures

2.1. Animals and Experimental Groups. Adult female
Sprague-Dawley (SD) rats (n =72, 220-250g, supplied by
the Experimental Animal Center of Sun Yat-sen Univer-
sity) were randomly assigned into four groups: (1) spinal
cord injury group (the SCI group), (2) tail nerve electrical
stimulation treatment group (the TANES group), (3)
electroacupuncture treatment group (the EA group), and
(4) sham operation group (the Sham group). There were 18
rats in each group; half of them were used for morpho-
logical analysis and the remainder were used for Western
blot analysis.

2.2. Spinal Cord Surgery. The spinal transection surgery was
previously described [28]. Briefly, animals were anesthetized
with 1% pentobarbital sodium (40 mg/kg, i.p.). Under the
sterile condition, a laminectomy was carried out at the T9
vertebral level to expose the T10 spinal segment. The dura
was excised, and the T10 spinal segment was transected
completely with an ophthalmic scissors and with no tissue
removed. The rats for the Sham group were subjected to ver-
tebral lamina and dura resection only without spinal cord
transection. After adequate hemostasis, the overlying mus-
cles, fascia and skin incision were closed in layers using
sutures. In postsurgery care, manual urination was given
three times daily, and an intramuscular injection of penicillin
(160,000 U/ml/d) was administered to prevent infection for
all animals.

2.3. TANES or EA Treatment. TANES treatment was carried
out according to the protocol reported by Dr. Shu-Xin Zhang
with some modification [28]. The therapy was started on the
third day postsurgery and given 5 times a week for 4 weeks.
Without anesthesia, the rat was kept in an open field (a
square box with side length of one meter) to allow its free
movement and two electrodes were placed adequately apart
(to avoid a short circuit) on the base of the tail (Figure 1).
The two electrodes were connected to a physical therapy
instrument (Type J18A1 computer control middle frequency
instrument, Quan-Ri-Kang Company, China; it has demon-
strated no risk and no side effects in applications in both
clinic and home). The instrument possesses a middle fre-
quency carrier wave of 2.5-8.0kHz and low adjustable fre-
quency 1-150Hz with maximal output current 100 mA.
The strength of stimulation was adjusted to 20 mA at a fre-
quency of 4kHz to induce a slight vibration of the tail or



Neural Plasticity

FIGURE 1: A schematic diagram shows the method of the tail nerve
electrical stimulation conducted by computer control middle
frequency instrument.

twitch of the hindlimbs, and the treatment lasted for 20 min
every time for each rat.

EA stimulation was administrated at three pairs of acu-
puncture points, including two pairs of Governor Vessel acu-
points: (1) GV9 (Zhiyang) and GV6 (Jizhong) points; (2)
GV2 (Yaoshu) and GV1 (Changqgiang) points); and two
ST36 (Zusanli) points in the hindlimbs (Figure 2). The loca-
tion of Governor Vessel acupoints followed that previously
described [33]. The ST36 is 5 mm beneath the capitulum fib-
ulae and is located laterally and posterior to the knee joint
[34, 35]. The rats were kept in a specially designed restraint
equipment without anesthesia such that they remained in a
recumbent position during the EA treatment. Stainless acu-
puncture needles (0.30mm in diameter, 50 mm in length;
Jiangsu Medical Instruments Inc., China) were inserted at a
depth of 5mm [16] into the four Governor Vessel acupoints,
and needles (0.25mm in diameter, 13 mm in length) were
inserted at a depth of 3mm [36] into the bilateral ST36
points. The three pairs of needles were connected to the out-
put terminals of an EA apparatus (model number G 6805-2,
Shanghai Medical Electronic Apparatus Company, China),
and EA was applied using alternating strings of dense-
sparse waves at alternating frequencies (60 Hz for 1.05s and
2Hz for 2.85s, pulse width 0.5ms). The intensity was
adjusted to induce slight twitching of the hindlimbs
(£1mA), and each treatment lasted 20 min. EA treatment
was given once every other day for 4 weeks and started on
the third day postsurgery.

2.4. Morphological Quantification. All rats were sacrificed 30
days after surgery. They were deeply anesthetized with 1%
pentobarbital sodium (50 mg/kg, i.p.) and weighed and then
perfused transcardially with 4% paraformaldehyde. The spi-
nal cord and hindlimbs were dissected and removed from
each animal. The spinal cord was postfixed overnight in cold
4% paraformaldehyde and then transferred to 30% sucrose/
phosphate-buftered saline (PBS) for 3 days. To analyze the
survival of injured motor neurons innervating the hindlimbs,
the lumbar segments (L3 and L5) of the postfixed spinal cord
were dissected and sectioned transversely at 20 ym thickness
with a cryostat. Every 5th section of the spinal cord segment
was collected. A total of 10 sections from each segment per
rat were used for neuronal counts after neutral red staining.
The number of motor neurons with intensely stained Nissl
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FIGURE 2: A schematic diagram indicates location of selected
electroacupuncture acupoints in rat. Arrows show the four
Governor Vessel acupoints: Jizhong (GV6), Zhiyang (GV9),
Yaoshu (GV2), and Changgiang (GV1) and the bilateral Zusanli
(ST36) in hindlimbs.

substance in the cytoplasm and well-delineated nucleus in
the ninth lamina of the right and left ventral horns for each
section was counted under a light microscope at the magnifi-
cation of 200x [37]. The number of motor neurons in two
sides of the ventral horns of each section was pooled to yield
a total number of cells per section. Finally, the total number
of neurons of 10 sections derived from each rat was presented
for statistical analysis.

2.5. Western Blot Analysis. Western blot analysis was used to
detect the expression levels of choline acetyltransferase
(ChAT) and NT-3 proteins in the lumbar spinal cord at 30
days after surgery. Briefly, the L5 spinal cord segment
(2.5mm in length) was dissected after intracardial perfusion
of the rat with PB under the anesthesia. The segment was
lysed in RIPA buffer (Sigma-Aldrich) containing 2% protease
inhibitor cocktails (Roche, Germany). After centrifuged at
12,000 rpm for 20 min at 4°C, the supernatant was collected
and stored in —80°C for Western blots. The protein concen-
trations were determined using a BCA Protein Assay kit
(Thermo Scientific™ Pierce). Equal amounts of protein
(40 pg) were resolved on 12% SDS-polyacrylamide gel elec-
trophoresis and transferred to PVDF membranes (Millipore,
Massachusetts, USA). The membranes were rinsed in TBST,
blocked at room temperature for 1h in BSA Blocking Buffer,
and incubated with the following primary antibodies at 4°C
overnight: rabbit anti-ChAT (1:1000, Proteintech Group,
Inc.), rabbit anti-NT-3 (1:1000, Santa Cruz Biotechnology,
Santa Cruz, USA), and mouse anti-3-Tubulin (1:2000, Pro-
teintech Group, Inc.). After rinsing with TBST, the mem-
branes were incubated with the HRP-conjugated goat anti-
mouse and rabbit IgG (1:5000, Invitrogen Life Technologies,
Carlsbad, CA, USA) for 1 h at room temperature. To visualize
the immunoreactive proteins, the enhanced ECL kit
(CWBIO, Beijing, China) was used following the manufac-
turer’s instructions. Quantitative densitometry of captured
images was analyzed with Image] (NIH, USA).

2.6. Immunofluorescence. The sections of the spinal cord
were rinsed with 0.01 M phosphate-buffered saline (PBS)
three times, blocked with 10% goat serum for 30 min, and



incubated with primary antibodies mixed in 0.3% Triton X-
100 overnight at 4°C. After rinsing with PBS, the sections
were incubated with the secondary antibodies and examined
under a fluorescence microscope (Olympus BX63, Tokyo,
Japan). The antibodies used are as follows: rabbit anti-NT-3
(1:200, Abcam, London, UK), mouse anti-NeuN (1:1000,
Sigma-Aldrich, St. Louis, USA), rabbit anti-ChAT (1:50,
Proteintech Group Inc., Chicago, IL, USA), Alexa Fluor 488
goat anti-rabbit antibody (1:500, Cell Signaling Technology
Inc., Danvers, MA, USA), Alexa Fluor 555 goat anti-mouse
antibody (1:1000, Cell Signaling Technology Inc.).

2.7. Muscle Atrophy Analysis. Before postfixation, the gas-
trocnemius muscles were weighed in a precise weighing scale
(0.01 g) after careful dissection of associated tendons and fas-
cia. To reduce deviation, the smaller mass gastrocnemius
muscle of each rat was chosen for mass and muscle fiber
cross-sectional area analysis. The midbelly of muscles were
dehydrated, embedded in paraffin, and sectioned transversely
at 4 ym thickness with a paraffin microtome (Leica RM 2235,
Germany). One section of every 100 um of the selected mus-
cle segment and a total 5 sections of each rat were collected
for haematoxylin and eosin (HE) staining. Images of random
fields of each muscle section were captured under a bright-
field microscope (Leica DMIRB) at a typical magnification
of 200x. Muscle fiber area in the gastrocnemius was deter-
mined using the Image] software (NIH, USA).

2.8. Statistical Analysis. Data were analyzed using SPSS 13.0
software. All values were expressed as mean + standard devi-
ation (SD). Comparisons between groups were evaluated by
one-way ANOVA and post hoc statistical test (LSD). The sta-
tistically significant difference between samples was accepted
if p < 0.05.

3. Results

3.1. TANES or EA Treatment Can Protect the Motor Neurons.
The motor neurons governing the hindlimb muscles were
mainly located in the lumbar spinal cord. To determine the
neuroprotection of TANES or EA treatment, the survival of
motor neurons (L3 and L5 segments) in the transected spinal
cord was evaluated after the neutral red staining. The motor
neurons in the ninth lamina were readily recognized by their
large cell bodies (soma) and thick easily stained Nissl sub-
stance. An ANOVA showed that the spinal cord injury had
an obvious effect on the survival of motor neurons,
F(35,=17.8, p<0.05 for L3 and F 5, =27.1, p < 0.05 for
L5. In the TANES and EA groups, the number of surviving
motor neurons with relatively normal morphological features
(Figures 3(a), 3(b), and 3(c)) was significantly higher than
that in the SCI group (p <0.05 in L3; p<0.05 in L5); it
was, however, lower when compared with the Sham group
(p<0.05). There was no significant difference in the
number of motor neurons between the TANES and EA
treatment groups (p > 0.05).

3.2. Spinal Neurons Exhibited More Intense ChAT Expression
after TANES or EA Treatment. The innervation of the hin-
dlimb muscles by the lumbar motor neurons is known to
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be mediated by the excitatory neurotransmitter acetylcho-
line. In view of this, the expression of ChAT (a transferase
enzyme responsible for acetylcholine synthesis) in L5
segment of the spinal cord was analyzed by Western blot.
The statistical result showed a significant decrease in ChAT
expression after SCI, F(333)=35.1, p <0.05. Post hoc com-

parisons revealed that the SCI group differed from the Sham
group (Figures 4(a) and 4(b), p < 0.05). In the TANES group
or EA group, ChAT expression in L5 spinal cord was partially
restored and was significantly (p < 0.05) higher than the SCI
group; however, there was no significant difference in ChAT
expression between the TANES and EA groups (p > 0.05).
Immunofluorescence staining showed that ChAT was widely
expressed in the somata and processes (mainly identified as
dendrites) of motor neurons (Figures 4(c), 4(d), 4(e), and
4(f)). Consistent with the semiquantitative numerical assess-
ment, colocalization study of ChAT and NeuN showed an
intense ChAT immunoreactivity in the motor neurons in
the Sham group (Figure 4(f)). In the SCI group, ChAT
immunoreactivity in the motor neurons was markedly
reduced so that it was only weakly detected (Figure 4(c));
however, it was increased after TANES or EA treatment
(Figures 4(d) and 4(e)). The results suggest that either one
of the two treatments can prevent muscle atrophy and death
of motor neurons. Additionally, both can enhance the syn-
thesis of neurotransmitter through ChAT.

3.3. NT-3 Expression Level Was Enhanced in Lumbar Spinal
Cord after TANES or EA Treatment. Neurotrophins are well
known for their beneficial effects on neuroprotection and
neural plasticity. NT-3 is expressed in numerous cell types
in the spinal cord, including motor neurons, interneurons,
astrocytes, and oligodendrocytes, and plays an important role
on withstanding injury-induced neuronal death [38]. We
used Western blot analysis to determine the expression of
NT-3 semiquantitatively for assessing the progression of
SCI and the protective effects of TANES and EA. The level
of NT-3 in L5 segment of the spinal cord was reduced after
SCL F(33,)=15.0, p<0.05. Post hoc comparisons showed
that the expression of NT-3 in the SCI group was signifi-
cantly lower than that of the Sham group (p<0.05,
Figures 5(a) and 5(b)); however, the expression level of NT-
3 was significantly enhanced in the TANES and EA groups
when compared with that in the SCI group (p <0.05). In
comparison with the Sham group, NT-3 expression was sig-
nificantly lower in the TANES group (p<0.05). NT-3
expression in the EA group, however, was not significantly
different from the Sham group (p > 0.05). There was no sta-
tistical significance in NT-3 expression between the TANES
and EA groups (p > 0.05). Similarly, in the NT-3 immunore-
activity observation, the green fluorescence staining in
Figure 5 showed a robust expression of NT-3 in L5 neural
cells in the TANES, EA, and Sham groups relative to the
SCI group. Double-immunofluorescence staining of NT-3
and NeuN showed the expression of NT-3 in the neurons
of L5 spinal cord segment (Figures 5(c), 5(d), 5(e), and
5(f)). NeuN-positive neurons with their intense fluorescence
appeared to overlap or showed total coincident with NT-3
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FIGURE 3: Tail nerve electrical stimulation and electroacupuncture treatment can protect the motor neurons in the ventral horn of the lumbar
spinal cord. (a) Representative motor neurons stained with neutral red are located in the lumbar spinal cord (L3 and L5). (b, ¢) Quantification
of the number of motor neurons survived at per rat in L3 (b) and L5 (c) of the SCI, TANES, EA, and Sham groups. Data are presented
as mean +SD. *p < 0.05, as compared with the SCI group; *p < 0.05, as compared with the Sham group. Scale bars =100 ym in (a).

fluorescence in the Sham group. In the SCI group, however,
NT-3 was confined to only partial areas in the cell body of
NeuN-positive neurons (Figure 5(c), arrow); on closer exam-
ination, some NeuN-positive cells were devoid of NT-3 label-
ing (Figure 5(c)).

3.4. Skeletal Muscle Atrophy Is Alleviated by TANES or EA
Treatment. To assess the histological alterations of hindlimb
muscle 28 days after SCI, the change of wet weight and mus-
cle fiber cross-sectional area of gastrocnemius muscle was
analyzed. For muscle mass analysis, the relative muscle wet
mass (muscle weight/body weight) of each rat was used to
eliminate the individual variation in body weight. A complete
transection of the spinal cord could cause severe skeletal
muscle atrophy. In accord with the decrease of the number
of surviving motor neurons, SCI did have a significant effect
on muscle weight, F(3 3,) = 21.9, p < 0.05 and cross-sectional
area of muscle fibers, F(33;) = 19.0, p <0.05. The statistical
analysis showed that the wet weight and cross-sectional area
of muscle fibers in the gastrocnemius muscle were signifi-
cantly smaller in the SCI group than those in the Sham group
(p<0.05, Figures 6(a) and 6(b)). In typical HE staining
images, there was obvious change, that is, reduction in the
diameter of muscle fibers (Figure 6(c)). It was also evident

that atrophy of muscle fibers could be alleviated partially
with TANES or EA treatment, as compared with the SCI
group (p <0.05, Figures 6(a), 6(b), and 6(c)). However, the
muscle conditions in terms of muscle weight and muscle fiber
diameter of the rat treated by TANES or EA treatment were
not fully restored to the normal level when compared with
the Sham group (p < 0.05, Figures 6(a), 6(b), and 6(c)). Fur-
thermore, there was no significant difference in the muscle
conditions between the TANES and EA groups (p > 0.05,
Figures 6(a), 6(b), and 6(c)).

4. Discussion

The present study investigated whether TANES or EA treat-
ment could protect motor neurons of the lumbar spinal
cord controlling the muscles of the hindlimbs and whether
they would alleviate the skeletal muscle atrophy after
complete SCI. Concurrent to this, we also compared the
therapeutic effects between TANES and EA treatment.
We showed here that TANES or EA treatment has a protective
effect on the lumbar spinal motor neurons and prevents at
least to a certain extent hindlimb muscle atrophy caused by
SCIL Interestingly, experimental evidence gained from this
study indicates that there was no significant difference in the
therapeutic effect of TANES and EA.
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Thoracic spinal cord transection causes the interruption
of brain innervation to the lumbar segments which results
in the neuronal death at the lumbar spinal cord. This ulti-
mately leads to atrophy of the innervated muscles. Giving
exterior intervention to reactivate the lumbar segments may
be a feasible treatment strategy for relieving the muscle atro-
phy [39]. There is available evidence demonstrating the ben-
eficial effect of electrical stimulation (ES) on muscle atrophy
treatment (7, 32, 40]. It is believed that electrical stimulation
can reactivate the spinal motor neurons by offering sensory
afferent stimulation, and this would then accelerate the neu-
romuscular performance recovery to reduce muscle atrophy
and fibrosis formation [41, 42]. TANES is a mode of electrical
stimulation applied at the tail. The rat tail is very sensitive

and has many functions with profuse sensory and motor
fibers derived from the spinal cord [43, 44]. It has been
reported that passive movement of the tail can strongly influ-
ence the activity of neurons in the spinal cord [45]. Grau et al.
found that controllable electrical stimulation applied to the
rat tail of transected spinal cord can offer adaptive plasticity
within lumbar interneuronal populations of putative central
pattern generators (CPG) to promote spinal learning [46,
47]. The work from Zhang et al. also confirmed that TANES
can activate the CPG in the lumbar spinal cord to promote
the locomotor recovery of contused spinal cord of rat [9,
30]. Here, we demonstrated for the first time the therapeutic
efficacy of TANES on spinal neuron protection and atrophy
muscle improvement in an animal model of complete SCL.
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EA is more widely studied and used in experimental and
clinical research relative to TANES. The application of acu-
puncture for treatment of SCI has shown promising results
in inflammation inhibition and beneficial factors secretion
[48, 49]. Improving the microenvironment after injury is
very helpful for survival of the spinal cord neurons and func-
tional reconstruction [50]. There is also experimental evi-
dence supporting that acupuncture therapy in SCI can
reduce apoptosis of both neurons and oligodendrocytes in
the injury area [51]. Besides, when combined with cell trans-
plantation, EA can enhance the survival and differentiation
of transplanted cells, promote the axonal regeneration, and
reconnection with the host neurons [28]. The present results
have further extended that EA is beneficial for survival of

lumbar motor neurons in SCI and that it improves atrophy
of muscles affected by the cord injury.

It is unequivocal from the present results that TANES or
EA treatment could protect motor neurons of the lumbar spi-
nal cord controlling the hindlimbs and alleviate the atrophy
of skeletal muscles after complete SCI at the thoracic level.
The issue arose from this would be the underlying mecha-
nism of the effectiveness of TANES or EA treatment. It is
known that neurotransmitters are the function carriers for
motor neurons to the target muscle. The hindlimbs are dom-
inated by sciatic nerves. Anatomically, 60%-70% spinal fibers
that make up the sciatic nerve are derived from L5 segment in
Sprague-Dawley rats [52, 53]. Furthermore, the study of
nerve degeneration caused by spinal nerve ligation indicated
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compared with the Sham group. Scale bars = 100 ym in (c).

that L5 is the primary contributor to the sural branches of the
sciatic nerve [54], making L5 as the detection target of ChAT
which is a transferase enzyme responsible for the synthesis of
the excitatory neurotransmitter acetylcholine. As expected,
the expression levels of ChAT in the TANES and EA groups
were higher than those of the Sham group. This suggests that
the reduced muscle atrophy after SCI coupled with TANES
or EA treatment may involve ChAT expression level in the
lumbar spinal cord. In addition, the local delivery of neuro-
trophins can counteract pathological events and induce a

regenerative response in either acute or chronic spinal cord
injury [55-57]. It is well documented that NT-3 is an impor-
tant regulator for the survival, differentiation, and function of
neurons in the central nervous system [58, 59]. Our previous
studies suggested that EA on the Governor Vessel could pro-
mote the expression of NT-3 in the injured area of the spinal
cord, which was not only good to the differentiation and inte-
gration of transplanted cells but also well to the survival of
host neurons and their axon regeneration [28, 60]. In this
study, we confirm that TANES or EA stimulation can
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enhance the expression of NT-3 in the lumbar spinal cord in
which there are motor neurons innervating the hindlimb
musculature. NT-3 is important for sensory afferent projec-
tions to spinal motor neurons and can modulate the connec-
tivity between them [61-63]. In consideration of the above, it
is suggested that the effect of TANES or EA treatment in
increasing the survival of motor neurons as well as alleviating
the hindlimb muscle atrophy may be associated with NT-3
and ChAT. Interestingly, TANES and EA can induce a simi-
lar effect on atrophy muscle and the related spinal neurobio-
logical change. This is consistent with the view that the
artificial afferent input is beneficial for spinal plasticity [64].
Our study might offer the experimental evidence to explain
the effectiveness of EA intervention treatment on the recov-
ery of nerve injury diseases in clinical practice.

5. Conclusion

The present results have demonstrated that, following a com-
plete transection of the lower thoracic spinal cord segment in
the rat, TANES or EA treatment can increase the expression
of NT-3 and ChAT localized specifically in the lumbar motor
neurons in the ventral horns. More importantly, either one of
the treatments can prevent the secondary injury to the spinal
motor neurons. Equally important is the fact that the treat-
ment can alleviate the muscle atrophy in the hindlimb. Aris-
ing from this, it is suggested that TANES or EA treatment in
the spinal cord injury should be further explored as a poten-
tial strategy for treating complex neurological maladies.
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